| author | huffman | 
| Tue, 04 Jan 2011 15:32:56 -0800 | |
| changeset 41430 | 1aa23e9f2c87 | 
| parent 41413 | 64cd30d6b0b8 | 
| child 42151 | 4da4fc77664b | 
| permissions | -rw-r--r-- | 
| 17293 | 1  | 
(* Title: HOLCF/ex/Stream_adm.thy  | 
2  | 
Author: David von Oheimb, TU Muenchen  | 
|
| 
11350
 
4c55b020d6ee
added FOCUS including the One-Element Buffer by Manfred Broy
 
oheimb 
parents:  
diff
changeset
 | 
3  | 
*)  | 
| 
 
4c55b020d6ee
added FOCUS including the One-Element Buffer by Manfred Broy
 
oheimb 
parents:  
diff
changeset
 | 
4  | 
|
| 17293 | 5  | 
header {* Admissibility for streams *}
 | 
| 
11350
 
4c55b020d6ee
added FOCUS including the One-Element Buffer by Manfred Broy
 
oheimb 
parents:  
diff
changeset
 | 
6  | 
|
| 17293 | 7  | 
theory Stream_adm  | 
| 
41413
 
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
 
wenzelm 
parents: 
40774 
diff
changeset
 | 
8  | 
imports "~~/src/HOL/HOLCF/Library/Stream" "~~/src/HOL/Library/Continuity"  | 
| 17293 | 9  | 
begin  | 
| 
11350
 
4c55b020d6ee
added FOCUS including the One-Element Buffer by Manfred Broy
 
oheimb 
parents:  
diff
changeset
 | 
10  | 
|
| 19763 | 11  | 
definition  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
19763 
diff
changeset
 | 
12  | 
  stream_monoP  :: "(('a stream) set \<Rightarrow> ('a stream) set) \<Rightarrow> bool" where
 | 
| 19763 | 13  | 
"stream_monoP F = (\<exists>Q i. \<forall>P s. Fin i \<le> #s \<longrightarrow>  | 
14  | 
(s \<in> F P) = (stream_take i\<cdot>s \<in> Q \<and> iterate i\<cdot>rt\<cdot>s \<in> P))"  | 
|
| 17293 | 15  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
19763 
diff
changeset
 | 
16  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
19763 
diff
changeset
 | 
17  | 
  stream_antiP  :: "(('a stream) set \<Rightarrow> ('a stream) set) \<Rightarrow> bool" where
 | 
| 19763 | 18  | 
"stream_antiP F = (\<forall>P x. \<exists>Q i.  | 
| 17293 | 19  | 
(#x < Fin i \<longrightarrow> (\<forall>y. x \<sqsubseteq> y \<longrightarrow> y \<in> F P \<longrightarrow> x \<in> F P)) \<and>  | 
20  | 
(Fin i <= #x \<longrightarrow> (\<forall>y. x \<sqsubseteq> y \<longrightarrow>  | 
|
| 19763 | 21  | 
(y \<in> F P) = (stream_take i\<cdot>y \<in> Q \<and> iterate i\<cdot>rt\<cdot>y \<in> P))))"  | 
| 17293 | 22  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
19763 
diff
changeset
 | 
23  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
19763 
diff
changeset
 | 
24  | 
antitonP :: "'a set => bool" where  | 
| 19763 | 25  | 
"antitonP P = (\<forall>x y. x \<sqsubseteq> y \<longrightarrow> y\<in>P \<longrightarrow> x\<in>P)"  | 
| 17293 | 26  | 
|
27  | 
||
| 19759 | 28  | 
(* ----------------------------------------------------------------------- *)  | 
29  | 
||
30  | 
section "admissibility"  | 
|
31  | 
||
| 
40430
 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 
huffman 
parents: 
37110 
diff
changeset
 | 
32  | 
lemma infinite_chain_adm_lemma:  | 
| 
 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 
huffman 
parents: 
37110 
diff
changeset
 | 
33  | 
"\<lbrakk>Porder.chain Y; \<forall>i. P (Y i);  | 
| 
 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 
huffman 
parents: 
37110 
diff
changeset
 | 
34  | 
\<And>Y. \<lbrakk>Porder.chain Y; \<forall>i. P (Y i); \<not> finite_chain Y\<rbrakk> \<Longrightarrow> P (\<Squnion>i. Y i)\<rbrakk>  | 
| 
 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 
huffman 
parents: 
37110 
diff
changeset
 | 
35  | 
\<Longrightarrow> P (\<Squnion>i. Y i)"  | 
| 
 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 
huffman 
parents: 
37110 
diff
changeset
 | 
36  | 
apply (case_tac "finite_chain Y")  | 
| 
 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 
huffman 
parents: 
37110 
diff
changeset
 | 
37  | 
prefer 2 apply fast  | 
| 
 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 
huffman 
parents: 
37110 
diff
changeset
 | 
38  | 
apply (unfold finite_chain_def)  | 
| 
 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 
huffman 
parents: 
37110 
diff
changeset
 | 
39  | 
apply safe  | 
| 40771 | 40  | 
apply (erule lub_finch1 [THEN lub_eqI, THEN ssubst])  | 
| 
40430
 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 
huffman 
parents: 
37110 
diff
changeset
 | 
41  | 
apply assumption  | 
| 
 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 
huffman 
parents: 
37110 
diff
changeset
 | 
42  | 
apply (erule spec)  | 
| 
 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 
huffman 
parents: 
37110 
diff
changeset
 | 
43  | 
done  | 
| 
 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 
huffman 
parents: 
37110 
diff
changeset
 | 
44  | 
|
| 
 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 
huffman 
parents: 
37110 
diff
changeset
 | 
45  | 
lemma increasing_chain_adm_lemma:  | 
| 
 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 
huffman 
parents: 
37110 
diff
changeset
 | 
46  | 
"\<lbrakk>Porder.chain Y; \<forall>i. P (Y i); \<And>Y. \<lbrakk>Porder.chain Y; \<forall>i. P (Y i);  | 
| 
 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 
huffman 
parents: 
37110 
diff
changeset
 | 
47  | 
\<forall>i. \<exists>j>i. Y i \<noteq> Y j \<and> Y i \<sqsubseteq> Y j\<rbrakk> \<Longrightarrow> P (\<Squnion>i. Y i)\<rbrakk>  | 
| 
 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 
huffman 
parents: 
37110 
diff
changeset
 | 
48  | 
\<Longrightarrow> P (\<Squnion>i. Y i)"  | 
| 
 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 
huffman 
parents: 
37110 
diff
changeset
 | 
49  | 
apply (erule infinite_chain_adm_lemma)  | 
| 
 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 
huffman 
parents: 
37110 
diff
changeset
 | 
50  | 
apply assumption  | 
| 
 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 
huffman 
parents: 
37110 
diff
changeset
 | 
51  | 
apply (erule thin_rl)  | 
| 
 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 
huffman 
parents: 
37110 
diff
changeset
 | 
52  | 
apply (unfold finite_chain_def)  | 
| 
 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 
huffman 
parents: 
37110 
diff
changeset
 | 
53  | 
apply (unfold max_in_chain_def)  | 
| 
 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 
huffman 
parents: 
37110 
diff
changeset
 | 
54  | 
apply (fast dest: le_imp_less_or_eq elim: chain_mono_less)  | 
| 
 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 
huffman 
parents: 
37110 
diff
changeset
 | 
55  | 
done  | 
| 
 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 
huffman 
parents: 
37110 
diff
changeset
 | 
56  | 
|
| 19759 | 57  | 
lemma flatstream_adm_lemma:  | 
| 
26451
 
f8a615f3bb31
avoid amiguity of Continuity.chain vs. Porder.chain;
 
wenzelm 
parents: 
26102 
diff
changeset
 | 
58  | 
assumes 1: "Porder.chain Y"  | 
| 19759 | 59  | 
assumes 2: "!i. P (Y i)"  | 
| 
26451
 
f8a615f3bb31
avoid amiguity of Continuity.chain vs. Porder.chain;
 
wenzelm 
parents: 
26102 
diff
changeset
 | 
60  | 
assumes 3: "(!!Y. [| Porder.chain Y; !i. P (Y i); !k. ? j. Fin k < #((Y j)::'a::flat stream)|]  | 
| 27413 | 61  | 
==> P(LUB i. Y i))"  | 
62  | 
shows "P(LUB i. Y i)"  | 
|
| 
26838
 
7f7c6a9e083a
Instantiated rule increasing_chain_adm_lemma in proof of flatstream_adm_lemma
 
berghofe 
parents: 
26451 
diff
changeset
 | 
63  | 
apply (rule increasing_chain_adm_lemma [of _ P, OF 1 2])  | 
| 19759 | 64  | 
apply (erule 3, assumption)  | 
65  | 
apply (erule thin_rl)  | 
|
66  | 
apply (rule allI)  | 
|
67  | 
apply (case_tac "!j. stream_finite (Y j)")  | 
|
68  | 
apply ( rule chain_incr)  | 
|
69  | 
apply ( rule allI)  | 
|
70  | 
apply ( drule spec)  | 
|
71  | 
apply ( safe)  | 
|
72  | 
apply ( rule exI)  | 
|
73  | 
apply ( rule slen_strict_mono)  | 
|
74  | 
apply ( erule spec)  | 
|
75  | 
apply ( assumption)  | 
|
76  | 
apply ( assumption)  | 
|
| 31084 | 77  | 
apply (metis inat_ord_code(4) slen_infinite)  | 
| 19759 | 78  | 
done  | 
79  | 
||
80  | 
(* should be without reference to stream length? *)  | 
|
| 
26451
 
f8a615f3bb31
avoid amiguity of Continuity.chain vs. Porder.chain;
 
wenzelm 
parents: 
26102 
diff
changeset
 | 
81  | 
lemma flatstream_admI: "[|(!!Y. [| Porder.chain Y; !i. P (Y i);  | 
| 27413 | 82  | 
!k. ? j. Fin k < #((Y j)::'a::flat stream)|] ==> P(LUB i. Y i))|]==> adm P"  | 
| 19759 | 83  | 
apply (unfold adm_def)  | 
84  | 
apply (intro strip)  | 
|
85  | 
apply (erule (1) flatstream_adm_lemma)  | 
|
86  | 
apply (fast)  | 
|
87  | 
done  | 
|
88  | 
||
89  | 
||
90  | 
(* context (theory "Nat_InFinity");*)  | 
|
91  | 
lemma ile_lemma: "Fin (i + j) <= x ==> Fin i <= x"  | 
|
| 
27101
 
864d29f11c9d
slightly tuning of some proofs involving case distinction and induction on natural numbers and similar
 
haftmann 
parents: 
26838 
diff
changeset
 | 
92  | 
by (rule order_trans) auto  | 
| 19759 | 93  | 
|
94  | 
lemma stream_monoP2I:  | 
|
95  | 
"!!X. stream_monoP F ==> !i. ? l. !x y.  | 
|
96  | 
Fin l <= #x --> (x::'a::flat stream) << y --> x:down_iterate F i --> y:down_iterate F i"  | 
|
97  | 
apply (unfold stream_monoP_def)  | 
|
98  | 
apply (safe)  | 
|
99  | 
apply (rule_tac x="i*ia" in exI)  | 
|
100  | 
apply (induct_tac "ia")  | 
|
101  | 
apply ( simp)  | 
|
102  | 
apply (simp)  | 
|
103  | 
apply (intro strip)  | 
|
104  | 
apply (erule allE, erule all_dupE, drule mp, erule ile_lemma)  | 
|
105  | 
apply (drule_tac P="%x. x" in subst, assumption)  | 
|
106  | 
apply (erule allE, drule mp, rule ile_lemma) back  | 
|
| 
27101
 
864d29f11c9d
slightly tuning of some proofs involving case distinction and induction on natural numbers and similar
 
haftmann 
parents: 
26838 
diff
changeset
 | 
107  | 
apply ( erule order_trans)  | 
| 19759 | 108  | 
apply ( erule slen_mono)  | 
109  | 
apply (erule ssubst)  | 
|
110  | 
apply (safe)  | 
|
111  | 
apply ( erule (2) ile_lemma [THEN slen_take_lemma3, THEN subst])  | 
|
112  | 
apply (erule allE)  | 
|
113  | 
apply (drule mp)  | 
|
114  | 
apply ( erule slen_rt_mult)  | 
|
115  | 
apply (erule allE)  | 
|
116  | 
apply (drule mp)  | 
|
117  | 
apply (erule monofun_rt_mult)  | 
|
118  | 
apply (drule (1) mp)  | 
|
119  | 
apply (assumption)  | 
|
120  | 
done  | 
|
121  | 
||
122  | 
lemma stream_monoP2_gfp_admI: "[| !i. ? l. !x y.  | 
|
123  | 
Fin l <= #x --> (x::'a::flat stream) << y --> x:down_iterate F i --> y:down_iterate F i;  | 
|
124  | 
down_cont F |] ==> adm (%x. x:gfp F)"  | 
|
125  | 
apply (erule INTER_down_iterate_is_gfp [THEN ssubst]) (* cont *)  | 
|
126  | 
apply (simp (no_asm))  | 
|
127  | 
apply (rule adm_lemmas)  | 
|
128  | 
apply (rule flatstream_admI)  | 
|
129  | 
apply (erule allE)  | 
|
130  | 
apply (erule exE)  | 
|
131  | 
apply (erule allE, erule exE)  | 
|
132  | 
apply (erule allE, erule allE, drule mp) (* stream_monoP *)  | 
|
133  | 
apply ( drule ileI1)  | 
|
| 
27101
 
864d29f11c9d
slightly tuning of some proofs involving case distinction and induction on natural numbers and similar
 
haftmann 
parents: 
26838 
diff
changeset
 | 
134  | 
apply ( drule order_trans)  | 
| 19759 | 135  | 
apply ( rule ile_iSuc)  | 
136  | 
apply ( drule iSuc_ile_mono [THEN iffD1])  | 
|
137  | 
apply ( assumption)  | 
|
138  | 
apply (drule mp)  | 
|
139  | 
apply ( erule is_ub_thelub)  | 
|
140  | 
apply (fast)  | 
|
141  | 
done  | 
|
142  | 
||
143  | 
lemmas fstream_gfp_admI = stream_monoP2I [THEN stream_monoP2_gfp_admI]  | 
|
144  | 
||
145  | 
lemma stream_antiP2I:  | 
|
146  | 
"!!X. [|stream_antiP (F::(('a::flat stream)set => ('a stream set)))|]
 | 
|
147  | 
==> !i x y. x << y --> y:down_iterate F i --> x:down_iterate F i"  | 
|
148  | 
apply (unfold stream_antiP_def)  | 
|
149  | 
apply (rule allI)  | 
|
150  | 
apply (induct_tac "i")  | 
|
151  | 
apply ( simp)  | 
|
152  | 
apply (simp)  | 
|
153  | 
apply (intro strip)  | 
|
154  | 
apply (erule allE, erule all_dupE, erule exE, erule exE)  | 
|
155  | 
apply (erule conjE)  | 
|
156  | 
apply (case_tac "#x < Fin i")  | 
|
157  | 
apply ( fast)  | 
|
| 26102 | 158  | 
apply (unfold linorder_not_less)  | 
| 19759 | 159  | 
apply (drule (1) mp)  | 
| 40431 | 160  | 
apply (erule all_dupE, drule mp, rule below_refl)  | 
| 19759 | 161  | 
apply (erule ssubst)  | 
162  | 
apply (erule allE, drule (1) mp)  | 
|
163  | 
apply (drule_tac P="%x. x" in subst, assumption)  | 
|
164  | 
apply (erule conjE, rule conjI)  | 
|
165  | 
apply ( erule slen_take_lemma3 [THEN ssubst], assumption)  | 
|
166  | 
apply ( assumption)  | 
|
167  | 
apply (erule allE, erule allE, drule mp, erule monofun_rt_mult)  | 
|
168  | 
apply (drule (1) mp)  | 
|
169  | 
apply (assumption)  | 
|
170  | 
done  | 
|
171  | 
||
172  | 
lemma stream_antiP2_non_gfp_admI:  | 
|
173  | 
"!!X. [|!i x y. x << y --> y:down_iterate F i --> x:down_iterate F i; down_cont F |]  | 
|
174  | 
==> adm (%u. ~ u:gfp F)"  | 
|
175  | 
apply (unfold adm_def)  | 
|
176  | 
apply (simp add: INTER_down_iterate_is_gfp)  | 
|
177  | 
apply (fast dest!: is_ub_thelub)  | 
|
178  | 
done  | 
|
179  | 
||
180  | 
lemmas fstream_non_gfp_admI = stream_antiP2I [THEN stream_antiP2_non_gfp_admI]  | 
|
181  | 
||
182  | 
||
183  | 
||
184  | 
(**new approach for adm********************************************************)  | 
|
185  | 
||
186  | 
section "antitonP"  | 
|
187  | 
||
188  | 
lemma antitonPD: "[| antitonP P; y:P; x<<y |] ==> x:P"  | 
|
189  | 
apply (unfold antitonP_def)  | 
|
190  | 
apply auto  | 
|
191  | 
done  | 
|
192  | 
||
193  | 
lemma antitonPI: "!x y. y:P --> x<<y --> x:P ==> antitonP P"  | 
|
194  | 
apply (unfold antitonP_def)  | 
|
195  | 
apply (fast)  | 
|
196  | 
done  | 
|
197  | 
||
198  | 
lemma antitonP_adm_non_P: "antitonP P ==> adm (%u. u~:P)"  | 
|
199  | 
apply (unfold adm_def)  | 
|
200  | 
apply (auto dest: antitonPD elim: is_ub_thelub)  | 
|
201  | 
done  | 
|
202  | 
||
203  | 
lemma def_gfp_adm_nonP: "P \<equiv> gfp F \<Longrightarrow> {y. \<exists>x::'a::pcpo. y \<sqsubseteq> x \<and> x \<in> P} \<subseteq> F {y. \<exists>x. y \<sqsubseteq> x \<and> x \<in> P} \<Longrightarrow> 
 | 
|
204  | 
adm (\<lambda>u. u\<notin>P)"  | 
|
205  | 
apply (simp)  | 
|
206  | 
apply (rule antitonP_adm_non_P)  | 
|
207  | 
apply (rule antitonPI)  | 
|
208  | 
apply (drule gfp_upperbound)  | 
|
209  | 
apply (fast)  | 
|
210  | 
done  | 
|
211  | 
||
212  | 
lemma adm_set:  | 
|
| 27413 | 213  | 
"{\<Squnion>i. Y i |Y. Porder.chain Y & (\<forall>i. Y i \<in> P)} \<subseteq> P \<Longrightarrow> adm (\<lambda>x. x\<in>P)"
 | 
| 19759 | 214  | 
apply (unfold adm_def)  | 
215  | 
apply (fast)  | 
|
216  | 
done  | 
|
217  | 
||
| 27413 | 218  | 
lemma def_gfp_admI: "P \<equiv> gfp F \<Longrightarrow> {\<Squnion>i. Y i |Y. Porder.chain Y \<and> (\<forall>i. Y i \<in> P)} \<subseteq> 
 | 
219  | 
  F {\<Squnion>i. Y i |Y. Porder.chain Y \<and> (\<forall>i. Y i \<in> P)} \<Longrightarrow> adm (\<lambda>x. x\<in>P)"
 | 
|
| 19759 | 220  | 
apply (simp)  | 
221  | 
apply (rule adm_set)  | 
|
222  | 
apply (erule gfp_upperbound)  | 
|
223  | 
done  | 
|
224  | 
||
| 
11350
 
4c55b020d6ee
added FOCUS including the One-Element Buffer by Manfred Broy
 
oheimb 
parents:  
diff
changeset
 | 
225  | 
end  |