| 
0
 | 
     1  | 
(*  Title: 	ZF/ex/equiv.thy
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
 | 
     4  | 
    Copyright   1993  University of Cambridge
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
Equivalence relations in Zermelo-Fraenkel Set Theory 
  | 
| 
 | 
     7  | 
*)
  | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
Equiv = Trancl +
  | 
| 
 | 
    10  | 
consts
  | 
| 
 | 
    11  | 
    refl,equiv 	::      "[i,i]=>o"
  | 
| 
 | 
    12  | 
    sym         ::      "i=>o"
  | 
| 
 | 
    13  | 
    "'/"        ::      "[i,i]=>i"  (infixl 90)  (*set of equiv classes*)
  | 
| 
 | 
    14  | 
    congruent	::	"[i,i=>i]=>o"
  | 
| 
 | 
    15  | 
    congruent2  ::      "[i,[i,i]=>i]=>o"
  | 
| 
 | 
    16  | 
  | 
| 
 | 
    17  | 
rules
  | 
| 
 | 
    18  | 
    refl_def      "refl(A,r) == r <= (A*A) & (ALL x: A. <x,x> : r)"
  | 
| 
 | 
    19  | 
    sym_def       "sym(r) == ALL x y. <x,y>: r --> <y,x>: r"
  | 
| 
 | 
    20  | 
    equiv_def     "equiv(A,r) == refl(A,r) & sym(r) & trans(r)"
  | 
| 
 | 
    21  | 
    quotient_def  "A/r == {r``{x} . x:A}"
 | 
| 
 | 
    22  | 
    congruent_def "congruent(r,b) == ALL y z. <y,z>:r --> b(y)=b(z)"
  | 
| 
 | 
    23  | 
  | 
| 
 | 
    24  | 
    congruent2_def
  | 
| 
 | 
    25  | 
       "congruent2(r,b) == ALL y1 z1 y2 z2. \
  | 
| 
 | 
    26  | 
\           <y1,z1>:r --> <y2,z2>:r --> b(y1,y2) = b(z1,z2)"
  | 
| 
 | 
    27  | 
  | 
| 
 | 
    28  | 
end
  |