doc-src/TutorialI/Inductive/document/Even.tex
author bulwahn
Sat, 24 Oct 2009 16:55:43 +0200
changeset 33145 1a22f7ca1dfc
parent 25330 15bf0f47a87d
child 40406 313a24b66a8d
permissions -rw-r--r--
removed dead code; added examples
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
10365
a17cf465d29a auto generated
paulson
parents:
diff changeset
     1
%
a17cf465d29a auto generated
paulson
parents:
diff changeset
     2
\begin{isabellebody}%
a17cf465d29a auto generated
paulson
parents:
diff changeset
     3
\def\isabellecontext{Even}%
17056
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
     4
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
     5
\isadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
     6
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
     7
\endisadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
     8
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
     9
\isatagtheory
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    10
%
17056
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
    11
\endisatagtheory
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
    12
{\isafoldtheory}%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
    13
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
    14
\isadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
    15
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
    16
\endisadelimtheory
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    17
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    18
\isamarkupsection{The Set of Even Numbers%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    19
}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    20
\isamarkuptrue%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    21
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    22
\begin{isamarkuptext}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    23
\index{even numbers!defining inductively|(}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    24
The set of even numbers can be inductively defined as the least set
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    25
containing 0 and closed under the operation $+2$.  Obviously,
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    26
\emph{even} can also be expressed using the divides relation (\isa{dvd}). 
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    27
We shall prove below that the two formulations coincide.  On the way we
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    28
shall examine the primary means of reasoning about inductively defined
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    29
sets: rule induction.%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    30
\end{isamarkuptext}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    31
\isamarkuptrue%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    32
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    33
\isamarkupsubsection{Making an Inductive Definition%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    34
}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    35
\isamarkuptrue%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    36
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    37
\begin{isamarkuptext}%
23928
efee34ff4764 Protected underscore in inductive_set.
berghofe
parents: 23848
diff changeset
    38
Using \commdx{inductive\protect\_set}, we declare the constant \isa{even} to be
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    39
a set of natural numbers with the desired properties.%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    40
\end{isamarkuptext}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    41
\isamarkuptrue%
23733
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 21261
diff changeset
    42
\isacommand{inductive{\isacharunderscore}set}\isamarkupfalse%
25330
15bf0f47a87d added inductive
nipkow
parents: 23928
diff changeset
    43
\ even\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}nat\ set{\isachardoublequoteclose}\ \isakeyword{where}\isanewline
15bf0f47a87d added inductive
nipkow
parents: 23928
diff changeset
    44
zero{\isacharbrackleft}intro{\isacharbang}{\isacharbrackright}{\isacharcolon}\ {\isachardoublequoteopen}{\isadigit{0}}\ {\isasymin}\ even{\isachardoublequoteclose}\ {\isacharbar}\isanewline
15bf0f47a87d added inductive
nipkow
parents: 23928
diff changeset
    45
step{\isacharbrackleft}intro{\isacharbang}{\isacharbrackright}{\isacharcolon}\ {\isachardoublequoteopen}n\ {\isasymin}\ even\ {\isasymLongrightarrow}\ {\isacharparenleft}Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}{\isacharparenright}\ {\isasymin}\ even{\isachardoublequoteclose}%
10365
a17cf465d29a auto generated
paulson
parents:
diff changeset
    46
\begin{isamarkuptext}%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    47
An inductive definition consists of introduction rules.  The first one
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    48
above states that 0 is even; the second states that if $n$ is even, then so
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    49
is~$n+2$.  Given this declaration, Isabelle generates a fixed point
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    50
definition for \isa{even} and proves theorems about it,
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    51
thus following the definitional approach (see {\S}\ref{sec:definitional}).
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    52
These theorems
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    53
include the introduction rules specified in the declaration, an elimination
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    54
rule for case analysis and an induction rule.  We can refer to these
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    55
theorems by automatically-generated names.  Here are two examples:
10365
a17cf465d29a auto generated
paulson
parents:
diff changeset
    56
\begin{isabelle}%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    57
{\isadigit{0}}\ {\isasymin}\ even\rulename{even{\isachardot}zero}\par\smallskip%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    58
n\ {\isasymin}\ even\ {\isasymLongrightarrow}\ Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}\ {\isasymin}\ even\rulename{even{\isachardot}step}%
10365
a17cf465d29a auto generated
paulson
parents:
diff changeset
    59
\end{isabelle}
a17cf465d29a auto generated
paulson
parents:
diff changeset
    60
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    61
The introduction rules can be given attributes.  Here
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    62
both rules are specified as \isa{intro!},%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    63
\index{intro"!@\isa {intro"!} (attribute)}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    64
directing the classical reasoner to 
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    65
apply them aggressively. Obviously, regarding 0 as even is safe.  The
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    66
\isa{step} rule is also safe because $n+2$ is even if and only if $n$ is
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    67
even.  We prove this equivalence later.%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    68
\end{isamarkuptext}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    69
\isamarkuptrue%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    70
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    71
\isamarkupsubsection{Using Introduction Rules%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    72
}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    73
\isamarkuptrue%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    74
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    75
\begin{isamarkuptext}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    76
Our first lemma states that numbers of the form $2\times k$ are even.
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    77
Introduction rules are used to show that specific values belong to the
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    78
inductive set.  Such proofs typically involve 
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    79
induction, perhaps over some other inductive set.%
10365
a17cf465d29a auto generated
paulson
parents:
diff changeset
    80
\end{isamarkuptext}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    81
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    82
\isacommand{lemma}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    83
\ two{\isacharunderscore}times{\isacharunderscore}even{\isacharbrackleft}intro{\isacharbang}{\isacharbrackright}{\isacharcolon}\ {\isachardoublequoteopen}{\isadigit{2}}{\isacharasterisk}k\ {\isasymin}\ even{\isachardoublequoteclose}\isanewline
17056
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
    84
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
    85
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
    86
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
    87
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
    88
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
    89
\isatagproof
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    90
\isacommand{apply}\isamarkupfalse%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
    91
\ {\isacharparenleft}induct{\isacharunderscore}tac\ k{\isacharparenright}\isanewline
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    92
\ \isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    93
\ auto\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    94
\isacommand{done}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    95
%
17056
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
    96
\endisatagproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
    97
{\isafoldproof}%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
    98
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
    99
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   100
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   101
\endisadelimproof
11866
fbd097aec213 updated;
wenzelm
parents: 11708
diff changeset
   102
%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   103
\isadelimproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   104
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   105
\endisadelimproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   106
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   107
\isatagproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   108
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   109
\begin{isamarkuptxt}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   110
\noindent
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   111
The first step is induction on the natural number \isa{k}, which leaves
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   112
two subgoals:
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   113
\begin{isabelle}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   114
\ {\isadigit{1}}{\isachardot}\ {\isadigit{2}}\ {\isacharasterisk}\ {\isadigit{0}}\ {\isasymin}\ even\isanewline
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   115
\ {\isadigit{2}}{\isachardot}\ {\isasymAnd}n{\isachardot}\ {\isadigit{2}}\ {\isacharasterisk}\ n\ {\isasymin}\ even\ {\isasymLongrightarrow}\ {\isadigit{2}}\ {\isacharasterisk}\ Suc\ n\ {\isasymin}\ even%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   116
\end{isabelle}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   117
Here \isa{auto} simplifies both subgoals so that they match the introduction
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   118
rules, which are then applied automatically.
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   119
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   120
Our ultimate goal is to prove the equivalence between the traditional
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   121
definition of \isa{even} (using the divides relation) and our inductive
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   122
definition.  One direction of this equivalence is immediate by the lemma
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   123
just proved, whose \isa{intro{\isacharbang}} attribute ensures it is applied automatically.%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   124
\end{isamarkuptxt}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   125
\isamarkuptrue%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   126
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   127
\endisatagproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   128
{\isafoldproof}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   129
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   130
\isadelimproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   131
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   132
\endisadelimproof
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   133
\isacommand{lemma}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   134
\ dvd{\isacharunderscore}imp{\isacharunderscore}even{\isacharcolon}\ {\isachardoublequoteopen}{\isadigit{2}}\ dvd\ n\ {\isasymLongrightarrow}\ n\ {\isasymin}\ even{\isachardoublequoteclose}\isanewline
17056
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   135
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   136
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   137
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   138
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   139
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   140
\isatagproof
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   141
\isacommand{by}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   142
\ {\isacharparenleft}auto\ simp\ add{\isacharcolon}\ dvd{\isacharunderscore}def{\isacharparenright}%
17056
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   143
\endisatagproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   144
{\isafoldproof}%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   145
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   146
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   147
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   148
\endisadelimproof
11866
fbd097aec213 updated;
wenzelm
parents: 11708
diff changeset
   149
%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   150
\isamarkupsubsection{Rule Induction \label{sec:rule-induction}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   151
}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   152
\isamarkuptrue%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   153
%
10365
a17cf465d29a auto generated
paulson
parents:
diff changeset
   154
\begin{isamarkuptext}%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   155
\index{rule induction|(}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   156
From the definition of the set
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   157
\isa{even}, Isabelle has
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   158
generated an induction rule:
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   159
\begin{isabelle}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   160
{\isasymlbrakk}x\ {\isasymin}\ even{\isacharsemicolon}\ P\ {\isadigit{0}}{\isacharsemicolon}\isanewline
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   161
\isaindent{\ }{\isasymAnd}n{\isachardot}\ {\isasymlbrakk}n\ {\isasymin}\ even{\isacharsemicolon}\ P\ n{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ {\isacharparenleft}Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}{\isacharparenright}{\isasymrbrakk}\isanewline
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   162
{\isasymLongrightarrow}\ P\ x\rulename{even{\isachardot}induct}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   163
\end{isabelle}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   164
A property \isa{P} holds for every even number provided it
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   165
holds for~\isa{{\isadigit{0}}} and is closed under the operation
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   166
\isa{Suc(Suc \(\cdot\))}.  Then \isa{P} is closed under the introduction
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   167
rules for \isa{even}, which is the least set closed under those rules. 
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   168
This type of inductive argument is called \textbf{rule induction}. 
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   169
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   170
Apart from the double application of \isa{Suc}, the induction rule above
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   171
resembles the familiar mathematical induction, which indeed is an instance
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   172
of rule induction; the natural numbers can be defined inductively to be
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   173
the least set containing \isa{{\isadigit{0}}} and closed under~\isa{Suc}.
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   174
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   175
Induction is the usual way of proving a property of the elements of an
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   176
inductively defined set.  Let us prove that all members of the set
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   177
\isa{even} are multiples of two.%
10365
a17cf465d29a auto generated
paulson
parents:
diff changeset
   178
\end{isamarkuptext}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   179
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   180
\isacommand{lemma}\isamarkupfalse%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   181
\ even{\isacharunderscore}imp{\isacharunderscore}dvd{\isacharcolon}\ {\isachardoublequoteopen}n\ {\isasymin}\ even\ {\isasymLongrightarrow}\ {\isadigit{2}}\ dvd\ n{\isachardoublequoteclose}%
17056
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   182
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   183
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   184
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   185
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   186
\isatagproof
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   187
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   188
\begin{isamarkuptxt}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   189
We begin by applying induction.  Note that \isa{even{\isachardot}induct} has the form
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   190
of an elimination rule, so we use the method \isa{erule}.  We get two
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   191
subgoals:%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   192
\end{isamarkuptxt}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   193
\isamarkuptrue%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   194
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   195
\ {\isacharparenleft}erule\ even{\isachardot}induct{\isacharparenright}%
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   196
\begin{isamarkuptxt}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   197
\begin{isabelle}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   198
\ {\isadigit{1}}{\isachardot}\ {\isadigit{2}}\ dvd\ {\isadigit{0}}\isanewline
21261
58223c67fd8b updated;
wenzelm
parents: 17187
diff changeset
   199
\ {\isadigit{2}}{\isachardot}\ {\isasymAnd}n{\isachardot}\ {\isasymlbrakk}n\ {\isasymin}\ even{\isacharsemicolon}\ {\isadigit{2}}\ dvd\ n{\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isadigit{2}}\ dvd\ Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   200
\end{isabelle}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   201
We unfold the definition of \isa{dvd} in both subgoals, proving the first
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   202
one and simplifying the second:%
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   203
\end{isamarkuptxt}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   204
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   205
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   206
\ {\isacharparenleft}simp{\isacharunderscore}all\ add{\isacharcolon}\ dvd{\isacharunderscore}def{\isacharparenright}%
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   207
\begin{isamarkuptxt}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   208
\begin{isabelle}%
21261
58223c67fd8b updated;
wenzelm
parents: 17187
diff changeset
   209
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}n{\isachardot}\ {\isasymlbrakk}n\ {\isasymin}\ even{\isacharsemicolon}\ {\isasymexists}k{\isachardot}\ n\ {\isacharequal}\ {\isadigit{2}}\ {\isacharasterisk}\ k{\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isasymexists}k{\isachardot}\ Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}\ {\isacharequal}\ {\isadigit{2}}\ {\isacharasterisk}\ k%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   210
\end{isabelle}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   211
The next command eliminates the existential quantifier from the assumption
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   212
and replaces \isa{n} by \isa{{\isadigit{2}}\ {\isacharasterisk}\ k}.%
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   213
\end{isamarkuptxt}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   214
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   215
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   216
\ clarify%
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   217
\begin{isamarkuptxt}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   218
\begin{isabelle}%
21261
58223c67fd8b updated;
wenzelm
parents: 17187
diff changeset
   219
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}n\ k{\isachardot}\ {\isadigit{2}}\ {\isacharasterisk}\ k\ {\isasymin}\ even\ {\isasymLongrightarrow}\ {\isasymexists}ka{\isachardot}\ Suc\ {\isacharparenleft}Suc\ {\isacharparenleft}{\isadigit{2}}\ {\isacharasterisk}\ k{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ {\isadigit{2}}\ {\isacharasterisk}\ ka%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   220
\end{isabelle}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   221
To conclude, we tell Isabelle that the desired value is
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   222
\isa{Suc\ k}.  With this hint, the subgoal falls to \isa{simp}.%
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   223
\end{isamarkuptxt}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   224
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   225
\isacommand{apply}\isamarkupfalse%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   226
\ {\isacharparenleft}rule{\isacharunderscore}tac\ x\ {\isacharequal}\ {\isachardoublequoteopen}Suc\ k{\isachardoublequoteclose}\ \isakeyword{in}\ exI{\isacharcomma}\ simp{\isacharparenright}%
17056
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   227
\endisatagproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   228
{\isafoldproof}%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   229
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   230
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   231
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   232
\endisadelimproof
11866
fbd097aec213 updated;
wenzelm
parents: 11708
diff changeset
   233
%
10365
a17cf465d29a auto generated
paulson
parents:
diff changeset
   234
\begin{isamarkuptext}%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   235
Combining the previous two results yields our objective, the
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   236
equivalence relating \isa{even} and \isa{dvd}. 
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   237
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   238
%we don't want [iff]: discuss?%
10365
a17cf465d29a auto generated
paulson
parents:
diff changeset
   239
\end{isamarkuptext}%
17056
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   240
\isamarkuptrue%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   241
\isacommand{theorem}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   242
\ even{\isacharunderscore}iff{\isacharunderscore}dvd{\isacharcolon}\ {\isachardoublequoteopen}{\isacharparenleft}n\ {\isasymin}\ even{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}{\isadigit{2}}\ dvd\ n{\isacharparenright}{\isachardoublequoteclose}\isanewline
17056
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   243
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   244
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   245
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   246
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   247
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   248
\isatagproof
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   249
\isacommand{by}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   250
\ {\isacharparenleft}blast\ intro{\isacharcolon}\ dvd{\isacharunderscore}imp{\isacharunderscore}even\ even{\isacharunderscore}imp{\isacharunderscore}dvd{\isacharparenright}%
17056
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   251
\endisatagproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   252
{\isafoldproof}%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   253
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   254
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   255
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   256
\endisadelimproof
11866
fbd097aec213 updated;
wenzelm
parents: 11708
diff changeset
   257
%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   258
\isamarkupsubsection{Generalization and Rule Induction \label{sec:gen-rule-induction}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   259
}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   260
\isamarkuptrue%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   261
%
10365
a17cf465d29a auto generated
paulson
parents:
diff changeset
   262
\begin{isamarkuptext}%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   263
\index{generalizing for induction}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   264
Before applying induction, we typically must generalize
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   265
the induction formula.  With rule induction, the required generalization
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   266
can be hard to find and sometimes requires a complete reformulation of the
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   267
problem.  In this  example, our first attempt uses the obvious statement of
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   268
the result.  It fails:%
10365
a17cf465d29a auto generated
paulson
parents:
diff changeset
   269
\end{isamarkuptext}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   270
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   271
\isacommand{lemma}\isamarkupfalse%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   272
\ {\isachardoublequoteopen}Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}\ {\isasymin}\ even\ {\isasymLongrightarrow}\ n\ {\isasymin}\ even{\isachardoublequoteclose}\isanewline
17056
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   273
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   274
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   275
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   276
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   277
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   278
\isatagproof
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   279
\isacommand{apply}\isamarkupfalse%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   280
\ {\isacharparenleft}erule\ even{\isachardot}induct{\isacharparenright}\isanewline
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   281
\isacommand{oops}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   282
%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   283
\endisatagproof
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   284
{\isafoldproof}%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   285
%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   286
\isadelimproof
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15614
diff changeset
   287
%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   288
\endisadelimproof
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   289
%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   290
\isadelimproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   291
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   292
\endisadelimproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   293
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   294
\isatagproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   295
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   296
\begin{isamarkuptxt}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   297
Rule induction finds no occurrences of \isa{Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}} in the
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   298
conclusion, which it therefore leaves unchanged.  (Look at
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   299
\isa{even{\isachardot}induct} to see why this happens.)  We have these subgoals:
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   300
\begin{isabelle}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   301
\ {\isadigit{1}}{\isachardot}\ n\ {\isasymin}\ even\isanewline
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   302
\ {\isadigit{2}}{\isachardot}\ {\isasymAnd}na{\isachardot}\ {\isasymlbrakk}na\ {\isasymin}\ even{\isacharsemicolon}\ n\ {\isasymin}\ even{\isasymrbrakk}\ {\isasymLongrightarrow}\ n\ {\isasymin}\ even%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   303
\end{isabelle}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   304
The first one is hopeless.  Rule induction on
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   305
a non-variable term discards information, and usually fails.
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   306
How to deal with such situations
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   307
in general is described in {\S}\ref{sec:ind-var-in-prems} below.
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   308
In the current case the solution is easy because
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   309
we have the necessary inverse, subtraction:%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   310
\end{isamarkuptxt}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   311
\isamarkuptrue%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   312
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   313
\endisatagproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   314
{\isafoldproof}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   315
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   316
\isadelimproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   317
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   318
\endisadelimproof
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   319
\isacommand{lemma}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   320
\ even{\isacharunderscore}imp{\isacharunderscore}even{\isacharunderscore}minus{\isacharunderscore}{\isadigit{2}}{\isacharcolon}\ {\isachardoublequoteopen}n\ {\isasymin}\ even\ {\isasymLongrightarrow}\ n\ {\isacharminus}\ {\isadigit{2}}\ {\isasymin}\ even{\isachardoublequoteclose}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   321
%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   322
\isadelimproof
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   323
%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   324
\endisadelimproof
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   325
%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   326
\isatagproof
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   327
\isacommand{apply}\isamarkupfalse%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   328
\ {\isacharparenleft}erule\ even{\isachardot}induct{\isacharparenright}\isanewline
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   329
\ \isacommand{apply}\isamarkupfalse%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   330
\ auto\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   331
\isacommand{done}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   332
%
17056
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   333
\endisatagproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   334
{\isafoldproof}%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   335
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   336
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   337
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   338
\endisadelimproof
11866
fbd097aec213 updated;
wenzelm
parents: 11708
diff changeset
   339
%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   340
\isadelimproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   341
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   342
\endisadelimproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   343
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   344
\isatagproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   345
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   346
\begin{isamarkuptxt}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   347
This lemma is trivially inductive.  Here are the subgoals:
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   348
\begin{isabelle}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   349
\ {\isadigit{1}}{\isachardot}\ {\isadigit{0}}\ {\isacharminus}\ {\isadigit{2}}\ {\isasymin}\ even\isanewline
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   350
\ {\isadigit{2}}{\isachardot}\ {\isasymAnd}n{\isachardot}\ {\isasymlbrakk}n\ {\isasymin}\ even{\isacharsemicolon}\ n\ {\isacharminus}\ {\isadigit{2}}\ {\isasymin}\ even{\isasymrbrakk}\ {\isasymLongrightarrow}\ Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}\ {\isacharminus}\ {\isadigit{2}}\ {\isasymin}\ even%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   351
\end{isabelle}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   352
The first is trivial because \isa{{\isadigit{0}}\ {\isacharminus}\ {\isadigit{2}}} simplifies to \isa{{\isadigit{0}}}, which is
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   353
even.  The second is trivial too: \isa{Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}\ {\isacharminus}\ {\isadigit{2}}} simplifies to
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   354
\isa{n}, matching the assumption.%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   355
\index{rule induction|)}  %the sequel isn't really about induction
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   356
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   357
\medskip
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   358
Using our lemma, we can easily prove the result we originally wanted:%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   359
\end{isamarkuptxt}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   360
\isamarkuptrue%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   361
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   362
\endisatagproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   363
{\isafoldproof}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   364
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   365
\isadelimproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   366
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   367
\endisadelimproof
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   368
\isacommand{lemma}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   369
\ Suc{\isacharunderscore}Suc{\isacharunderscore}even{\isacharunderscore}imp{\isacharunderscore}even{\isacharcolon}\ {\isachardoublequoteopen}Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}\ {\isasymin}\ even\ {\isasymLongrightarrow}\ n\ {\isasymin}\ even{\isachardoublequoteclose}\isanewline
17056
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   370
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   371
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   372
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   373
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   374
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   375
\isatagproof
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   376
\isacommand{by}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   377
\ {\isacharparenleft}drule\ even{\isacharunderscore}imp{\isacharunderscore}even{\isacharunderscore}minus{\isacharunderscore}{\isadigit{2}}{\isacharcomma}\ simp{\isacharparenright}%
17056
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   378
\endisatagproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   379
{\isafoldproof}%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   380
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   381
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   382
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   383
\endisadelimproof
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   384
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   385
\begin{isamarkuptext}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   386
We have just proved the converse of the introduction rule \isa{even{\isachardot}step}.
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   387
This suggests proving the following equivalence.  We give it the
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   388
\attrdx{iff} attribute because of its obvious value for simplification.%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   389
\end{isamarkuptext}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   390
\isamarkuptrue%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   391
\isacommand{lemma}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   392
\ {\isacharbrackleft}iff{\isacharbrackright}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharparenleft}{\isacharparenleft}Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}{\isacharparenright}\ {\isasymin}\ even{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}n\ {\isasymin}\ even{\isacharparenright}{\isachardoublequoteclose}\isanewline
17056
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   393
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   394
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   395
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   396
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   397
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   398
\isatagproof
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   399
\isacommand{by}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   400
\ {\isacharparenleft}blast\ dest{\isacharcolon}\ Suc{\isacharunderscore}Suc{\isacharunderscore}even{\isacharunderscore}imp{\isacharunderscore}even{\isacharparenright}%
17056
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   401
\endisatagproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   402
{\isafoldproof}%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   403
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   404
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   405
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   406
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   407
%
23848
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   408
\isamarkupsubsection{Rule Inversion \label{sec:rule-inversion}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   409
}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   410
\isamarkuptrue%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   411
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   412
\begin{isamarkuptext}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   413
\index{rule inversion|(}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   414
Case analysis on an inductive definition is called \textbf{rule
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   415
inversion}.  It is frequently used in proofs about operational
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   416
semantics.  It can be highly effective when it is applied
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   417
automatically.  Let us look at how rule inversion is done in
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   418
Isabelle/HOL\@.
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   419
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   420
Recall that \isa{even} is the minimal set closed under these two rules:
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   421
\begin{isabelle}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   422
{\isadigit{0}}\ {\isasymin}\ even\isasep\isanewline%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   423
n\ {\isasymin}\ even\ {\isasymLongrightarrow}\ Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}\ {\isasymin}\ even%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   424
\end{isabelle}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   425
Minimality means that \isa{even} contains only the elements that these
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   426
rules force it to contain.  If we are told that \isa{a}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   427
belongs to
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   428
\isa{even} then there are only two possibilities.  Either \isa{a} is \isa{{\isadigit{0}}}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   429
or else \isa{a} has the form \isa{Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}}, for some suitable \isa{n}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   430
that belongs to
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   431
\isa{even}.  That is the gist of the \isa{cases} rule, which Isabelle proves
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   432
for us when it accepts an inductive definition:
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   433
\begin{isabelle}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   434
{\isasymlbrakk}a\ {\isasymin}\ even{\isacharsemicolon}\ a\ {\isacharequal}\ {\isadigit{0}}\ {\isasymLongrightarrow}\ P{\isacharsemicolon}\isanewline
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   435
\isaindent{\ }{\isasymAnd}n{\isachardot}\ {\isasymlbrakk}a\ {\isacharequal}\ Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}{\isacharsemicolon}\ n\ {\isasymin}\ even{\isasymrbrakk}\ {\isasymLongrightarrow}\ P{\isasymrbrakk}\isanewline
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   436
{\isasymLongrightarrow}\ P\rulename{even{\isachardot}cases}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   437
\end{isabelle}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   438
This general rule is less useful than instances of it for
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   439
specific patterns.  For example, if \isa{a} has the form
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   440
\isa{Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}} then the first case becomes irrelevant, while the second
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   441
case tells us that \isa{n} belongs to \isa{even}.  Isabelle will generate
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   442
this instance for us:%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   443
\end{isamarkuptext}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   444
\isamarkuptrue%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   445
\isacommand{inductive{\isacharunderscore}cases}\isamarkupfalse%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   446
\ Suc{\isacharunderscore}Suc{\isacharunderscore}cases\ {\isacharbrackleft}elim{\isacharbang}{\isacharbrackright}{\isacharcolon}\ {\isachardoublequoteopen}Suc{\isacharparenleft}Suc\ n{\isacharparenright}\ {\isasymin}\ even{\isachardoublequoteclose}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   447
\begin{isamarkuptext}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   448
The \commdx{inductive\protect\_cases} command generates an instance of
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   449
the \isa{cases} rule for the supplied pattern and gives it the supplied name:
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   450
\begin{isabelle}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   451
{\isasymlbrakk}Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}\ {\isasymin}\ even{\isacharsemicolon}\ n\ {\isasymin}\ even\ {\isasymLongrightarrow}\ P{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\rulename{Suc{\isacharunderscore}Suc{\isacharunderscore}cases}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   452
\end{isabelle}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   453
Applying this as an elimination rule yields one case where \isa{even{\isachardot}cases}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   454
would yield two.  Rule inversion works well when the conclusions of the
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   455
introduction rules involve datatype constructors like \isa{Suc} and \isa{{\isacharhash}}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   456
(list ``cons''); freeness reasoning discards all but one or two cases.
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   457
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   458
In the \isacommand{inductive\_cases} command we supplied an
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   459
attribute, \isa{elim{\isacharbang}},
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   460
\index{elim"!@\isa {elim"!} (attribute)}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   461
indicating that this elimination rule can be
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   462
applied aggressively.  The original
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   463
\isa{cases} rule would loop if used in that manner because the
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   464
pattern~\isa{a} matches everything.
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   465
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   466
The rule \isa{Suc{\isacharunderscore}Suc{\isacharunderscore}cases} is equivalent to the following implication:
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   467
\begin{isabelle}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   468
Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}\ {\isasymin}\ even\ {\isasymLongrightarrow}\ n\ {\isasymin}\ even%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   469
\end{isabelle}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   470
Just above we devoted some effort to reaching precisely
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   471
this result.  Yet we could have obtained it by a one-line declaration,
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   472
dispensing with the lemma \isa{even{\isacharunderscore}imp{\isacharunderscore}even{\isacharunderscore}minus{\isacharunderscore}{\isadigit{2}}}. 
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   473
This example also justifies the terminology
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   474
\textbf{rule inversion}: the new rule inverts the introduction rule
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   475
\isa{even{\isachardot}step}.  In general, a rule can be inverted when the set of elements
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   476
it introduces is disjoint from those of the other introduction rules.
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   477
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   478
For one-off applications of rule inversion, use the \methdx{ind_cases} method. 
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   479
Here is an example:%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   480
\end{isamarkuptext}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   481
\isamarkuptrue%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   482
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   483
\isadelimproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   484
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   485
\endisadelimproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   486
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   487
\isatagproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   488
\isacommand{apply}\isamarkupfalse%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   489
\ {\isacharparenleft}ind{\isacharunderscore}cases\ {\isachardoublequoteopen}Suc{\isacharparenleft}Suc\ n{\isacharparenright}\ {\isasymin}\ even{\isachardoublequoteclose}{\isacharparenright}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   490
\endisatagproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   491
{\isafoldproof}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   492
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   493
\isadelimproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   494
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   495
\endisadelimproof
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   496
%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   497
\begin{isamarkuptext}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   498
The specified instance of the \isa{cases} rule is generated, then applied
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   499
as an elimination rule.
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   500
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   501
To summarize, every inductive definition produces a \isa{cases} rule.  The
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   502
\commdx{inductive\protect\_cases} command stores an instance of the
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   503
\isa{cases} rule for a given pattern.  Within a proof, the
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   504
\isa{ind{\isacharunderscore}cases} method applies an instance of the \isa{cases}
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   505
rule.
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   506
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   507
The even numbers example has shown how inductive definitions can be
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   508
used.  Later examples will show that they are actually worth using.%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   509
\index{rule inversion|)}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   510
\index{even numbers!defining inductively|)}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   511
\end{isamarkuptext}%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   512
\isamarkuptrue%
ca73e86c22bb updated
berghofe
parents: 23733
diff changeset
   513
%
17056
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   514
\isadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   515
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   516
\endisadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   517
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   518
\isatagtheory
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   519
%
17056
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   520
\endisatagtheory
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   521
{\isafoldtheory}%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   522
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   523
\isadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   524
%
05fc32a23b8b updated;
wenzelm
parents: 16523
diff changeset
   525
\endisadelimtheory
10365
a17cf465d29a auto generated
paulson
parents:
diff changeset
   526
\end{isabellebody}%
a17cf465d29a auto generated
paulson
parents:
diff changeset
   527
%%% Local Variables:
a17cf465d29a auto generated
paulson
parents:
diff changeset
   528
%%% mode: latex
a17cf465d29a auto generated
paulson
parents:
diff changeset
   529
%%% TeX-master: "root"
a17cf465d29a auto generated
paulson
parents:
diff changeset
   530
%%% End: