14064
|
1 |
(* Title: HOL/Lambda/StrongNorm.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Stefan Berghofer
|
|
4 |
Copyright 2000 TU Muenchen
|
|
5 |
*)
|
|
6 |
|
|
7 |
header {* Strong normalization for simply-typed lambda calculus *}
|
|
8 |
|
16417
|
9 |
theory StrongNorm imports Type InductTermi begin
|
14064
|
10 |
|
|
11 |
text {*
|
|
12 |
Formalization by Stefan Berghofer. Partly based on a paper proof by
|
|
13 |
Felix Joachimski and Ralph Matthes \cite{Matthes-Joachimski-AML}.
|
|
14 |
*}
|
|
15 |
|
|
16 |
|
|
17 |
subsection {* Properties of @{text IT} *}
|
|
18 |
|
18257
|
19 |
lemma lift_IT [intro!]: "t \<in> IT \<Longrightarrow> lift t i \<in> IT"
|
|
20 |
apply (induct fixing: i set: IT)
|
14064
|
21 |
apply (simp (no_asm))
|
|
22 |
apply (rule conjI)
|
|
23 |
apply
|
|
24 |
(rule impI,
|
|
25 |
rule IT.Var,
|
|
26 |
erule lists.induct,
|
|
27 |
simp (no_asm),
|
|
28 |
rule lists.Nil,
|
|
29 |
simp (no_asm),
|
|
30 |
erule IntE,
|
|
31 |
rule lists.Cons,
|
|
32 |
blast,
|
|
33 |
assumption)+
|
|
34 |
apply auto
|
|
35 |
done
|
|
36 |
|
|
37 |
lemma lifts_IT: "ts \<in> lists IT \<Longrightarrow> map (\<lambda>t. lift t 0) ts \<in> lists IT"
|
|
38 |
by (induct ts) auto
|
|
39 |
|
18257
|
40 |
lemma subst_Var_IT: "r \<in> IT \<Longrightarrow> r[Var i/j] \<in> IT"
|
|
41 |
apply (induct fixing: i j set: IT)
|
14064
|
42 |
txt {* Case @{term Var}: *}
|
|
43 |
apply (simp (no_asm) add: subst_Var)
|
|
44 |
apply
|
|
45 |
((rule conjI impI)+,
|
|
46 |
rule IT.Var,
|
|
47 |
erule lists.induct,
|
|
48 |
simp (no_asm),
|
|
49 |
rule lists.Nil,
|
|
50 |
simp (no_asm),
|
|
51 |
erule IntE,
|
|
52 |
erule CollectE,
|
|
53 |
rule lists.Cons,
|
|
54 |
fast,
|
|
55 |
assumption)+
|
|
56 |
txt {* Case @{term Lambda}: *}
|
|
57 |
apply atomize
|
|
58 |
apply simp
|
|
59 |
apply (rule IT.Lambda)
|
|
60 |
apply fast
|
|
61 |
txt {* Case @{term Beta}: *}
|
|
62 |
apply atomize
|
|
63 |
apply (simp (no_asm_use) add: subst_subst [symmetric])
|
|
64 |
apply (rule IT.Beta)
|
|
65 |
apply auto
|
|
66 |
done
|
|
67 |
|
|
68 |
lemma Var_IT: "Var n \<in> IT"
|
|
69 |
apply (subgoal_tac "Var n \<degree>\<degree> [] \<in> IT")
|
|
70 |
apply simp
|
|
71 |
apply (rule IT.Var)
|
|
72 |
apply (rule lists.Nil)
|
|
73 |
done
|
|
74 |
|
|
75 |
lemma app_Var_IT: "t \<in> IT \<Longrightarrow> t \<degree> Var i \<in> IT"
|
|
76 |
apply (induct set: IT)
|
|
77 |
apply (subst app_last)
|
|
78 |
apply (rule IT.Var)
|
|
79 |
apply simp
|
|
80 |
apply (rule lists.Cons)
|
|
81 |
apply (rule Var_IT)
|
|
82 |
apply (rule lists.Nil)
|
|
83 |
apply (rule IT.Beta [where ?ss = "[]", unfolded foldl_Nil [THEN eq_reflection]])
|
|
84 |
apply (erule subst_Var_IT)
|
|
85 |
apply (rule Var_IT)
|
|
86 |
apply (subst app_last)
|
|
87 |
apply (rule IT.Beta)
|
|
88 |
apply (subst app_last [symmetric])
|
|
89 |
apply assumption
|
|
90 |
apply assumption
|
|
91 |
done
|
|
92 |
|
|
93 |
|
|
94 |
subsection {* Well-typed substitution preserves termination *}
|
|
95 |
|
|
96 |
lemma subst_type_IT:
|
|
97 |
"\<And>t e T u i. t \<in> IT \<Longrightarrow> e\<langle>i:U\<rangle> \<turnstile> t : T \<Longrightarrow>
|
|
98 |
u \<in> IT \<Longrightarrow> e \<turnstile> u : U \<Longrightarrow> t[u/i] \<in> IT"
|
|
99 |
(is "PROP ?P U" is "\<And>t e T u i. _ \<Longrightarrow> PROP ?Q t e T u i U")
|
|
100 |
proof (induct U)
|
|
101 |
fix T t
|
|
102 |
assume MI1: "\<And>T1 T2. T = T1 \<Rightarrow> T2 \<Longrightarrow> PROP ?P T1"
|
|
103 |
assume MI2: "\<And>T1 T2. T = T1 \<Rightarrow> T2 \<Longrightarrow> PROP ?P T2"
|
|
104 |
assume "t \<in> IT"
|
|
105 |
thus "\<And>e T' u i. PROP ?Q t e T' u i T"
|
|
106 |
proof induct
|
|
107 |
fix e T' u i
|
|
108 |
assume uIT: "u \<in> IT"
|
|
109 |
assume uT: "e \<turnstile> u : T"
|
|
110 |
{
|
|
111 |
case (Var n rs e_ T'_ u_ i_)
|
|
112 |
assume nT: "e\<langle>i:T\<rangle> \<turnstile> Var n \<degree>\<degree> rs : T'"
|
|
113 |
let ?ty = "{t. \<exists>T'. e\<langle>i:T\<rangle> \<turnstile> t : T'}"
|
|
114 |
let ?R = "\<lambda>t. \<forall>e T' u i.
|
|
115 |
e\<langle>i:T\<rangle> \<turnstile> t : T' \<longrightarrow> u \<in> IT \<longrightarrow> e \<turnstile> u : T \<longrightarrow> t[u/i] \<in> IT"
|
|
116 |
show "(Var n \<degree>\<degree> rs)[u/i] \<in> IT"
|
|
117 |
proof (cases "n = i")
|
|
118 |
case True
|
|
119 |
show ?thesis
|
|
120 |
proof (cases rs)
|
|
121 |
case Nil
|
|
122 |
with uIT True show ?thesis by simp
|
|
123 |
next
|
|
124 |
case (Cons a as)
|
|
125 |
with nT have "e\<langle>i:T\<rangle> \<turnstile> Var n \<degree> a \<degree>\<degree> as : T'" by simp
|
|
126 |
then obtain Ts
|
|
127 |
where headT: "e\<langle>i:T\<rangle> \<turnstile> Var n \<degree> a : Ts \<Rrightarrow> T'"
|
|
128 |
and argsT: "e\<langle>i:T\<rangle> \<tturnstile> as : Ts"
|
|
129 |
by (rule list_app_typeE)
|
|
130 |
from headT obtain T''
|
|
131 |
where varT: "e\<langle>i:T\<rangle> \<turnstile> Var n : T'' \<Rightarrow> Ts \<Rrightarrow> T'"
|
|
132 |
and argT: "e\<langle>i:T\<rangle> \<turnstile> a : T''"
|
|
133 |
by cases simp_all
|
|
134 |
from varT True have T: "T = T'' \<Rightarrow> Ts \<Rrightarrow> T'"
|
|
135 |
by cases auto
|
|
136 |
with uT have uT': "e \<turnstile> u : T'' \<Rightarrow> Ts \<Rrightarrow> T'" by simp
|
|
137 |
from T have "(Var 0 \<degree>\<degree> map (\<lambda>t. lift t 0)
|
|
138 |
(map (\<lambda>t. t[u/i]) as))[(u \<degree> a[u/i])/0] \<in> IT"
|
|
139 |
proof (rule MI2)
|
|
140 |
from T have "(lift u 0 \<degree> Var 0)[a[u/i]/0] \<in> IT"
|
|
141 |
proof (rule MI1)
|
|
142 |
have "lift u 0 \<in> IT" by (rule lift_IT)
|
|
143 |
thus "lift u 0 \<degree> Var 0 \<in> IT" by (rule app_Var_IT)
|
|
144 |
show "e\<langle>0:T''\<rangle> \<turnstile> lift u 0 \<degree> Var 0 : Ts \<Rrightarrow> T'"
|
|
145 |
proof (rule typing.App)
|
|
146 |
show "e\<langle>0:T''\<rangle> \<turnstile> lift u 0 : T'' \<Rightarrow> Ts \<Rrightarrow> T'"
|
|
147 |
by (rule lift_type) (rule uT')
|
|
148 |
show "e\<langle>0:T''\<rangle> \<turnstile> Var 0 : T''"
|
|
149 |
by (rule typing.Var) simp
|
|
150 |
qed
|
|
151 |
from Var have "?R a" by cases (simp_all add: Cons)
|
|
152 |
with argT uIT uT show "a[u/i] \<in> IT" by simp
|
|
153 |
from argT uT show "e \<turnstile> a[u/i] : T''"
|
|
154 |
by (rule subst_lemma) simp
|
|
155 |
qed
|
|
156 |
thus "u \<degree> a[u/i] \<in> IT" by simp
|
|
157 |
from Var have "as \<in> lists {t. ?R t}"
|
|
158 |
by cases (simp_all add: Cons)
|
|
159 |
moreover from argsT have "as \<in> lists ?ty"
|
|
160 |
by (rule lists_typings)
|
|
161 |
ultimately have "as \<in> lists ({t. ?R t} \<inter> ?ty)"
|
|
162 |
by (rule lists_IntI)
|
|
163 |
hence "map (\<lambda>t. lift t 0) (map (\<lambda>t. t[u/i]) as) \<in> lists IT"
|
|
164 |
(is "(?ls as) \<in> _")
|
|
165 |
proof induct
|
|
166 |
case Nil
|
|
167 |
show ?case by fastsimp
|
|
168 |
next
|
|
169 |
case (Cons b bs)
|
|
170 |
hence I: "?R b" by simp
|
|
171 |
from Cons obtain U where "e\<langle>i:T\<rangle> \<turnstile> b : U" by fast
|
|
172 |
with uT uIT I have "b[u/i] \<in> IT" by simp
|
|
173 |
hence "lift (b[u/i]) 0 \<in> IT" by (rule lift_IT)
|
|
174 |
hence "lift (b[u/i]) 0 # ?ls bs \<in> lists IT"
|
|
175 |
by (rule lists.Cons) (rule Cons)
|
|
176 |
thus ?case by simp
|
|
177 |
qed
|
|
178 |
thus "Var 0 \<degree>\<degree> ?ls as \<in> IT" by (rule IT.Var)
|
|
179 |
have "e\<langle>0:Ts \<Rrightarrow> T'\<rangle> \<turnstile> Var 0 : Ts \<Rrightarrow> T'"
|
|
180 |
by (rule typing.Var) simp
|
|
181 |
moreover from uT argsT have "e \<tturnstile> map (\<lambda>t. t[u/i]) as : Ts"
|
|
182 |
by (rule substs_lemma)
|
|
183 |
hence "e\<langle>0:Ts \<Rrightarrow> T'\<rangle> \<tturnstile> ?ls as : Ts"
|
|
184 |
by (rule lift_types)
|
|
185 |
ultimately show "e\<langle>0:Ts \<Rrightarrow> T'\<rangle> \<turnstile> Var 0 \<degree>\<degree> ?ls as : T'"
|
|
186 |
by (rule list_app_typeI)
|
|
187 |
from argT uT have "e \<turnstile> a[u/i] : T''"
|
|
188 |
by (rule subst_lemma) (rule refl)
|
|
189 |
with uT' show "e \<turnstile> u \<degree> a[u/i] : Ts \<Rrightarrow> T'"
|
|
190 |
by (rule typing.App)
|
|
191 |
qed
|
|
192 |
with Cons True show ?thesis
|
|
193 |
by (simp add: map_compose [symmetric] o_def)
|
|
194 |
qed
|
|
195 |
next
|
|
196 |
case False
|
|
197 |
from Var have "rs \<in> lists {t. ?R t}" by simp
|
|
198 |
moreover from nT obtain Ts where "e\<langle>i:T\<rangle> \<tturnstile> rs : Ts"
|
|
199 |
by (rule list_app_typeE)
|
|
200 |
hence "rs \<in> lists ?ty" by (rule lists_typings)
|
|
201 |
ultimately have "rs \<in> lists ({t. ?R t} \<inter> ?ty)"
|
|
202 |
by (rule lists_IntI)
|
|
203 |
hence "map (\<lambda>x. x[u/i]) rs \<in> lists IT"
|
|
204 |
proof induct
|
|
205 |
case Nil
|
|
206 |
show ?case by fastsimp
|
|
207 |
next
|
|
208 |
case (Cons a as)
|
|
209 |
hence I: "?R a" by simp
|
|
210 |
from Cons obtain U where "e\<langle>i:T\<rangle> \<turnstile> a : U" by fast
|
|
211 |
with uT uIT I have "a[u/i] \<in> IT" by simp
|
|
212 |
hence "(a[u/i] # map (\<lambda>t. t[u/i]) as) \<in> lists IT"
|
|
213 |
by (rule lists.Cons) (rule Cons)
|
|
214 |
thus ?case by simp
|
|
215 |
qed
|
|
216 |
with False show ?thesis by (auto simp add: subst_Var)
|
|
217 |
qed
|
|
218 |
next
|
|
219 |
case (Lambda r e_ T'_ u_ i_)
|
|
220 |
assume "e\<langle>i:T\<rangle> \<turnstile> Abs r : T'"
|
|
221 |
and "\<And>e T' u i. PROP ?Q r e T' u i T"
|
|
222 |
with uIT uT show "Abs r[u/i] \<in> IT"
|
|
223 |
by fastsimp
|
|
224 |
next
|
|
225 |
case (Beta r a as e_ T'_ u_ i_)
|
|
226 |
assume T: "e\<langle>i:T\<rangle> \<turnstile> Abs r \<degree> a \<degree>\<degree> as : T'"
|
|
227 |
assume SI1: "\<And>e T' u i. PROP ?Q (r[a/0] \<degree>\<degree> as) e T' u i T"
|
|
228 |
assume SI2: "\<And>e T' u i. PROP ?Q a e T' u i T"
|
|
229 |
have "Abs (r[lift u 0/Suc i]) \<degree> a[u/i] \<degree>\<degree> map (\<lambda>t. t[u/i]) as \<in> IT"
|
|
230 |
proof (rule IT.Beta)
|
|
231 |
have "Abs r \<degree> a \<degree>\<degree> as \<rightarrow>\<^sub>\<beta> r[a/0] \<degree>\<degree> as"
|
|
232 |
by (rule apps_preserves_beta) (rule beta.beta)
|
|
233 |
with T have "e\<langle>i:T\<rangle> \<turnstile> r[a/0] \<degree>\<degree> as : T'"
|
|
234 |
by (rule subject_reduction)
|
|
235 |
hence "(r[a/0] \<degree>\<degree> as)[u/i] \<in> IT"
|
|
236 |
by (rule SI1)
|
|
237 |
thus "r[lift u 0/Suc i][a[u/i]/0] \<degree>\<degree> map (\<lambda>t. t[u/i]) as \<in> IT"
|
|
238 |
by (simp del: subst_map add: subst_subst subst_map [symmetric])
|
|
239 |
from T obtain U where "e\<langle>i:T\<rangle> \<turnstile> Abs r \<degree> a : U"
|
|
240 |
by (rule list_app_typeE) fast
|
|
241 |
then obtain T'' where "e\<langle>i:T\<rangle> \<turnstile> a : T''" by cases simp_all
|
|
242 |
thus "a[u/i] \<in> IT" by (rule SI2)
|
|
243 |
qed
|
|
244 |
thus "(Abs r \<degree> a \<degree>\<degree> as)[u/i] \<in> IT" by simp
|
|
245 |
}
|
|
246 |
qed
|
|
247 |
qed
|
|
248 |
|
|
249 |
|
|
250 |
subsection {* Well-typed terms are strongly normalizing *}
|
|
251 |
|
18257
|
252 |
lemma type_implies_IT:
|
|
253 |
assumes "e \<turnstile> t : T"
|
|
254 |
shows "t \<in> IT"
|
|
255 |
using prems
|
|
256 |
proof induct
|
|
257 |
case Var
|
|
258 |
show ?case by (rule Var_IT)
|
|
259 |
next
|
|
260 |
case Abs
|
|
261 |
show ?case by (rule IT.Lambda)
|
|
262 |
next
|
|
263 |
case (App T U e s t)
|
|
264 |
have "(Var 0 \<degree> lift t 0)[s/0] \<in> IT"
|
|
265 |
proof (rule subst_type_IT)
|
|
266 |
have "lift t 0 \<in> IT" by (rule lift_IT)
|
|
267 |
hence "[lift t 0] \<in> lists IT" by (rule lists.Cons) (rule lists.Nil)
|
|
268 |
hence "Var 0 \<degree>\<degree> [lift t 0] \<in> IT" by (rule IT.Var)
|
|
269 |
also have "Var 0 \<degree>\<degree> [lift t 0] = Var 0 \<degree> lift t 0" by simp
|
|
270 |
finally show "\<dots> \<in> IT" .
|
|
271 |
have "e\<langle>0:T \<Rightarrow> U\<rangle> \<turnstile> Var 0 : T \<Rightarrow> U"
|
|
272 |
by (rule typing.Var) simp
|
|
273 |
moreover have "e\<langle>0:T \<Rightarrow> U\<rangle> \<turnstile> lift t 0 : T"
|
|
274 |
by (rule lift_type)
|
|
275 |
ultimately show "e\<langle>0:T \<Rightarrow> U\<rangle> \<turnstile> Var 0 \<degree> lift t 0 : U"
|
|
276 |
by (rule typing.App)
|
14064
|
277 |
qed
|
18257
|
278 |
thus ?case by simp
|
14064
|
279 |
qed
|
|
280 |
|
|
281 |
theorem type_implies_termi: "e \<turnstile> t : T \<Longrightarrow> t \<in> termi beta"
|
|
282 |
proof -
|
|
283 |
assume "e \<turnstile> t : T"
|
|
284 |
hence "t \<in> IT" by (rule type_implies_IT)
|
|
285 |
thus ?thesis by (rule IT_implies_termi)
|
|
286 |
qed
|
|
287 |
|
|
288 |
end
|