| author | bulwahn | 
| Sun, 05 Feb 2012 08:24:38 +0100 | |
| changeset 46417 | 1a68fcb80b62 | 
| parent 38159 | e9b4835a54ee | 
| child 58889 | 5b7a9633cfa8 | 
| permissions | -rw-r--r-- | 
| 38159 | 1 | (* Title: HOL/Old_Number_Theory/IntFact.thy | 
| 2 | Author: Thomas M. Rasmussen | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 3 | Copyright 2000 University of Cambridge | 
| 9508 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 paulson parents: diff
changeset | 4 | *) | 
| 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 paulson parents: diff
changeset | 5 | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 6 | header {* Factorial on integers *}
 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 7 | |
| 38159 | 8 | theory IntFact | 
| 9 | imports IntPrimes | |
| 10 | begin | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 11 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 12 | text {*
 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 13 | Factorial on integers and recursively defined set including all | 
| 11701 
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
 wenzelm parents: 
11549diff
changeset | 14 |   Integers from @{text 2} up to @{text a}.  Plus definition of product
 | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 15 | of finite set. | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 16 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 17 | \bigskip | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 18 | *} | 
| 9508 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 paulson parents: diff
changeset | 19 | |
| 38159 | 20 | fun zfact :: "int => int" | 
| 21 | where "zfact n = (if n \<le> 0 then 1 else n * zfact (n - 1))" | |
| 9508 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 paulson parents: diff
changeset | 22 | |
| 38159 | 23 | fun d22set :: "int => int set" | 
| 24 |   where "d22set a = (if 1 < a then insert a (d22set (a - 1)) else {})"
 | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 25 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 26 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 27 | text {*
 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 28 |   \medskip @{term d22set} --- recursively defined set including all
 | 
| 11701 
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
 wenzelm parents: 
11549diff
changeset | 29 |   integers from @{text 2} up to @{text a}
 | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 30 | *} | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 31 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 32 | declare d22set.simps [simp del] | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 33 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 34 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 35 | lemma d22set_induct: | 
| 18369 | 36 |   assumes "!!a. P {} a"
 | 
| 37 | and "!!a. 1 < (a::int) ==> P (d22set (a - 1)) (a - 1) ==> P (d22set a) a" | |
| 38 | shows "P (d22set u) u" | |
| 39 | apply (rule d22set.induct) | |
| 35440 | 40 | apply (case_tac "1 < a") | 
| 41 | apply (rule_tac assms) | |
| 42 | apply (simp_all (no_asm_simp)) | |
| 43 | apply (simp_all (no_asm_simp) add: d22set.simps assms) | |
| 18369 | 44 | done | 
| 9508 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 paulson parents: diff
changeset | 45 | |
| 11868 
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
 paulson parents: 
11701diff
changeset | 46 | lemma d22set_g_1 [rule_format]: "b \<in> d22set a --> 1 < b" | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 47 | apply (induct a rule: d22set_induct) | 
| 18369 | 48 | apply simp | 
| 49 | apply (subst d22set.simps) | |
| 50 | apply auto | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 51 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 52 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 53 | lemma d22set_le [rule_format]: "b \<in> d22set a --> b \<le> a" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 54 | apply (induct a rule: d22set_induct) | 
| 18369 | 55 | apply simp | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 56 | apply (subst d22set.simps) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 57 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 58 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 59 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 60 | lemma d22set_le_swap: "a < b ==> b \<notin> d22set a" | 
| 18369 | 61 | by (auto dest: d22set_le) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 62 | |
| 18369 | 63 | lemma d22set_mem: "1 < b \<Longrightarrow> b \<le> a \<Longrightarrow> b \<in> d22set a" | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 64 | apply (induct a rule: d22set.induct) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 65 | apply auto | 
| 35440 | 66 | apply (subst d22set.simps) | 
| 67 | apply (case_tac "b < a", auto) | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 68 | done | 
| 9508 
4d01dbf6ded7
Chinese Remainder Theorem, Wilsons Theorem, etc., by T M Masmussen
 paulson parents: diff
changeset | 69 | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 70 | lemma d22set_fin: "finite (d22set a)" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 71 | apply (induct a rule: d22set_induct) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 72 | prefer 2 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 73 | apply (subst d22set.simps) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 74 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 75 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 76 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 77 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 78 | declare zfact.simps [simp del] | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 79 | |
| 15392 | 80 | lemma d22set_prod_zfact: "\<Prod>(d22set a) = zfact a" | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 81 | apply (induct a rule: d22set.induct) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 82 | apply (subst d22set.simps) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 83 | apply (subst zfact.simps) | 
| 11868 
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
 paulson parents: 
11701diff
changeset | 84 | apply (case_tac "1 < a") | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 85 | prefer 2 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 86 | apply (simp add: d22set.simps zfact.simps) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 87 | apply (simp add: d22set_fin d22set_le_swap) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 88 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 89 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9508diff
changeset | 90 | end |