| author | wenzelm | 
| Wed, 23 Nov 2016 16:15:17 +0100 | |
| changeset 64521 | 1aef5a0e18d7 | 
| parent 64394 | 141e1ed8d5a0 | 
| child 64758 | 3b33d2fc5fc0 | 
| permissions | -rw-r--r-- | 
| 52265 | 1 | (* Title: HOL/Topological_Spaces.thy | 
| 51471 | 2 | Author: Brian Huffman | 
| 3 | Author: Johannes Hölzl | |
| 4 | *) | |
| 5 | ||
| 60758 | 6 | section \<open>Topological Spaces\<close> | 
| 51471 | 7 | |
| 8 | theory Topological_Spaces | |
| 63494 | 9 | imports Main | 
| 51471 | 10 | begin | 
| 11 | ||
| 57953 | 12 | named_theorems continuous_intros "structural introduction rules for continuity" | 
| 13 | ||
| 60758 | 14 | subsection \<open>Topological space\<close> | 
| 51471 | 15 | |
| 16 | class "open" = | |
| 17 | fixes "open" :: "'a set \<Rightarrow> bool" | |
| 18 | ||
| 19 | class topological_space = "open" + | |
| 20 | assumes open_UNIV [simp, intro]: "open UNIV" | |
| 21 | assumes open_Int [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<inter> T)" | |
| 60585 | 22 | assumes open_Union [intro]: "\<forall>S\<in>K. open S \<Longrightarrow> open (\<Union>K)" | 
| 51471 | 23 | begin | 
| 24 | ||
| 63494 | 25 | definition closed :: "'a set \<Rightarrow> bool" | 
| 26 | where "closed S \<longleftrightarrow> open (- S)" | |
| 51471 | 27 | |
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 28 | lemma open_empty [continuous_intros, intro, simp]: "open {}"
 | 
| 51471 | 29 |   using open_Union [of "{}"] by simp
 | 
| 30 | ||
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 31 | lemma open_Un [continuous_intros, intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<union> T)" | 
| 51471 | 32 |   using open_Union [of "{S, T}"] by simp
 | 
| 33 | ||
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 34 | lemma open_UN [continuous_intros, intro]: "\<forall>x\<in>A. open (B x) \<Longrightarrow> open (\<Union>x\<in>A. B x)" | 
| 56166 | 35 | using open_Union [of "B ` A"] by simp | 
| 51471 | 36 | |
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 37 | lemma open_Inter [continuous_intros, intro]: "finite S \<Longrightarrow> \<forall>T\<in>S. open T \<Longrightarrow> open (\<Inter>S)" | 
| 51471 | 38 | by (induct set: finite) auto | 
| 39 | ||
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 40 | lemma open_INT [continuous_intros, intro]: "finite A \<Longrightarrow> \<forall>x\<in>A. open (B x) \<Longrightarrow> open (\<Inter>x\<in>A. B x)" | 
| 56166 | 41 | using open_Inter [of "B ` A"] by simp | 
| 51471 | 42 | |
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 43 | lemma openI: | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 44 | assumes "\<And>x. x \<in> S \<Longrightarrow> \<exists>T. open T \<and> x \<in> T \<and> T \<subseteq> S" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 45 | shows "open S" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 46 | proof - | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 47 |   have "open (\<Union>{T. open T \<and> T \<subseteq> S})" by auto
 | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 48 |   moreover have "\<Union>{T. open T \<and> T \<subseteq> S} = S" by (auto dest!: assms)
 | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 49 | ultimately show "open S" by simp | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 50 | qed | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 51 | |
| 63494 | 52 | lemma closed_empty [continuous_intros, intro, simp]: "closed {}"
 | 
| 51471 | 53 | unfolding closed_def by simp | 
| 54 | ||
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 55 | lemma closed_Un [continuous_intros, intro]: "closed S \<Longrightarrow> closed T \<Longrightarrow> closed (S \<union> T)" | 
| 51471 | 56 | unfolding closed_def by auto | 
| 57 | ||
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 58 | lemma closed_UNIV [continuous_intros, intro, simp]: "closed UNIV" | 
| 51471 | 59 | unfolding closed_def by simp | 
| 60 | ||
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 61 | lemma closed_Int [continuous_intros, intro]: "closed S \<Longrightarrow> closed T \<Longrightarrow> closed (S \<inter> T)" | 
| 51471 | 62 | unfolding closed_def by auto | 
| 63 | ||
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 64 | lemma closed_INT [continuous_intros, intro]: "\<forall>x\<in>A. closed (B x) \<Longrightarrow> closed (\<Inter>x\<in>A. B x)" | 
| 51471 | 65 | unfolding closed_def by auto | 
| 66 | ||
| 60585 | 67 | lemma closed_Inter [continuous_intros, intro]: "\<forall>S\<in>K. closed S \<Longrightarrow> closed (\<Inter>K)" | 
| 51471 | 68 | unfolding closed_def uminus_Inf by auto | 
| 69 | ||
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 70 | lemma closed_Union [continuous_intros, intro]: "finite S \<Longrightarrow> \<forall>T\<in>S. closed T \<Longrightarrow> closed (\<Union>S)" | 
| 51471 | 71 | by (induct set: finite) auto | 
| 72 | ||
| 63494 | 73 | lemma closed_UN [continuous_intros, intro]: | 
| 74 | "finite A \<Longrightarrow> \<forall>x\<in>A. closed (B x) \<Longrightarrow> closed (\<Union>x\<in>A. B x)" | |
| 56166 | 75 | using closed_Union [of "B ` A"] by simp | 
| 51471 | 76 | |
| 77 | lemma open_closed: "open S \<longleftrightarrow> closed (- S)" | |
| 63170 | 78 | by (simp add: closed_def) | 
| 51471 | 79 | |
| 80 | lemma closed_open: "closed S \<longleftrightarrow> open (- S)" | |
| 63170 | 81 | by (rule closed_def) | 
| 51471 | 82 | |
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 83 | lemma open_Diff [continuous_intros, intro]: "open S \<Longrightarrow> closed T \<Longrightarrow> open (S - T)" | 
| 63170 | 84 | by (simp add: closed_open Diff_eq open_Int) | 
| 51471 | 85 | |
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 86 | lemma closed_Diff [continuous_intros, intro]: "closed S \<Longrightarrow> open T \<Longrightarrow> closed (S - T)" | 
| 63170 | 87 | by (simp add: open_closed Diff_eq closed_Int) | 
| 51471 | 88 | |
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 89 | lemma open_Compl [continuous_intros, intro]: "closed S \<Longrightarrow> open (- S)" | 
| 63170 | 90 | by (simp add: closed_open) | 
| 51471 | 91 | |
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 92 | lemma closed_Compl [continuous_intros, intro]: "open S \<Longrightarrow> closed (- S)" | 
| 63170 | 93 | by (simp add: open_closed) | 
| 51471 | 94 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 95 | lemma open_Collect_neg: "closed {x. P x} \<Longrightarrow> open {x. \<not> P x}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 96 | unfolding Collect_neg_eq by (rule open_Compl) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 97 | |
| 63494 | 98 | lemma open_Collect_conj: | 
| 99 |   assumes "open {x. P x}" "open {x. Q x}"
 | |
| 100 |   shows "open {x. P x \<and> Q x}"
 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 101 | using open_Int[OF assms] by (simp add: Int_def) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 102 | |
| 63494 | 103 | lemma open_Collect_disj: | 
| 104 |   assumes "open {x. P x}" "open {x. Q x}"
 | |
| 105 |   shows "open {x. P x \<or> Q x}"
 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 106 | using open_Un[OF assms] by (simp add: Un_def) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 107 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 108 | lemma open_Collect_ex: "(\<And>i. open {x. P i x}) \<Longrightarrow> open {x. \<exists>i. P i x}"
 | 
| 62102 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 109 |   using open_UN[of UNIV "\<lambda>i. {x. P i x}"] unfolding Collect_ex_eq by simp
 | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 110 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 111 | lemma open_Collect_imp: "closed {x. P x} \<Longrightarrow> open {x. Q x} \<Longrightarrow> open {x. P x \<longrightarrow> Q x}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 112 | unfolding imp_conv_disj by (intro open_Collect_disj open_Collect_neg) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 113 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 114 | lemma open_Collect_const: "open {x. P}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 115 | by (cases P) auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 116 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 117 | lemma closed_Collect_neg: "open {x. P x} \<Longrightarrow> closed {x. \<not> P x}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 118 | unfolding Collect_neg_eq by (rule closed_Compl) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 119 | |
| 63494 | 120 | lemma closed_Collect_conj: | 
| 121 |   assumes "closed {x. P x}" "closed {x. Q x}"
 | |
| 122 |   shows "closed {x. P x \<and> Q x}"
 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 123 | using closed_Int[OF assms] by (simp add: Int_def) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 124 | |
| 63494 | 125 | lemma closed_Collect_disj: | 
| 126 |   assumes "closed {x. P x}" "closed {x. Q x}"
 | |
| 127 |   shows "closed {x. P x \<or> Q x}"
 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 128 | using closed_Un[OF assms] by (simp add: Un_def) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 129 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 130 | lemma closed_Collect_all: "(\<And>i. closed {x. P i x}) \<Longrightarrow> closed {x. \<forall>i. P i x}"
 | 
| 63494 | 131 |   using closed_INT[of UNIV "\<lambda>i. {x. P i x}"] by (simp add: Collect_all_eq)
 | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 132 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 133 | lemma closed_Collect_imp: "open {x. P x} \<Longrightarrow> closed {x. Q x} \<Longrightarrow> closed {x. P x \<longrightarrow> Q x}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 134 | unfolding imp_conv_disj by (intro closed_Collect_disj closed_Collect_neg) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 135 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 136 | lemma closed_Collect_const: "closed {x. P}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 137 | by (cases P) auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 138 | |
| 51471 | 139 | end | 
| 140 | ||
| 63494 | 141 | |
| 142 | subsection \<open>Hausdorff and other separation properties\<close> | |
| 51471 | 143 | |
| 144 | class t0_space = topological_space + | |
| 145 | assumes t0_space: "x \<noteq> y \<Longrightarrow> \<exists>U. open U \<and> \<not> (x \<in> U \<longleftrightarrow> y \<in> U)" | |
| 146 | ||
| 147 | class t1_space = topological_space + | |
| 148 | assumes t1_space: "x \<noteq> y \<Longrightarrow> \<exists>U. open U \<and> x \<in> U \<and> y \<notin> U" | |
| 149 | ||
| 150 | instance t1_space \<subseteq> t0_space | |
| 63494 | 151 | by standard (fast dest: t1_space) | 
| 152 | ||
| 153 | lemma separation_t1: "x \<noteq> y \<longleftrightarrow> (\<exists>U. open U \<and> x \<in> U \<and> y \<notin> U)" | |
| 154 | for x y :: "'a::t1_space" | |
| 51471 | 155 | using t1_space[of x y] by blast | 
| 156 | ||
| 63494 | 157 | lemma closed_singleton [iff]: "closed {a}"
 | 
| 158 | for a :: "'a::t1_space" | |
| 51471 | 159 | proof - | 
| 160 |   let ?T = "\<Union>{S. open S \<and> a \<notin> S}"
 | |
| 63494 | 161 | have "open ?T" | 
| 162 | by (simp add: open_Union) | |
| 51471 | 163 |   also have "?T = - {a}"
 | 
| 63494 | 164 | by (auto simp add: set_eq_iff separation_t1) | 
| 165 |   finally show "closed {a}"
 | |
| 166 | by (simp only: closed_def) | |
| 51471 | 167 | qed | 
| 168 | ||
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 169 | lemma closed_insert [continuous_intros, simp]: | 
| 51471 | 170 | fixes a :: "'a::t1_space" | 
| 63494 | 171 | assumes "closed S" | 
| 172 | shows "closed (insert a S)" | |
| 51471 | 173 | proof - | 
| 63494 | 174 |   from closed_singleton assms have "closed ({a} \<union> S)"
 | 
| 175 | by (rule closed_Un) | |
| 176 | then show "closed (insert a S)" | |
| 177 | by simp | |
| 51471 | 178 | qed | 
| 179 | ||
| 63494 | 180 | lemma finite_imp_closed: "finite S \<Longrightarrow> closed S" | 
| 181 | for S :: "'a::t1_space set" | |
| 182 | by (induct pred: finite) simp_all | |
| 183 | ||
| 51471 | 184 | |
| 60758 | 185 | text \<open>T2 spaces are also known as Hausdorff spaces.\<close> | 
| 51471 | 186 | |
| 187 | class t2_space = topological_space + | |
| 188 |   assumes hausdorff: "x \<noteq> y \<Longrightarrow> \<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {}"
 | |
| 189 | ||
| 190 | instance t2_space \<subseteq> t1_space | |
| 63494 | 191 | by standard (fast dest: hausdorff) | 
| 192 | ||
| 193 | lemma separation_t2: "x \<noteq> y \<longleftrightarrow> (\<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {})"
 | |
| 194 | for x y :: "'a::t2_space" | |
| 195 | using hausdorff [of x y] by blast | |
| 196 | ||
| 197 | lemma separation_t0: "x \<noteq> y \<longleftrightarrow> (\<exists>U. open U \<and> \<not> (x \<in> U \<longleftrightarrow> y \<in> U))" | |
| 198 | for x y :: "'a::t0_space" | |
| 199 | using t0_space [of x y] by blast | |
| 200 | ||
| 51471 | 201 | |
| 60758 | 202 | text \<open>A perfect space is a topological space with no isolated points.\<close> | 
| 51471 | 203 | |
| 204 | class perfect_space = topological_space + | |
| 205 |   assumes not_open_singleton: "\<not> open {x}"
 | |
| 206 | ||
| 63494 | 207 | lemma UNIV_not_singleton: "UNIV \<noteq> {x}"
 | 
| 208 | for x :: "'a::perfect_space" | |
| 62381 
a6479cb85944
New and revised material for (multivariate) analysis
 paulson <lp15@cam.ac.uk> parents: 
62369diff
changeset | 209 | by (metis open_UNIV not_open_singleton) | 
| 
a6479cb85944
New and revised material for (multivariate) analysis
 paulson <lp15@cam.ac.uk> parents: 
62369diff
changeset | 210 | |
| 51471 | 211 | |
| 60758 | 212 | subsection \<open>Generators for toplogies\<close> | 
| 51471 | 213 | |
| 63494 | 214 | inductive generate_topology :: "'a set set \<Rightarrow> 'a set \<Rightarrow> bool" for S :: "'a set set" | 
| 215 | where | |
| 216 | UNIV: "generate_topology S UNIV" | |
| 217 | | Int: "generate_topology S (a \<inter> b)" if "generate_topology S a" and "generate_topology S b" | |
| 218 | | UN: "generate_topology S (\<Union>K)" if "(\<And>k. k \<in> K \<Longrightarrow> generate_topology S k)" | |
| 219 | | Basis: "generate_topology S s" if "s \<in> S" | |
| 51471 | 220 | |
| 62102 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 221 | hide_fact (open) UNIV Int UN Basis | 
| 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 222 | |
| 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 223 | lemma generate_topology_Union: | 
| 51471 | 224 | "(\<And>k. k \<in> I \<Longrightarrow> generate_topology S (K k)) \<Longrightarrow> generate_topology S (\<Union>k\<in>I. K k)" | 
| 56166 | 225 | using generate_topology.UN [of "K ` I"] by auto | 
| 51471 | 226 | |
| 63494 | 227 | lemma topological_space_generate_topology: "class.topological_space (generate_topology S)" | 
| 61169 | 228 | by standard (auto intro: generate_topology.intros) | 
| 51471 | 229 | |
| 63494 | 230 | |
| 60758 | 231 | subsection \<open>Order topologies\<close> | 
| 51471 | 232 | |
| 233 | class order_topology = order + "open" + | |
| 234 |   assumes open_generated_order: "open = generate_topology (range (\<lambda>a. {..< a}) \<union> range (\<lambda>a. {a <..}))"
 | |
| 235 | begin | |
| 236 | ||
| 237 | subclass topological_space | |
| 238 | unfolding open_generated_order | |
| 239 | by (rule topological_space_generate_topology) | |
| 240 | ||
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 241 | lemma open_greaterThan [continuous_intros, simp]: "open {a <..}"
 | 
| 51471 | 242 | unfolding open_generated_order by (auto intro: generate_topology.Basis) | 
| 243 | ||
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 244 | lemma open_lessThan [continuous_intros, simp]: "open {..< a}"
 | 
| 51471 | 245 | unfolding open_generated_order by (auto intro: generate_topology.Basis) | 
| 246 | ||
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 247 | lemma open_greaterThanLessThan [continuous_intros, simp]: "open {a <..< b}"
 | 
| 51471 | 248 | unfolding greaterThanLessThan_eq by (simp add: open_Int) | 
| 249 | ||
| 250 | end | |
| 251 | ||
| 252 | class linorder_topology = linorder + order_topology | |
| 253 | ||
| 63494 | 254 | lemma closed_atMost [continuous_intros, simp]: "closed {..a}"
 | 
| 255 | for a :: "'a::linorder_topology" | |
| 51471 | 256 | by (simp add: closed_open) | 
| 257 | ||
| 63494 | 258 | lemma closed_atLeast [continuous_intros, simp]: "closed {a..}"
 | 
| 259 | for a :: "'a::linorder_topology" | |
| 51471 | 260 | by (simp add: closed_open) | 
| 261 | ||
| 63494 | 262 | lemma closed_atLeastAtMost [continuous_intros, simp]: "closed {a..b}"
 | 
| 263 | for a b :: "'a::linorder_topology" | |
| 51471 | 264 | proof - | 
| 265 |   have "{a .. b} = {a ..} \<inter> {.. b}"
 | |
| 266 | by auto | |
| 267 | then show ?thesis | |
| 268 | by (simp add: closed_Int) | |
| 269 | qed | |
| 270 | ||
| 271 | lemma (in linorder) less_separate: | |
| 272 | assumes "x < y" | |
| 273 |   shows "\<exists>a b. x \<in> {..< a} \<and> y \<in> {b <..} \<and> {..< a} \<inter> {b <..} = {}"
 | |
| 53381 | 274 | proof (cases "\<exists>z. x < z \<and> z < y") | 
| 275 | case True | |
| 276 | then obtain z where "x < z \<and> z < y" .. | |
| 51471 | 277 |   then have "x \<in> {..< z} \<and> y \<in> {z <..} \<and> {z <..} \<inter> {..< z} = {}"
 | 
| 278 | by auto | |
| 279 | then show ?thesis by blast | |
| 280 | next | |
| 53381 | 281 | case False | 
| 63494 | 282 |   with \<open>x < y\<close> have "x \<in> {..< y}" "y \<in> {x <..}" "{x <..} \<inter> {..< y} = {}"
 | 
| 51471 | 283 | by auto | 
| 284 | then show ?thesis by blast | |
| 285 | qed | |
| 286 | ||
| 287 | instance linorder_topology \<subseteq> t2_space | |
| 288 | proof | |
| 289 | fix x y :: 'a | |
| 290 |   show "x \<noteq> y \<Longrightarrow> \<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {}"
 | |
| 63494 | 291 | using less_separate [of x y] less_separate [of y x] | 
| 292 | by (elim neqE; metis open_lessThan open_greaterThan Int_commute) | |
| 51471 | 293 | qed | 
| 294 | ||
| 51480 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 295 | lemma (in linorder_topology) open_right: | 
| 63494 | 296 | assumes "open S" "x \<in> S" | 
| 297 | and gt_ex: "x < y" | |
| 298 |   shows "\<exists>b>x. {x ..< b} \<subseteq> S"
 | |
| 299 | using assms unfolding open_generated_order | |
| 300 | proof induct | |
| 301 | case UNIV | |
| 302 | then show ?case by blast | |
| 303 | next | |
| 304 | case (Int A B) | |
| 305 |   then obtain a b where "a > x" "{x ..< a} \<subseteq> A"  "b > x" "{x ..< b} \<subseteq> B"
 | |
| 306 | by auto | |
| 307 | then show ?case | |
| 308 | by (auto intro!: exI[of _ "min a b"]) | |
| 309 | next | |
| 310 | case UN | |
| 311 | then show ?case by blast | |
| 312 | next | |
| 313 | case Basis | |
| 314 | then show ?case | |
| 315 | by (fastforce intro: exI[of _ y] gt_ex) | |
| 316 | qed | |
| 317 | ||
| 318 | lemma (in linorder_topology) open_left: | |
| 319 | assumes "open S" "x \<in> S" | |
| 320 | and lt_ex: "y < x" | |
| 321 |   shows "\<exists>b<x. {b <.. x} \<subseteq> S"
 | |
| 51471 | 322 | using assms unfolding open_generated_order | 
| 323 | proof induction | |
| 63494 | 324 | case UNIV | 
| 325 | then show ?case by blast | |
| 326 | next | |
| 51471 | 327 | case (Int A B) | 
| 63494 | 328 |   then obtain a b where "a < x" "{a <.. x} \<subseteq> A"  "b < x" "{b <.. x} \<subseteq> B"
 | 
| 329 | by auto | |
| 330 | then show ?case | |
| 331 | by (auto intro!: exI[of _ "max a b"]) | |
| 51471 | 332 | next | 
| 63494 | 333 | case UN | 
| 334 | then show ?case by blast | |
| 51471 | 335 | next | 
| 63494 | 336 | case Basis | 
| 337 | then show ?case | |
| 338 | by (fastforce intro: exI[of _ y] lt_ex) | |
| 339 | qed | |
| 340 | ||
| 51471 | 341 | |
| 62369 | 342 | subsection \<open>Setup some topologies\<close> | 
| 343 | ||
| 60758 | 344 | subsubsection \<open>Boolean is an order topology\<close> | 
| 59106 | 345 | |
| 62369 | 346 | class discrete_topology = topological_space + | 
| 347 | assumes open_discrete: "\<And>A. open A" | |
| 348 | ||
| 349 | instance discrete_topology < t2_space | |
| 350 | proof | |
| 63494 | 351 | fix x y :: 'a | 
| 352 | assume "x \<noteq> y" | |
| 353 |   then show "\<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {}"
 | |
| 62369 | 354 |     by (intro exI[of _ "{_}"]) (auto intro!: open_discrete)
 | 
| 355 | qed | |
| 356 | ||
| 357 | instantiation bool :: linorder_topology | |
| 59106 | 358 | begin | 
| 359 | ||
| 63494 | 360 | definition open_bool :: "bool set \<Rightarrow> bool" | 
| 361 |   where "open_bool = generate_topology (range (\<lambda>a. {..< a}) \<union> range (\<lambda>a. {a <..}))"
 | |
| 59106 | 362 | |
| 363 | instance | |
| 63494 | 364 | by standard (rule open_bool_def) | 
| 59106 | 365 | |
| 366 | end | |
| 367 | ||
| 62369 | 368 | instance bool :: discrete_topology | 
| 369 | proof | |
| 370 | fix A :: "bool set" | |
| 59106 | 371 |   have *: "{False <..} = {True}" "{..< True} = {False}"
 | 
| 372 | by auto | |
| 373 |   have "A = UNIV \<or> A = {} \<or> A = {False <..} \<or> A = {..< True}"
 | |
| 63171 | 374 | using subset_UNIV[of A] unfolding UNIV_bool * by blast | 
| 59106 | 375 | then show "open A" | 
| 376 | by auto | |
| 377 | qed | |
| 378 | ||
| 62369 | 379 | instantiation nat :: linorder_topology | 
| 380 | begin | |
| 381 | ||
| 63494 | 382 | definition open_nat :: "nat set \<Rightarrow> bool" | 
| 383 |   where "open_nat = generate_topology (range (\<lambda>a. {..< a}) \<union> range (\<lambda>a. {a <..}))"
 | |
| 62369 | 384 | |
| 385 | instance | |
| 63494 | 386 | by standard (rule open_nat_def) | 
| 62369 | 387 | |
| 388 | end | |
| 389 | ||
| 390 | instance nat :: discrete_topology | |
| 391 | proof | |
| 392 | fix A :: "nat set" | |
| 393 |   have "open {n}" for n :: nat
 | |
| 394 | proof (cases n) | |
| 395 | case 0 | |
| 396 |     moreover have "{0} = {..<1::nat}"
 | |
| 397 | by auto | |
| 398 | ultimately show ?thesis | |
| 399 | by auto | |
| 400 | next | |
| 401 | case (Suc n') | |
| 63494 | 402 |     then have "{n} = {..<Suc n} \<inter> {n' <..}"
 | 
| 62369 | 403 | by auto | 
| 63494 | 404 | with Suc show ?thesis | 
| 62369 | 405 | by (auto intro: open_lessThan open_greaterThan) | 
| 406 | qed | |
| 407 |   then have "open (\<Union>a\<in>A. {a})"
 | |
| 408 | by (intro open_UN) auto | |
| 409 | then show "open A" | |
| 410 | by simp | |
| 411 | qed | |
| 412 | ||
| 413 | instantiation int :: linorder_topology | |
| 414 | begin | |
| 415 | ||
| 63494 | 416 | definition open_int :: "int set \<Rightarrow> bool" | 
| 417 |   where "open_int = generate_topology (range (\<lambda>a. {..< a}) \<union> range (\<lambda>a. {a <..}))"
 | |
| 62369 | 418 | |
| 419 | instance | |
| 63494 | 420 | by standard (rule open_int_def) | 
| 62369 | 421 | |
| 422 | end | |
| 423 | ||
| 424 | instance int :: discrete_topology | |
| 425 | proof | |
| 426 | fix A :: "int set" | |
| 427 |   have "{..<i + 1} \<inter> {i-1 <..} = {i}" for i :: int
 | |
| 428 | by auto | |
| 429 |   then have "open {i}" for i :: int
 | |
| 430 | using open_Int[OF open_lessThan[of "i + 1"] open_greaterThan[of "i - 1"]] by auto | |
| 431 |   then have "open (\<Union>a\<in>A. {a})"
 | |
| 432 | by (intro open_UN) auto | |
| 433 | then show "open A" | |
| 434 | by simp | |
| 435 | qed | |
| 436 | ||
| 63494 | 437 | |
| 60758 | 438 | subsubsection \<open>Topological filters\<close> | 
| 51471 | 439 | |
| 440 | definition (in topological_space) nhds :: "'a \<Rightarrow> 'a filter" | |
| 57276 | 441 |   where "nhds a = (INF S:{S. open S \<and> a \<in> S}. principal S)"
 | 
| 51471 | 442 | |
| 63494 | 443 | definition (in topological_space) at_within :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a filter" | 
| 444 |     ("at (_)/ within (_)" [1000, 60] 60)
 | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 445 |   where "at a within s = inf (nhds a) (principal (s - {a}))"
 | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 446 | |
| 63494 | 447 | abbreviation (in topological_space) at :: "'a \<Rightarrow> 'a filter"  ("at")
 | 
| 448 | where "at x \<equiv> at x within (CONST UNIV)" | |
| 449 | ||
| 450 | abbreviation (in order_topology) at_right :: "'a \<Rightarrow> 'a filter" | |
| 451 |   where "at_right x \<equiv> at x within {x <..}"
 | |
| 452 | ||
| 453 | abbreviation (in order_topology) at_left :: "'a \<Rightarrow> 'a filter" | |
| 454 |   where "at_left x \<equiv> at x within {..< x}"
 | |
| 51471 | 455 | |
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 456 | lemma (in topological_space) nhds_generated_topology: | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 457 |   "open = generate_topology T \<Longrightarrow> nhds x = (INF S:{S\<in>T. x \<in> S}. principal S)"
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 458 | unfolding nhds_def | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 459 | proof (safe intro!: antisym INF_greatest) | 
| 63494 | 460 | fix S | 
| 461 | assume "generate_topology T S" "x \<in> S" | |
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 462 |   then show "(INF S:{S \<in> T. x \<in> S}. principal S) \<le> principal S"
 | 
| 63494 | 463 | by induct | 
| 464 | (auto intro: INF_lower order_trans simp: inf_principal[symmetric] simp del: inf_principal) | |
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 465 | qed (auto intro!: INF_lower intro: generate_topology.intros) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 466 | |
| 51473 | 467 | lemma (in topological_space) eventually_nhds: | 
| 51471 | 468 | "eventually P (nhds a) \<longleftrightarrow> (\<exists>S. open S \<and> a \<in> S \<and> (\<forall>x\<in>S. P x))" | 
| 57276 | 469 | unfolding nhds_def by (subst eventually_INF_base) (auto simp: eventually_principal) | 
| 51471 | 470 | |
| 62102 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 471 | lemma (in topological_space) eventually_nhds_in_open: | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 472 | "open s \<Longrightarrow> x \<in> s \<Longrightarrow> eventually (\<lambda>y. y \<in> s) (nhds x)" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 473 | by (subst eventually_nhds) blast | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 474 | |
| 63494 | 475 | lemma eventually_nhds_x_imp_x: "eventually P (nhds x) \<Longrightarrow> P x" | 
| 63295 
52792bb9126e
Facts about HK integration, complex powers, Gamma function
 eberlm parents: 
63171diff
changeset | 476 | by (subst (asm) eventually_nhds) blast | 
| 
52792bb9126e
Facts about HK integration, complex powers, Gamma function
 eberlm parents: 
63171diff
changeset | 477 | |
| 51471 | 478 | lemma nhds_neq_bot [simp]: "nhds a \<noteq> bot" | 
| 63494 | 479 | by (simp add: trivial_limit_def eventually_nhds) | 
| 480 | ||
| 481 | lemma (in t1_space) t1_space_nhds: "x \<noteq> y \<Longrightarrow> (\<forall>\<^sub>F x in nhds x. x \<noteq> y)" | |
| 60182 
e1ea5a6379c9
generalized tends over powr; added DERIV rule for powr
 hoelzl parents: 
60172diff
changeset | 482 | by (drule t1_space) (auto simp: eventually_nhds) | 
| 
e1ea5a6379c9
generalized tends over powr; added DERIV rule for powr
 hoelzl parents: 
60172diff
changeset | 483 | |
| 62369 | 484 | lemma (in topological_space) nhds_discrete_open: "open {x} \<Longrightarrow> nhds x = principal {x}"
 | 
| 485 |   by (auto simp: nhds_def intro!: antisym INF_greatest INF_lower2[of "{x}"])
 | |
| 486 | ||
| 487 | lemma (in discrete_topology) nhds_discrete: "nhds x = principal {x}"
 | |
| 488 | by (simp add: nhds_discrete_open open_discrete) | |
| 489 | ||
| 490 | lemma (in discrete_topology) at_discrete: "at x within S = bot" | |
| 491 | unfolding at_within_def nhds_discrete by simp | |
| 492 | ||
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 493 | lemma at_within_eq: "at x within s = (INF S:{S. open S \<and> x \<in> S}. principal (S \<inter> s - {x}))"
 | 
| 63494 | 494 | unfolding nhds_def at_within_def | 
| 495 | by (subst INF_inf_const2[symmetric]) (auto simp: Diff_Int_distrib) | |
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 496 | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 497 | lemma eventually_at_filter: | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 498 | "eventually P (at a within s) \<longleftrightarrow> eventually (\<lambda>x. x \<noteq> a \<longrightarrow> x \<in> s \<longrightarrow> P x) (nhds a)" | 
| 63494 | 499 | by (simp add: at_within_def eventually_inf_principal imp_conjL[symmetric] conj_commute) | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 500 | |
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 501 | lemma at_le: "s \<subseteq> t \<Longrightarrow> at x within s \<le> at x within t" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 502 | unfolding at_within_def by (intro inf_mono) auto | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 503 | |
| 51471 | 504 | lemma eventually_at_topological: | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 505 | "eventually P (at a within s) \<longleftrightarrow> (\<exists>S. open S \<and> a \<in> S \<and> (\<forall>x\<in>S. x \<noteq> a \<longrightarrow> x \<in> s \<longrightarrow> P x))" | 
| 63494 | 506 | by (simp add: eventually_nhds eventually_at_filter) | 
| 51471 | 507 | |
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 508 | lemma at_within_open: "a \<in> S \<Longrightarrow> open S \<Longrightarrow> at a within S = at a" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 509 | unfolding filter_eq_iff eventually_at_topological by (metis open_Int Int_iff UNIV_I) | 
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 510 | |
| 63494 | 511 | lemma at_within_open_NO_MATCH: "a \<in> s \<Longrightarrow> open s \<Longrightarrow> NO_MATCH UNIV s \<Longrightarrow> at a within s = at a" | 
| 61234 | 512 | by (simp only: at_within_open) | 
| 513 | ||
| 61245 | 514 | lemma at_within_nhd: | 
| 515 |   assumes "x \<in> S" "open S" "T \<inter> S - {x} = U \<inter> S - {x}"
 | |
| 516 | shows "at x within T = at x within U" | |
| 517 | unfolding filter_eq_iff eventually_at_filter | |
| 518 | proof (intro allI eventually_subst) | |
| 519 | have "eventually (\<lambda>x. x \<in> S) (nhds x)" | |
| 520 | using \<open>x \<in> S\<close> \<open>open S\<close> by (auto simp: eventually_nhds) | |
| 62102 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 521 | then show "\<forall>\<^sub>F n in nhds x. (n \<noteq> x \<longrightarrow> n \<in> T \<longrightarrow> P n) = (n \<noteq> x \<longrightarrow> n \<in> U \<longrightarrow> P n)" for P | 
| 61245 | 522 |     by eventually_elim (insert \<open>T \<inter> S - {x} = U \<inter> S - {x}\<close>, blast)
 | 
| 523 | qed | |
| 524 | ||
| 53859 | 525 | lemma at_within_empty [simp]: "at a within {} = bot"
 | 
| 526 | unfolding at_within_def by simp | |
| 527 | ||
| 53860 | 528 | lemma at_within_union: "at x within (S \<union> T) = sup (at x within S) (at x within T)" | 
| 529 | unfolding filter_eq_iff eventually_sup eventually_at_filter | |
| 530 | by (auto elim!: eventually_rev_mp) | |
| 531 | ||
| 51471 | 532 | lemma at_eq_bot_iff: "at a = bot \<longleftrightarrow> open {a}"
 | 
| 533 | unfolding trivial_limit_def eventually_at_topological | |
| 63494 | 534 | apply safe | 
| 535 |    apply (case_tac "S = {a}")
 | |
| 536 | apply simp | |
| 537 | apply fast | |
| 538 | apply fast | |
| 539 | done | |
| 540 | ||
| 541 | lemma at_neq_bot [simp]: "at a \<noteq> bot" | |
| 542 | for a :: "'a::perfect_space" | |
| 51471 | 543 | by (simp add: at_eq_bot_iff not_open_singleton) | 
| 544 | ||
| 63494 | 545 | lemma (in order_topology) nhds_order: | 
| 546 |   "nhds x = inf (INF a:{x <..}. principal {..< a}) (INF a:{..< x}. principal {a <..})"
 | |
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 547 | proof - | 
| 62102 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 548 |   have 1: "{S \<in> range lessThan \<union> range greaterThan. x \<in> S} =
 | 
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 549 |       (\<lambda>a. {..< a}) ` {x <..} \<union> (\<lambda>a. {a <..}) ` {..< x}"
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 550 | by auto | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 551 | show ?thesis | 
| 63494 | 552 | by (simp only: nhds_generated_topology[OF open_generated_order] INF_union 1 INF_image comp_def) | 
| 51471 | 553 | qed | 
| 554 | ||
| 63295 
52792bb9126e
Facts about HK integration, complex powers, Gamma function
 eberlm parents: 
63171diff
changeset | 555 | lemma filterlim_at_within_If: | 
| 
52792bb9126e
Facts about HK integration, complex powers, Gamma function
 eberlm parents: 
63171diff
changeset | 556 |   assumes "filterlim f G (at x within (A \<inter> {x. P x}))"
 | 
| 63494 | 557 |     and "filterlim g G (at x within (A \<inter> {x. \<not>P x}))"
 | 
| 558 | shows "filterlim (\<lambda>x. if P x then f x else g x) G (at x within A)" | |
| 63295 
52792bb9126e
Facts about HK integration, complex powers, Gamma function
 eberlm parents: 
63171diff
changeset | 559 | proof (rule filterlim_If) | 
| 
52792bb9126e
Facts about HK integration, complex powers, Gamma function
 eberlm parents: 
63171diff
changeset | 560 | note assms(1) | 
| 
52792bb9126e
Facts about HK integration, complex powers, Gamma function
 eberlm parents: 
63171diff
changeset | 561 |   also have "at x within (A \<inter> {x. P x}) = inf (nhds x) (principal (A \<inter> Collect P - {x}))"
 | 
| 
52792bb9126e
Facts about HK integration, complex powers, Gamma function
 eberlm parents: 
63171diff
changeset | 562 | by (simp add: at_within_def) | 
| 63494 | 563 |   also have "A \<inter> Collect P - {x} = (A - {x}) \<inter> Collect P"
 | 
| 564 | by blast | |
| 63295 
52792bb9126e
Facts about HK integration, complex powers, Gamma function
 eberlm parents: 
63171diff
changeset | 565 | also have "inf (nhds x) (principal \<dots>) = inf (at x within A) (principal (Collect P))" | 
| 
52792bb9126e
Facts about HK integration, complex powers, Gamma function
 eberlm parents: 
63171diff
changeset | 566 | by (simp add: at_within_def inf_assoc) | 
| 
52792bb9126e
Facts about HK integration, complex powers, Gamma function
 eberlm parents: 
63171diff
changeset | 567 | finally show "filterlim f G (inf (at x within A) (principal (Collect P)))" . | 
| 
52792bb9126e
Facts about HK integration, complex powers, Gamma function
 eberlm parents: 
63171diff
changeset | 568 | next | 
| 
52792bb9126e
Facts about HK integration, complex powers, Gamma function
 eberlm parents: 
63171diff
changeset | 569 | note assms(2) | 
| 63494 | 570 |   also have "at x within (A \<inter> {x. \<not> P x}) = inf (nhds x) (principal (A \<inter> {x. \<not> P x} - {x}))"
 | 
| 63295 
52792bb9126e
Facts about HK integration, complex powers, Gamma function
 eberlm parents: 
63171diff
changeset | 571 | by (simp add: at_within_def) | 
| 63494 | 572 |   also have "A \<inter> {x. \<not> P x} - {x} = (A - {x}) \<inter> {x. \<not> P x}"
 | 
| 573 | by blast | |
| 574 |   also have "inf (nhds x) (principal \<dots>) = inf (at x within A) (principal {x. \<not> P x})"
 | |
| 63295 
52792bb9126e
Facts about HK integration, complex powers, Gamma function
 eberlm parents: 
63171diff
changeset | 575 | by (simp add: at_within_def inf_assoc) | 
| 63494 | 576 |   finally show "filterlim g G (inf (at x within A) (principal {x. \<not> P x}))" .
 | 
| 63295 
52792bb9126e
Facts about HK integration, complex powers, Gamma function
 eberlm parents: 
63171diff
changeset | 577 | qed | 
| 
52792bb9126e
Facts about HK integration, complex powers, Gamma function
 eberlm parents: 
63171diff
changeset | 578 | |
| 
52792bb9126e
Facts about HK integration, complex powers, Gamma function
 eberlm parents: 
63171diff
changeset | 579 | lemma filterlim_at_If: | 
| 
52792bb9126e
Facts about HK integration, complex powers, Gamma function
 eberlm parents: 
63171diff
changeset | 580 |   assumes "filterlim f G (at x within {x. P x})"
 | 
| 63494 | 581 |     and "filterlim g G (at x within {x. \<not>P x})"
 | 
| 582 | shows "filterlim (\<lambda>x. if P x then f x else g x) G (at x)" | |
| 63295 
52792bb9126e
Facts about HK integration, complex powers, Gamma function
 eberlm parents: 
63171diff
changeset | 583 | using assms by (intro filterlim_at_within_If) simp_all | 
| 
52792bb9126e
Facts about HK integration, complex powers, Gamma function
 eberlm parents: 
63171diff
changeset | 584 | |
| 63494 | 585 | lemma (in linorder_topology) at_within_order: | 
| 586 |   assumes "UNIV \<noteq> {x}"
 | |
| 587 | shows "at x within s = | |
| 588 |     inf (INF a:{x <..}. principal ({..< a} \<inter> s - {x}))
 | |
| 589 |         (INF a:{..< x}. principal ({a <..} \<inter> s - {x}))"
 | |
| 590 | proof (cases "{x <..} = {}" "{..< x} = {}" rule: case_split [case_product case_split])
 | |
| 591 | case True_True | |
| 592 |   have "UNIV = {..< x} \<union> {x} \<union> {x <..}"
 | |
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 593 | by auto | 
| 63494 | 594 | with assms True_True show ?thesis | 
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 595 | by auto | 
| 63494 | 596 | qed (auto simp del: inf_principal simp: at_within_def nhds_order Int_Diff | 
| 597 | inf_principal[symmetric] INF_inf_const2 inf_sup_aci[where 'a="'a filter"]) | |
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 598 | |
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 599 | lemma (in linorder_topology) at_left_eq: | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 600 |   "y < x \<Longrightarrow> at_left x = (INF a:{..< x}. principal {a <..< x})"
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 601 | by (subst at_within_order) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 602 | (auto simp: greaterThan_Int_greaterThan greaterThanLessThan_eq[symmetric] min.absorb2 INF_constant | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 603 | intro!: INF_lower2 inf_absorb2) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 604 | |
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 605 | lemma (in linorder_topology) eventually_at_left: | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 606 | "y < x \<Longrightarrow> eventually P (at_left x) \<longleftrightarrow> (\<exists>b<x. \<forall>y>b. y < x \<longrightarrow> P y)" | 
| 63494 | 607 | unfolding at_left_eq | 
| 608 | by (subst eventually_INF_base) (auto simp: eventually_principal Ball_def) | |
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 609 | |
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 610 | lemma (in linorder_topology) at_right_eq: | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 611 |   "x < y \<Longrightarrow> at_right x = (INF a:{x <..}. principal {x <..< a})"
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 612 | by (subst at_within_order) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 613 | (auto simp: lessThan_Int_lessThan greaterThanLessThan_eq[symmetric] max.absorb2 INF_constant Int_commute | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 614 | intro!: INF_lower2 inf_absorb1) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 615 | |
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 616 | lemma (in linorder_topology) eventually_at_right: | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 617 | "x < y \<Longrightarrow> eventually P (at_right x) \<longleftrightarrow> (\<exists>b>x. \<forall>y>x. y < b \<longrightarrow> P y)" | 
| 63494 | 618 | unfolding at_right_eq | 
| 619 | by (subst eventually_INF_base) (auto simp: eventually_principal Ball_def) | |
| 51471 | 620 | |
| 62083 | 621 | lemma eventually_at_right_less: "\<forall>\<^sub>F y in at_right (x::'a::{linorder_topology, no_top}). x < y"
 | 
| 622 | using gt_ex[of x] eventually_at_right[of x] by auto | |
| 623 | ||
| 63494 | 624 | lemma trivial_limit_at_right_top: "at_right (top::_::{order_top,linorder_topology}) = bot"
 | 
| 625 | by (auto simp: filter_eq_iff eventually_at_topological) | |
| 626 | ||
| 627 | lemma trivial_limit_at_left_bot: "at_left (bot::_::{order_bot,linorder_topology}) = bot"
 | |
| 628 | by (auto simp: filter_eq_iff eventually_at_topological) | |
| 629 | ||
| 630 | lemma trivial_limit_at_left_real [simp]: "\<not> trivial_limit (at_left x)" | |
| 631 |   for x :: "'a::{no_bot,dense_order,linorder_topology}"
 | |
| 632 | using lt_ex [of x] | |
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57025diff
changeset | 633 | by safe (auto simp add: trivial_limit_def eventually_at_left dest: dense) | 
| 51471 | 634 | |
| 63494 | 635 | lemma trivial_limit_at_right_real [simp]: "\<not> trivial_limit (at_right x)" | 
| 636 |   for x :: "'a::{no_top,dense_order,linorder_topology}"
 | |
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57025diff
changeset | 637 | using gt_ex[of x] | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57025diff
changeset | 638 | by safe (auto simp add: trivial_limit_def eventually_at_right dest: dense) | 
| 51471 | 639 | |
| 63494 | 640 | lemma at_eq_sup_left_right: "at x = sup (at_left x) (at_right x)" | 
| 641 | for x :: "'a::linorder_topology" | |
| 62102 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 642 | by (auto simp: eventually_at_filter filter_eq_iff eventually_sup | 
| 63494 | 643 | elim: eventually_elim2 eventually_mono) | 
| 51471 | 644 | |
| 645 | lemma eventually_at_split: | |
| 63494 | 646 | "eventually P (at x) \<longleftrightarrow> eventually P (at_left x) \<and> eventually P (at_right x)" | 
| 647 | for x :: "'a::linorder_topology" | |
| 51471 | 648 | by (subst at_eq_sup_left_right) (simp add: eventually_sup) | 
| 649 | ||
| 63713 | 650 | lemma eventually_at_leftI: | 
| 651 |   assumes "\<And>x. x \<in> {a<..<b} \<Longrightarrow> P x" "a < b"
 | |
| 652 | shows "eventually P (at_left b)" | |
| 653 |   using assms unfolding eventually_at_topological by (intro exI[of _ "{a<..}"]) auto
 | |
| 654 | ||
| 655 | lemma eventually_at_rightI: | |
| 656 |   assumes "\<And>x. x \<in> {a<..<b} \<Longrightarrow> P x" "a < b"
 | |
| 657 | shows "eventually P (at_right a)" | |
| 658 |   using assms unfolding eventually_at_topological by (intro exI[of _ "{..<b}"]) auto
 | |
| 659 | ||
| 63494 | 660 | |
| 60758 | 661 | subsubsection \<open>Tendsto\<close> | 
| 51471 | 662 | |
| 663 | abbreviation (in topological_space) | |
| 63494 | 664 |   tendsto :: "('b \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'b filter \<Rightarrow> bool"  (infixr "\<longlongrightarrow>" 55)
 | 
| 665 | where "(f \<longlongrightarrow> l) F \<equiv> filterlim f (nhds l) F" | |
| 666 | ||
| 667 | definition (in t2_space) Lim :: "'f filter \<Rightarrow> ('f \<Rightarrow> 'a) \<Rightarrow> 'a"
 | |
| 668 | where "Lim A f = (THE l. (f \<longlongrightarrow> l) A)" | |
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 669 | |
| 61973 | 670 | lemma tendsto_eq_rhs: "(f \<longlongrightarrow> x) F \<Longrightarrow> x = y \<Longrightarrow> (f \<longlongrightarrow> y) F" | 
| 51471 | 671 | by simp | 
| 672 | ||
| 57953 | 673 | named_theorems tendsto_intros "introduction rules for tendsto" | 
| 60758 | 674 | setup \<open> | 
| 51471 | 675 |   Global_Theory.add_thms_dynamic (@{binding tendsto_eq_intros},
 | 
| 57953 | 676 | fn context => | 
| 677 |       Named_Theorems.get (Context.proof_of context) @{named_theorems tendsto_intros}
 | |
| 678 |       |> map_filter (try (fn thm => @{thm tendsto_eq_rhs} OF [thm])))
 | |
| 60758 | 679 | \<close> | 
| 51471 | 680 | |
| 51473 | 681 | lemma (in topological_space) tendsto_def: | 
| 61973 | 682 | "(f \<longlongrightarrow> l) F \<longleftrightarrow> (\<forall>S. open S \<longrightarrow> l \<in> S \<longrightarrow> eventually (\<lambda>x. f x \<in> S) F)" | 
| 57276 | 683 | unfolding nhds_def filterlim_INF filterlim_principal by auto | 
| 51471 | 684 | |
| 63494 | 685 | lemma tendsto_cong: "(f \<longlongrightarrow> c) F \<longleftrightarrow> (g \<longlongrightarrow> c) F" if "eventually (\<lambda>x. f x = g x) F" | 
| 686 | by (rule filterlim_cong [OF refl refl that]) | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 687 | |
| 61973 | 688 | lemma tendsto_mono: "F \<le> F' \<Longrightarrow> (f \<longlongrightarrow> l) F' \<Longrightarrow> (f \<longlongrightarrow> l) F" | 
| 51471 | 689 | unfolding tendsto_def le_filter_def by fast | 
| 690 | ||
| 61973 | 691 | lemma tendsto_within_subset: "(f \<longlongrightarrow> l) (at x within S) \<Longrightarrow> T \<subseteq> S \<Longrightarrow> (f \<longlongrightarrow> l) (at x within T)" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 692 | by (blast intro: tendsto_mono at_le) | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 693 | |
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 694 | lemma filterlim_at: | 
| 63494 | 695 | "(LIM x F. f x :> at b within s) \<longleftrightarrow> eventually (\<lambda>x. f x \<in> s \<and> f x \<noteq> b) F \<and> (f \<longlongrightarrow> b) F" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 696 | by (simp add: at_within_def filterlim_inf filterlim_principal conj_commute) | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 697 | |
| 63713 | 698 | lemma filterlim_at_withinI: | 
| 699 | assumes "filterlim f (nhds c) F" | |
| 700 |   assumes "eventually (\<lambda>x. f x \<in> A - {c}) F"
 | |
| 701 | shows "filterlim f (at c within A) F" | |
| 64008 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63952diff
changeset | 702 | using assms by (simp add: filterlim_at) | 
| 63713 | 703 | |
| 704 | lemma filterlim_atI: | |
| 705 | assumes "filterlim f (nhds c) F" | |
| 706 | assumes "eventually (\<lambda>x. f x \<noteq> c) F" | |
| 707 | shows "filterlim f (at c) F" | |
| 708 | using assms by (intro filterlim_at_withinI) simp_all | |
| 709 | ||
| 51473 | 710 | lemma (in topological_space) topological_tendstoI: | 
| 61973 | 711 | "(\<And>S. open S \<Longrightarrow> l \<in> S \<Longrightarrow> eventually (\<lambda>x. f x \<in> S) F) \<Longrightarrow> (f \<longlongrightarrow> l) F" | 
| 63494 | 712 | by (auto simp: tendsto_def) | 
| 51471 | 713 | |
| 51473 | 714 | lemma (in topological_space) topological_tendstoD: | 
| 61973 | 715 | "(f \<longlongrightarrow> l) F \<Longrightarrow> open S \<Longrightarrow> l \<in> S \<Longrightarrow> eventually (\<lambda>x. f x \<in> S) F" | 
| 63494 | 716 | by (auto simp: tendsto_def) | 
| 51471 | 717 | |
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 718 | lemma (in order_topology) order_tendsto_iff: | 
| 61973 | 719 | "(f \<longlongrightarrow> x) F \<longleftrightarrow> (\<forall>l<x. eventually (\<lambda>x. l < f x) F) \<and> (\<forall>u>x. eventually (\<lambda>x. f x < u) F)" | 
| 63494 | 720 | by (auto simp: nhds_order filterlim_inf filterlim_INF filterlim_principal) | 
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 721 | |
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 722 | lemma (in order_topology) order_tendstoI: | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 723 | "(\<And>a. a < y \<Longrightarrow> eventually (\<lambda>x. a < f x) F) \<Longrightarrow> (\<And>a. y < a \<Longrightarrow> eventually (\<lambda>x. f x < a) F) \<Longrightarrow> | 
| 61973 | 724 | (f \<longlongrightarrow> y) F" | 
| 63494 | 725 | by (auto simp: order_tendsto_iff) | 
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 726 | |
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 727 | lemma (in order_topology) order_tendstoD: | 
| 61973 | 728 | assumes "(f \<longlongrightarrow> y) F" | 
| 51471 | 729 | shows "a < y \<Longrightarrow> eventually (\<lambda>x. a < f x) F" | 
| 730 | and "y < a \<Longrightarrow> eventually (\<lambda>x. f x < a) F" | |
| 63494 | 731 | using assms by (auto simp: order_tendsto_iff) | 
| 51471 | 732 | |
| 61973 | 733 | lemma tendsto_bot [simp]: "(f \<longlongrightarrow> a) bot" | 
| 63494 | 734 | by (simp add: tendsto_def) | 
| 51471 | 735 | |
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 736 | lemma (in linorder_topology) tendsto_max: | 
| 61973 | 737 | assumes X: "(X \<longlongrightarrow> x) net" | 
| 63494 | 738 | and Y: "(Y \<longlongrightarrow> y) net" | 
| 61973 | 739 | shows "((\<lambda>x. max (X x) (Y x)) \<longlongrightarrow> max x y) net" | 
| 56949 | 740 | proof (rule order_tendstoI) | 
| 63494 | 741 | fix a | 
| 742 | assume "a < max x y" | |
| 56949 | 743 | then show "eventually (\<lambda>x. a < max (X x) (Y x)) net" | 
| 744 | using order_tendstoD(1)[OF X, of a] order_tendstoD(1)[OF Y, of a] | |
| 61810 | 745 | by (auto simp: less_max_iff_disj elim: eventually_mono) | 
| 56949 | 746 | next | 
| 63494 | 747 | fix a | 
| 748 | assume "max x y < a" | |
| 56949 | 749 | then show "eventually (\<lambda>x. max (X x) (Y x) < a) net" | 
| 750 | using order_tendstoD(2)[OF X, of a] order_tendstoD(2)[OF Y, of a] | |
| 751 | by (auto simp: eventually_conj_iff) | |
| 752 | qed | |
| 753 | ||
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 754 | lemma (in linorder_topology) tendsto_min: | 
| 61973 | 755 | assumes X: "(X \<longlongrightarrow> x) net" | 
| 63494 | 756 | and Y: "(Y \<longlongrightarrow> y) net" | 
| 61973 | 757 | shows "((\<lambda>x. min (X x) (Y x)) \<longlongrightarrow> min x y) net" | 
| 56949 | 758 | proof (rule order_tendstoI) | 
| 63494 | 759 | fix a | 
| 760 | assume "a < min x y" | |
| 56949 | 761 | then show "eventually (\<lambda>x. a < min (X x) (Y x)) net" | 
| 762 | using order_tendstoD(1)[OF X, of a] order_tendstoD(1)[OF Y, of a] | |
| 763 | by (auto simp: eventually_conj_iff) | |
| 764 | next | |
| 63494 | 765 | fix a | 
| 766 | assume "min x y < a" | |
| 56949 | 767 | then show "eventually (\<lambda>x. min (X x) (Y x) < a) net" | 
| 768 | using order_tendstoD(2)[OF X, of a] order_tendstoD(2)[OF Y, of a] | |
| 61810 | 769 | by (auto simp: min_less_iff_disj elim: eventually_mono) | 
| 56949 | 770 | qed | 
| 771 | ||
| 61973 | 772 | lemma tendsto_ident_at [tendsto_intros, simp, intro]: "((\<lambda>x. x) \<longlongrightarrow> a) (at a within s)" | 
| 63494 | 773 | by (auto simp: tendsto_def eventually_at_topological) | 
| 51471 | 774 | |
| 61973 | 775 | lemma (in topological_space) tendsto_const [tendsto_intros, simp, intro]: "((\<lambda>x. k) \<longlongrightarrow> k) F" | 
| 51471 | 776 | by (simp add: tendsto_def) | 
| 777 | ||
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 778 | lemma (in t2_space) tendsto_unique: | 
| 63494 | 779 | assumes "F \<noteq> bot" | 
| 780 | and "(f \<longlongrightarrow> a) F" | |
| 781 | and "(f \<longlongrightarrow> b) F" | |
| 51471 | 782 | shows "a = b" | 
| 783 | proof (rule ccontr) | |
| 784 | assume "a \<noteq> b" | |
| 785 |   obtain U V where "open U" "open V" "a \<in> U" "b \<in> V" "U \<inter> V = {}"
 | |
| 60758 | 786 | using hausdorff [OF \<open>a \<noteq> b\<close>] by fast | 
| 51471 | 787 | have "eventually (\<lambda>x. f x \<in> U) F" | 
| 61973 | 788 | using \<open>(f \<longlongrightarrow> a) F\<close> \<open>open U\<close> \<open>a \<in> U\<close> by (rule topological_tendstoD) | 
| 51471 | 789 | moreover | 
| 790 | have "eventually (\<lambda>x. f x \<in> V) F" | |
| 61973 | 791 | using \<open>(f \<longlongrightarrow> b) F\<close> \<open>open V\<close> \<open>b \<in> V\<close> by (rule topological_tendstoD) | 
| 51471 | 792 | ultimately | 
| 793 | have "eventually (\<lambda>x. False) F" | |
| 794 | proof eventually_elim | |
| 795 | case (elim x) | |
| 63494 | 796 | then have "f x \<in> U \<inter> V" by simp | 
| 60758 | 797 |     with \<open>U \<inter> V = {}\<close> show ?case by simp
 | 
| 51471 | 798 | qed | 
| 60758 | 799 | with \<open>\<not> trivial_limit F\<close> show "False" | 
| 51471 | 800 | by (simp add: trivial_limit_def) | 
| 801 | qed | |
| 802 | ||
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 803 | lemma (in t2_space) tendsto_const_iff: | 
| 63494 | 804 | fixes a b :: 'a | 
| 805 | assumes "\<not> trivial_limit F" | |
| 806 | shows "((\<lambda>x. a) \<longlongrightarrow> b) F \<longleftrightarrow> a = b" | |
| 58729 
e8ecc79aee43
add tendsto_const and tendsto_ident_at as simp and intro rules
 hoelzl parents: 
57953diff
changeset | 807 | by (auto intro!: tendsto_unique [OF assms tendsto_const]) | 
| 51471 | 808 | |
| 809 | lemma increasing_tendsto: | |
| 810 | fixes f :: "_ \<Rightarrow> 'a::order_topology" | |
| 811 | assumes bdd: "eventually (\<lambda>n. f n \<le> l) F" | |
| 63494 | 812 | and en: "\<And>x. x < l \<Longrightarrow> eventually (\<lambda>n. x < f n) F" | 
| 61973 | 813 | shows "(f \<longlongrightarrow> l) F" | 
| 61810 | 814 | using assms by (intro order_tendstoI) (auto elim!: eventually_mono) | 
| 51471 | 815 | |
| 816 | lemma decreasing_tendsto: | |
| 817 | fixes f :: "_ \<Rightarrow> 'a::order_topology" | |
| 818 | assumes bdd: "eventually (\<lambda>n. l \<le> f n) F" | |
| 63494 | 819 | and en: "\<And>x. l < x \<Longrightarrow> eventually (\<lambda>n. f n < x) F" | 
| 61973 | 820 | shows "(f \<longlongrightarrow> l) F" | 
| 61810 | 821 | using assms by (intro order_tendstoI) (auto elim!: eventually_mono) | 
| 51471 | 822 | |
| 823 | lemma tendsto_sandwich: | |
| 824 | fixes f g h :: "'a \<Rightarrow> 'b::order_topology" | |
| 825 | assumes ev: "eventually (\<lambda>n. f n \<le> g n) net" "eventually (\<lambda>n. g n \<le> h n) net" | |
| 61973 | 826 | assumes lim: "(f \<longlongrightarrow> c) net" "(h \<longlongrightarrow> c) net" | 
| 827 | shows "(g \<longlongrightarrow> c) net" | |
| 51471 | 828 | proof (rule order_tendstoI) | 
| 63494 | 829 | fix a | 
| 830 | show "a < c \<Longrightarrow> eventually (\<lambda>x. a < g x) net" | |
| 51471 | 831 | using order_tendstoD[OF lim(1), of a] ev by (auto elim: eventually_elim2) | 
| 832 | next | |
| 63494 | 833 | fix a | 
| 834 | show "c < a \<Longrightarrow> eventually (\<lambda>x. g x < a) net" | |
| 51471 | 835 | using order_tendstoD[OF lim(2), of a] ev by (auto elim: eventually_elim2) | 
| 836 | qed | |
| 837 | ||
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 838 | lemma limit_frequently_eq: | 
| 63494 | 839 | fixes c d :: "'a::t1_space" | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 840 | assumes "F \<noteq> bot" | 
| 63494 | 841 | and "frequently (\<lambda>x. f x = c) F" | 
| 842 | and "(f \<longlongrightarrow> d) F" | |
| 843 | shows "d = c" | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 844 | proof (rule ccontr) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 845 | assume "d \<noteq> c" | 
| 63494 | 846 | from t1_space[OF this] obtain U where "open U" "d \<in> U" "c \<notin> U" | 
| 847 | by blast | |
| 848 | with assms have "eventually (\<lambda>x. f x \<in> U) F" | |
| 849 | unfolding tendsto_def by blast | |
| 850 | then have "eventually (\<lambda>x. f x \<noteq> c) F" | |
| 851 | by eventually_elim (insert \<open>c \<notin> U\<close>, blast) | |
| 852 | with assms(2) show False | |
| 853 | unfolding frequently_def by contradiction | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 854 | qed | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 855 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 856 | lemma tendsto_imp_eventually_ne: | 
| 63494 | 857 | fixes c :: "'a::t1_space" | 
| 64394 | 858 | assumes "(f \<longlongrightarrow> c) F" "c \<noteq> c'" | 
| 63494 | 859 | shows "eventually (\<lambda>z. f z \<noteq> c') F" | 
| 64394 | 860 | proof (cases "F=bot") | 
| 861 | case True | |
| 862 | thus ?thesis by auto | |
| 863 | next | |
| 864 | case False | |
| 865 | show ?thesis | |
| 866 | proof (rule ccontr) | |
| 867 | assume "\<not> eventually (\<lambda>z. f z \<noteq> c') F" | |
| 868 | then have "frequently (\<lambda>z. f z = c') F" | |
| 869 | by (simp add: frequently_def) | |
| 870 | from limit_frequently_eq[OF False this \<open>(f \<longlongrightarrow> c) F\<close>] and \<open>c \<noteq> c'\<close> show False | |
| 871 | by contradiction | |
| 872 | qed | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 873 | qed | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 874 | |
| 51471 | 875 | lemma tendsto_le: | 
| 876 | fixes f g :: "'a \<Rightarrow> 'b::linorder_topology" | |
| 877 | assumes F: "\<not> trivial_limit F" | |
| 63494 | 878 | and x: "(f \<longlongrightarrow> x) F" | 
| 879 | and y: "(g \<longlongrightarrow> y) F" | |
| 880 | and ev: "eventually (\<lambda>x. g x \<le> f x) F" | |
| 51471 | 881 | shows "y \<le> x" | 
| 882 | proof (rule ccontr) | |
| 883 | assume "\<not> y \<le> x" | |
| 884 |   with less_separate[of x y] obtain a b where xy: "x < a" "b < y" "{..<a} \<inter> {b<..} = {}"
 | |
| 885 | by (auto simp: not_le) | |
| 886 | then have "eventually (\<lambda>x. f x < a) F" "eventually (\<lambda>x. b < g x) F" | |
| 887 | using x y by (auto intro: order_tendstoD) | |
| 888 | with ev have "eventually (\<lambda>x. False) F" | |
| 889 | by eventually_elim (insert xy, fastforce) | |
| 890 | with F show False | |
| 891 | by (simp add: eventually_False) | |
| 892 | qed | |
| 893 | ||
| 63952 
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63713diff
changeset | 894 | lemma tendsto_lowerbound: | 
| 51471 | 895 | fixes f :: "'a \<Rightarrow> 'b::linorder_topology" | 
| 63952 
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63713diff
changeset | 896 | assumes x: "(f \<longlongrightarrow> x) F" | 
| 
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63713diff
changeset | 897 | and ev: "eventually (\<lambda>i. a \<le> f i) F" | 
| 
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63713diff
changeset | 898 | and F: "\<not> trivial_limit F" | 
| 51471 | 899 | shows "a \<le> x" | 
| 63494 | 900 | using F x tendsto_const ev by (rule tendsto_le) | 
| 51471 | 901 | |
| 63952 
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63713diff
changeset | 902 | lemma tendsto_upperbound: | 
| 56289 | 903 | fixes f :: "'a \<Rightarrow> 'b::linorder_topology" | 
| 63952 
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63713diff
changeset | 904 | assumes x: "(f \<longlongrightarrow> x) F" | 
| 
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63713diff
changeset | 905 | and ev: "eventually (\<lambda>i. a \<ge> f i) F" | 
| 
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63713diff
changeset | 906 | and F: "\<not> trivial_limit F" | 
| 56289 | 907 | shows "a \<ge> x" | 
| 63494 | 908 | by (rule tendsto_le [OF F tendsto_const x ev]) | 
| 56289 | 909 | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 910 | |
| 60758 | 911 | subsubsection \<open>Rules about @{const Lim}\<close>
 | 
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 912 | |
| 63494 | 913 | lemma tendsto_Lim: "\<not> trivial_limit net \<Longrightarrow> (f \<longlongrightarrow> l) net \<Longrightarrow> Lim net f = l" | 
| 914 | unfolding Lim_def using tendsto_unique [of net f] by auto | |
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 915 | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 916 | lemma Lim_ident_at: "\<not> trivial_limit (at x within s) \<Longrightarrow> Lim (at x within s) (\<lambda>x. x) = x" | 
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 917 | by (rule tendsto_Lim[OF _ tendsto_ident_at]) auto | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 918 | |
| 51471 | 919 | lemma filterlim_at_bot_at_right: | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57025diff
changeset | 920 | fixes f :: "'a::linorder_topology \<Rightarrow> 'b::linorder" | 
| 51471 | 921 | assumes mono: "\<And>x y. Q x \<Longrightarrow> Q y \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y" | 
| 63494 | 922 | and bij: "\<And>x. P x \<Longrightarrow> f (g x) = x" "\<And>x. P x \<Longrightarrow> Q (g x)" | 
| 923 | and Q: "eventually Q (at_right a)" | |
| 924 | and bound: "\<And>b. Q b \<Longrightarrow> a < b" | |
| 925 | and P: "eventually P at_bot" | |
| 51471 | 926 | shows "filterlim f at_bot (at_right a)" | 
| 927 | proof - | |
| 928 | from P obtain x where x: "\<And>y. y \<le> x \<Longrightarrow> P y" | |
| 929 | unfolding eventually_at_bot_linorder by auto | |
| 930 | show ?thesis | |
| 931 | proof (intro filterlim_at_bot_le[THEN iffD2] allI impI) | |
| 63494 | 932 | fix z | 
| 933 | assume "z \<le> x" | |
| 51471 | 934 | with x have "P z" by auto | 
| 935 | have "eventually (\<lambda>x. x \<le> g z) (at_right a)" | |
| 60758 | 936 | using bound[OF bij(2)[OF \<open>P z\<close>]] | 
| 63494 | 937 | unfolding eventually_at_right[OF bound[OF bij(2)[OF \<open>P z\<close>]]] | 
| 938 | by (auto intro!: exI[of _ "g z"]) | |
| 51471 | 939 | with Q show "eventually (\<lambda>x. f x \<le> z) (at_right a)" | 
| 60758 | 940 | by eventually_elim (metis bij \<open>P z\<close> mono) | 
| 51471 | 941 | qed | 
| 942 | qed | |
| 943 | ||
| 944 | lemma filterlim_at_top_at_left: | |
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57025diff
changeset | 945 | fixes f :: "'a::linorder_topology \<Rightarrow> 'b::linorder" | 
| 51471 | 946 | assumes mono: "\<And>x y. Q x \<Longrightarrow> Q y \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y" | 
| 63494 | 947 | and bij: "\<And>x. P x \<Longrightarrow> f (g x) = x" "\<And>x. P x \<Longrightarrow> Q (g x)" | 
| 948 | and Q: "eventually Q (at_left a)" | |
| 949 | and bound: "\<And>b. Q b \<Longrightarrow> b < a" | |
| 950 | and P: "eventually P at_top" | |
| 51471 | 951 | shows "filterlim f at_top (at_left a)" | 
| 952 | proof - | |
| 953 | from P obtain x where x: "\<And>y. x \<le> y \<Longrightarrow> P y" | |
| 954 | unfolding eventually_at_top_linorder by auto | |
| 955 | show ?thesis | |
| 956 | proof (intro filterlim_at_top_ge[THEN iffD2] allI impI) | |
| 63494 | 957 | fix z | 
| 958 | assume "x \<le> z" | |
| 51471 | 959 | with x have "P z" by auto | 
| 960 | have "eventually (\<lambda>x. g z \<le> x) (at_left a)" | |
| 60758 | 961 | using bound[OF bij(2)[OF \<open>P z\<close>]] | 
| 63494 | 962 | unfolding eventually_at_left[OF bound[OF bij(2)[OF \<open>P z\<close>]]] | 
| 963 | by (auto intro!: exI[of _ "g z"]) | |
| 51471 | 964 | with Q show "eventually (\<lambda>x. z \<le> f x) (at_left a)" | 
| 60758 | 965 | by eventually_elim (metis bij \<open>P z\<close> mono) | 
| 51471 | 966 | qed | 
| 967 | qed | |
| 968 | ||
| 969 | lemma filterlim_split_at: | |
| 63494 | 970 | "filterlim f F (at_left x) \<Longrightarrow> filterlim f F (at_right x) \<Longrightarrow> | 
| 971 | filterlim f F (at x)" | |
| 972 | for x :: "'a::linorder_topology" | |
| 51471 | 973 | by (subst at_eq_sup_left_right) (rule filterlim_sup) | 
| 974 | ||
| 975 | lemma filterlim_at_split: | |
| 63494 | 976 | "filterlim f F (at x) \<longleftrightarrow> filterlim f F (at_left x) \<and> filterlim f F (at_right x)" | 
| 977 | for x :: "'a::linorder_topology" | |
| 51471 | 978 | by (subst at_eq_sup_left_right) (simp add: filterlim_def filtermap_sup) | 
| 979 | ||
| 57025 | 980 | lemma eventually_nhds_top: | 
| 63494 | 981 |   fixes P :: "'a :: {order_top,linorder_topology} \<Rightarrow> bool"
 | 
| 982 | and b :: 'a | |
| 983 | assumes "b < top" | |
| 57025 | 984 | shows "eventually P (nhds top) \<longleftrightarrow> (\<exists>b<top. (\<forall>z. b < z \<longrightarrow> P z))" | 
| 985 | unfolding eventually_nhds | |
| 986 | proof safe | |
| 63494 | 987 | fix S :: "'a set" | 
| 988 | assume "open S" "top \<in> S" | |
| 60758 | 989 | note open_left[OF this \<open>b < top\<close>] | 
| 57025 | 990 | moreover assume "\<forall>s\<in>S. P s" | 
| 991 | ultimately show "\<exists>b<top. \<forall>z>b. P z" | |
| 992 | by (auto simp: subset_eq Ball_def) | |
| 993 | next | |
| 63494 | 994 | fix b | 
| 995 | assume "b < top" "\<forall>z>b. P z" | |
| 57025 | 996 | then show "\<exists>S. open S \<and> top \<in> S \<and> (\<forall>xa\<in>S. P xa)" | 
| 997 |     by (intro exI[of _ "{b <..}"]) auto
 | |
| 998 | qed | |
| 51471 | 999 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1000 | lemma tendsto_at_within_iff_tendsto_nhds: | 
| 61973 | 1001 | "(g \<longlongrightarrow> g l) (at l within S) \<longleftrightarrow> (g \<longlongrightarrow> g l) (inf (nhds l) (principal S))" | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1002 | unfolding tendsto_def eventually_at_filter eventually_inf_principal | 
| 61810 | 1003 | by (intro ext all_cong imp_cong) (auto elim!: eventually_mono) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1004 | |
| 63494 | 1005 | |
| 60758 | 1006 | subsection \<open>Limits on sequences\<close> | 
| 51471 | 1007 | |
| 1008 | abbreviation (in topological_space) | |
| 63494 | 1009 |   LIMSEQ :: "[nat \<Rightarrow> 'a, 'a] \<Rightarrow> bool"  ("((_)/ \<longlonglongrightarrow> (_))" [60, 60] 60)
 | 
| 1010 | where "X \<longlonglongrightarrow> L \<equiv> (X \<longlongrightarrow> L) sequentially" | |
| 1011 | ||
| 1012 | abbreviation (in t2_space) lim :: "(nat \<Rightarrow> 'a) \<Rightarrow> 'a" | |
| 1013 | where "lim X \<equiv> Lim sequentially X" | |
| 1014 | ||
| 1015 | definition (in topological_space) convergent :: "(nat \<Rightarrow> 'a) \<Rightarrow> bool" | |
| 1016 | where "convergent X = (\<exists>L. X \<longlonglongrightarrow> L)" | |
| 51471 | 1017 | |
| 61969 | 1018 | lemma lim_def: "lim X = (THE L. X \<longlonglongrightarrow> L)" | 
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1019 | unfolding Lim_def .. | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1020 | |
| 63494 | 1021 | |
| 60758 | 1022 | subsubsection \<open>Monotone sequences and subsequences\<close> | 
| 51471 | 1023 | |
| 63494 | 1024 | text \<open> | 
| 1025 | Definition of monotonicity. | |
| 1026 | The use of disjunction here complicates proofs considerably. | |
| 1027 | One alternative is to add a Boolean argument to indicate the direction. | |
| 1028 | Another is to develop the notions of increasing and decreasing first. | |
| 1029 | \<close> | |
| 1030 | definition monoseq :: "(nat \<Rightarrow> 'a::order) \<Rightarrow> bool" | |
| 1031 | where "monoseq X \<longleftrightarrow> (\<forall>m. \<forall>n\<ge>m. X m \<le> X n) \<or> (\<forall>m. \<forall>n\<ge>m. X n \<le> X m)" | |
| 1032 | ||
| 1033 | abbreviation incseq :: "(nat \<Rightarrow> 'a::order) \<Rightarrow> bool" | |
| 1034 | where "incseq X \<equiv> mono X" | |
| 56020 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
55945diff
changeset | 1035 | |
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
55945diff
changeset | 1036 | lemma incseq_def: "incseq X \<longleftrightarrow> (\<forall>m. \<forall>n\<ge>m. X n \<ge> X m)" | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
55945diff
changeset | 1037 | unfolding mono_def .. | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
55945diff
changeset | 1038 | |
| 63494 | 1039 | abbreviation decseq :: "(nat \<Rightarrow> 'a::order) \<Rightarrow> bool" | 
| 1040 | where "decseq X \<equiv> antimono X" | |
| 56020 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
55945diff
changeset | 1041 | |
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
55945diff
changeset | 1042 | lemma decseq_def: "decseq X \<longleftrightarrow> (\<forall>m. \<forall>n\<ge>m. X n \<le> X m)" | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
55945diff
changeset | 1043 | unfolding antimono_def .. | 
| 51471 | 1044 | |
| 63494 | 1045 | text \<open>Definition of subsequence.\<close> | 
| 1046 | definition subseq :: "(nat \<Rightarrow> nat) \<Rightarrow> bool" | |
| 1047 | where "subseq f \<longleftrightarrow> (\<forall>m. \<forall>n>m. f m < f n)" | |
| 1048 | ||
| 1049 | lemma incseq_SucI: "(\<And>n. X n \<le> X (Suc n)) \<Longrightarrow> incseq X" | |
| 1050 | using lift_Suc_mono_le[of X] by (auto simp: incseq_def) | |
| 1051 | ||
| 1052 | lemma incseqD: "incseq f \<Longrightarrow> i \<le> j \<Longrightarrow> f i \<le> f j" | |
| 51471 | 1053 | by (auto simp: incseq_def) | 
| 1054 | ||
| 1055 | lemma incseq_SucD: "incseq A \<Longrightarrow> A i \<le> A (Suc i)" | |
| 1056 | using incseqD[of A i "Suc i"] by auto | |
| 1057 | ||
| 1058 | lemma incseq_Suc_iff: "incseq f \<longleftrightarrow> (\<forall>n. f n \<le> f (Suc n))" | |
| 1059 | by (auto intro: incseq_SucI dest: incseq_SucD) | |
| 1060 | ||
| 1061 | lemma incseq_const[simp, intro]: "incseq (\<lambda>x. k)" | |
| 1062 | unfolding incseq_def by auto | |
| 1063 | ||
| 63494 | 1064 | lemma decseq_SucI: "(\<And>n. X (Suc n) \<le> X n) \<Longrightarrow> decseq X" | 
| 1065 | using order.lift_Suc_mono_le[OF dual_order, of X] by (auto simp: decseq_def) | |
| 1066 | ||
| 1067 | lemma decseqD: "decseq f \<Longrightarrow> i \<le> j \<Longrightarrow> f j \<le> f i" | |
| 51471 | 1068 | by (auto simp: decseq_def) | 
| 1069 | ||
| 1070 | lemma decseq_SucD: "decseq A \<Longrightarrow> A (Suc i) \<le> A i" | |
| 1071 | using decseqD[of A i "Suc i"] by auto | |
| 1072 | ||
| 1073 | lemma decseq_Suc_iff: "decseq f \<longleftrightarrow> (\<forall>n. f (Suc n) \<le> f n)" | |
| 1074 | by (auto intro: decseq_SucI dest: decseq_SucD) | |
| 1075 | ||
| 1076 | lemma decseq_const[simp, intro]: "decseq (\<lambda>x. k)" | |
| 1077 | unfolding decseq_def by auto | |
| 1078 | ||
| 1079 | lemma monoseq_iff: "monoseq X \<longleftrightarrow> incseq X \<or> decseq X" | |
| 1080 | unfolding monoseq_def incseq_def decseq_def .. | |
| 1081 | ||
| 63494 | 1082 | lemma monoseq_Suc: "monoseq X \<longleftrightarrow> (\<forall>n. X n \<le> X (Suc n)) \<or> (\<forall>n. X (Suc n) \<le> X n)" | 
| 51471 | 1083 | unfolding monoseq_iff incseq_Suc_iff decseq_Suc_iff .. | 
| 1084 | ||
| 63494 | 1085 | lemma monoI1: "\<forall>m. \<forall>n \<ge> m. X m \<le> X n \<Longrightarrow> monoseq X" | 
| 1086 | by (simp add: monoseq_def) | |
| 1087 | ||
| 1088 | lemma monoI2: "\<forall>m. \<forall>n \<ge> m. X n \<le> X m \<Longrightarrow> monoseq X" | |
| 1089 | by (simp add: monoseq_def) | |
| 1090 | ||
| 1091 | lemma mono_SucI1: "\<forall>n. X n \<le> X (Suc n) \<Longrightarrow> monoseq X" | |
| 1092 | by (simp add: monoseq_Suc) | |
| 1093 | ||
| 1094 | lemma mono_SucI2: "\<forall>n. X (Suc n) \<le> X n \<Longrightarrow> monoseq X" | |
| 1095 | by (simp add: monoseq_Suc) | |
| 51471 | 1096 | |
| 1097 | lemma monoseq_minus: | |
| 1098 | fixes a :: "nat \<Rightarrow> 'a::ordered_ab_group_add" | |
| 1099 | assumes "monoseq a" | |
| 1100 | shows "monoseq (\<lambda> n. - a n)" | |
| 63494 | 1101 | proof (cases "\<forall>m. \<forall>n \<ge> m. a m \<le> a n") | 
| 51471 | 1102 | case True | 
| 63494 | 1103 | then have "\<forall>m. \<forall>n \<ge> m. - a n \<le> - a m" by auto | 
| 1104 | then show ?thesis by (rule monoI2) | |
| 51471 | 1105 | next | 
| 1106 | case False | |
| 63494 | 1107 | then have "\<forall>m. \<forall>n \<ge> m. - a m \<le> - a n" | 
| 1108 | using \<open>monoseq a\<close>[unfolded monoseq_def] by auto | |
| 1109 | then show ?thesis by (rule monoI1) | |
| 51471 | 1110 | qed | 
| 1111 | ||
| 63494 | 1112 | |
| 1113 | text \<open>Subsequence (alternative definition, (e.g. Hoskins)\<close> | |
| 1114 | ||
| 1115 | lemma subseq_Suc_iff: "subseq f \<longleftrightarrow> (\<forall>n. f n < f (Suc n))" | |
| 1116 | apply (simp add: subseq_def) | |
| 1117 | apply (auto dest!: less_imp_Suc_add) | |
| 1118 | apply (induct_tac k) | |
| 1119 | apply (auto intro: less_trans) | |
| 1120 | done | |
| 51471 | 1121 | |
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63301diff
changeset | 1122 | lemma subseq_add: "subseq (\<lambda>n. n + k)" | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63301diff
changeset | 1123 | by (auto simp: subseq_Suc_iff) | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63301diff
changeset | 1124 | |
| 63494 | 1125 | text \<open>For any sequence, there is a monotonic subsequence.\<close> | 
| 51471 | 1126 | lemma seq_monosub: | 
| 63494 | 1127 | fixes s :: "nat \<Rightarrow> 'a::linorder" | 
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1128 | shows "\<exists>f. subseq f \<and> monoseq (\<lambda>n. (s (f n)))" | 
| 63494 | 1129 | proof (cases "\<forall>n. \<exists>p>n. \<forall>m\<ge>p. s m \<le> s p") | 
| 1130 | case True | |
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1131 | then have "\<exists>f. \<forall>n. (\<forall>m\<ge>f n. s m \<le> s (f n)) \<and> f n < f (Suc n)" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1132 | by (intro dependent_nat_choice) (auto simp: conj_commute) | 
| 63494 | 1133 | then obtain f where f: "subseq f" and mono: "\<And>n m. f n \<le> m \<Longrightarrow> s m \<le> s (f n)" | 
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1134 | by (auto simp: subseq_Suc_iff) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1135 | then have "incseq f" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1136 | unfolding subseq_Suc_iff incseq_Suc_iff by (auto intro: less_imp_le) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1137 | then have "monoseq (\<lambda>n. s (f n))" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1138 | by (auto simp add: incseq_def intro!: mono monoI2) | 
| 63494 | 1139 | with f show ?thesis | 
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1140 | by auto | 
| 51471 | 1141 | next | 
| 63494 | 1142 | case False | 
| 1143 | then obtain N where N: "p > N \<Longrightarrow> \<exists>m>p. s p < s m" for p | |
| 1144 | by (force simp: not_le le_less) | |
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1145 | have "\<exists>f. \<forall>n. N < f n \<and> f n < f (Suc n) \<and> s (f n) \<le> s (f (Suc n))" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1146 | proof (intro dependent_nat_choice) | 
| 63494 | 1147 | fix x | 
| 1148 | assume "N < x" with N[of x] | |
| 1149 | show "\<exists>y>N. x < y \<and> s x \<le> s y" | |
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1150 | by (auto intro: less_trans) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1151 | qed auto | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1152 | then show ?thesis | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1153 | by (auto simp: monoseq_iff incseq_Suc_iff subseq_Suc_iff) | 
| 51471 | 1154 | qed | 
| 1155 | ||
| 63494 | 1156 | lemma seq_suble: | 
| 1157 | assumes sf: "subseq f" | |
| 1158 | shows "n \<le> f n" | |
| 1159 | proof (induct n) | |
| 1160 | case 0 | |
| 1161 | show ?case by simp | |
| 51471 | 1162 | next | 
| 1163 | case (Suc n) | |
| 63494 | 1164 | with sf [unfolded subseq_Suc_iff, rule_format, of n] have "n < f (Suc n)" | 
| 1165 | by arith | |
| 1166 | then show ?case by arith | |
| 51471 | 1167 | qed | 
| 1168 | ||
| 1169 | lemma eventually_subseq: | |
| 1170 | "subseq r \<Longrightarrow> eventually P sequentially \<Longrightarrow> eventually (\<lambda>n. P (r n)) sequentially" | |
| 1171 | unfolding eventually_sequentially by (metis seq_suble le_trans) | |
| 1172 | ||
| 51473 | 1173 | lemma not_eventually_sequentiallyD: | 
| 63494 | 1174 | assumes "\<not> eventually P sequentially" | 
| 51473 | 1175 | shows "\<exists>r. subseq r \<and> (\<forall>n. \<not> P (r n))" | 
| 1176 | proof - | |
| 63494 | 1177 | from assms have "\<forall>n. \<exists>m\<ge>n. \<not> P m" | 
| 51473 | 1178 | unfolding eventually_sequentially by (simp add: not_less) | 
| 1179 | then obtain r where "\<And>n. r n \<ge> n" "\<And>n. \<not> P (r n)" | |
| 1180 | by (auto simp: choice_iff) | |
| 1181 | then show ?thesis | |
| 1182 | by (auto intro!: exI[of _ "\<lambda>n. r (((Suc \<circ> r) ^^ Suc n) 0)"] | |
| 1183 | simp: less_eq_Suc_le subseq_Suc_iff) | |
| 1184 | qed | |
| 1185 | ||
| 51471 | 1186 | lemma filterlim_subseq: "subseq f \<Longrightarrow> filterlim f sequentially sequentially" | 
| 1187 | unfolding filterlim_iff by (metis eventually_subseq) | |
| 1188 | ||
| 1189 | lemma subseq_o: "subseq r \<Longrightarrow> subseq s \<Longrightarrow> subseq (r \<circ> s)" | |
| 1190 | unfolding subseq_def by simp | |
| 1191 | ||
| 63494 | 1192 | lemma subseq_mono: "subseq r \<Longrightarrow> m < n \<Longrightarrow> r m < r n" | 
| 1193 | by (auto simp: subseq_def) | |
| 51471 | 1194 | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 1195 | lemma subseq_imp_inj_on: "subseq g \<Longrightarrow> inj_on g A" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 1196 | proof (rule inj_onI) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 1197 | assume g: "subseq g" | 
| 63494 | 1198 | fix x y | 
| 1199 | assume "g x = g y" | |
| 62102 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 1200 | with subseq_mono[OF g, of x y] subseq_mono[OF g, of y x] show "x = y" | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 1201 | by (cases x y rule: linorder_cases) simp_all | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 1202 | qed | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 1203 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 1204 | lemma subseq_strict_mono: "subseq g \<Longrightarrow> strict_mono g" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 1205 | by (intro strict_monoI subseq_mono[of g]) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 1206 | |
| 51471 | 1207 | lemma incseq_imp_monoseq: "incseq X \<Longrightarrow> monoseq X" | 
| 1208 | by (simp add: incseq_def monoseq_def) | |
| 1209 | ||
| 1210 | lemma decseq_imp_monoseq: "decseq X \<Longrightarrow> monoseq X" | |
| 1211 | by (simp add: decseq_def monoseq_def) | |
| 1212 | ||
| 63494 | 1213 | lemma decseq_eq_incseq: "decseq X = incseq (\<lambda>n. - X n)" | 
| 1214 | for X :: "nat \<Rightarrow> 'a::ordered_ab_group_add" | |
| 51471 | 1215 | by (simp add: decseq_def incseq_def) | 
| 1216 | ||
| 1217 | lemma INT_decseq_offset: | |
| 1218 | assumes "decseq F" | |
| 1219 |   shows "(\<Inter>i. F i) = (\<Inter>i\<in>{n..}. F i)"
 | |
| 1220 | proof safe | |
| 63494 | 1221 | fix x i | 
| 1222 |   assume x: "x \<in> (\<Inter>i\<in>{n..}. F i)"
 | |
| 51471 | 1223 | show "x \<in> F i" | 
| 1224 | proof cases | |
| 1225 | from x have "x \<in> F n" by auto | |
| 60758 | 1226 | also assume "i \<le> n" with \<open>decseq F\<close> have "F n \<subseteq> F i" | 
| 51471 | 1227 | unfolding decseq_def by simp | 
| 1228 | finally show ?thesis . | |
| 1229 | qed (insert x, simp) | |
| 1230 | qed auto | |
| 1231 | ||
| 63494 | 1232 | lemma LIMSEQ_const_iff: "(\<lambda>n. k) \<longlonglongrightarrow> l \<longleftrightarrow> k = l" | 
| 1233 | for k l :: "'a::t2_space" | |
| 51471 | 1234 | using trivial_limit_sequentially by (rule tendsto_const_iff) | 
| 1235 | ||
| 63494 | 1236 | lemma LIMSEQ_SUP: "incseq X \<Longrightarrow> X \<longlonglongrightarrow> (SUP i. X i :: 'a::{complete_linorder,linorder_topology})"
 | 
| 51471 | 1237 | by (intro increasing_tendsto) | 
| 63494 | 1238 | (auto simp: SUP_upper less_SUP_iff incseq_def eventually_sequentially intro: less_le_trans) | 
| 1239 | ||
| 1240 | lemma LIMSEQ_INF: "decseq X \<Longrightarrow> X \<longlonglongrightarrow> (INF i. X i :: 'a::{complete_linorder,linorder_topology})"
 | |
| 51471 | 1241 | by (intro decreasing_tendsto) | 
| 63494 | 1242 | (auto simp: INF_lower INF_less_iff decseq_def eventually_sequentially intro: le_less_trans) | 
| 1243 | ||
| 1244 | lemma LIMSEQ_ignore_initial_segment: "f \<longlonglongrightarrow> a \<Longrightarrow> (\<lambda>n. f (n + k)) \<longlonglongrightarrow> a" | |
| 1245 | unfolding tendsto_def by (subst eventually_sequentially_seg[where k=k]) | |
| 1246 | ||
| 1247 | lemma LIMSEQ_offset: "(\<lambda>n. f (n + k)) \<longlonglongrightarrow> a \<Longrightarrow> f \<longlonglongrightarrow> a" | |
| 51474 
1e9e68247ad1
generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
 hoelzl parents: 
51473diff
changeset | 1248 | unfolding tendsto_def | 
| 
1e9e68247ad1
generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
 hoelzl parents: 
51473diff
changeset | 1249 | by (subst (asm) eventually_sequentially_seg[where k=k]) | 
| 51471 | 1250 | |
| 61969 | 1251 | lemma LIMSEQ_Suc: "f \<longlonglongrightarrow> l \<Longrightarrow> (\<lambda>n. f (Suc n)) \<longlonglongrightarrow> l" | 
| 63494 | 1252 | by (drule LIMSEQ_ignore_initial_segment [where k="Suc 0"]) simp | 
| 51471 | 1253 | |
| 61969 | 1254 | lemma LIMSEQ_imp_Suc: "(\<lambda>n. f (Suc n)) \<longlonglongrightarrow> l \<Longrightarrow> f \<longlonglongrightarrow> l" | 
| 63494 | 1255 | by (rule LIMSEQ_offset [where k="Suc 0"]) simp | 
| 51471 | 1256 | |
| 61969 | 1257 | lemma LIMSEQ_Suc_iff: "(\<lambda>n. f (Suc n)) \<longlonglongrightarrow> l = f \<longlonglongrightarrow> l" | 
| 63494 | 1258 | by (blast intro: LIMSEQ_imp_Suc LIMSEQ_Suc) | 
| 1259 | ||
| 1260 | lemma LIMSEQ_unique: "X \<longlonglongrightarrow> a \<Longrightarrow> X \<longlonglongrightarrow> b \<Longrightarrow> a = b" | |
| 1261 | for a b :: "'a::t2_space" | |
| 51471 | 1262 | using trivial_limit_sequentially by (rule tendsto_unique) | 
| 1263 | ||
| 63494 | 1264 | lemma LIMSEQ_le_const: "X \<longlonglongrightarrow> x \<Longrightarrow> \<exists>N. \<forall>n\<ge>N. a \<le> X n \<Longrightarrow> a \<le> x" | 
| 1265 | for a x :: "'a::linorder_topology" | |
| 63952 
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63713diff
changeset | 1266 | by (simp add: eventually_at_top_linorder tendsto_lowerbound) | 
| 51471 | 1267 | |
| 63494 | 1268 | lemma LIMSEQ_le: "X \<longlonglongrightarrow> x \<Longrightarrow> Y \<longlonglongrightarrow> y \<Longrightarrow> \<exists>N. \<forall>n\<ge>N. X n \<le> Y n \<Longrightarrow> x \<le> y" | 
| 1269 | for x y :: "'a::linorder_topology" | |
| 51471 | 1270 | using tendsto_le[of sequentially Y y X x] by (simp add: eventually_sequentially) | 
| 1271 | ||
| 63494 | 1272 | lemma LIMSEQ_le_const2: "X \<longlonglongrightarrow> x \<Longrightarrow> \<exists>N. \<forall>n\<ge>N. X n \<le> a \<Longrightarrow> x \<le> a" | 
| 1273 | for a x :: "'a::linorder_topology" | |
| 58729 
e8ecc79aee43
add tendsto_const and tendsto_ident_at as simp and intro rules
 hoelzl parents: 
57953diff
changeset | 1274 | by (rule LIMSEQ_le[of X x "\<lambda>n. a"]) auto | 
| 51471 | 1275 | |
| 63494 | 1276 | lemma convergentD: "convergent X \<Longrightarrow> \<exists>L. X \<longlonglongrightarrow> L" | 
| 1277 | by (simp add: convergent_def) | |
| 1278 | ||
| 1279 | lemma convergentI: "X \<longlonglongrightarrow> L \<Longrightarrow> convergent X" | |
| 1280 | by (auto simp add: convergent_def) | |
| 1281 | ||
| 1282 | lemma convergent_LIMSEQ_iff: "convergent X \<longleftrightarrow> X \<longlonglongrightarrow> lim X" | |
| 1283 | by (auto intro: theI LIMSEQ_unique simp add: convergent_def lim_def) | |
| 51471 | 1284 | |
| 1285 | lemma convergent_const: "convergent (\<lambda>n. c)" | |
| 63494 | 1286 | by (rule convergentI) (rule tendsto_const) | 
| 51471 | 1287 | |
| 1288 | lemma monoseq_le: | |
| 63494 | 1289 | "monoseq a \<Longrightarrow> a \<longlonglongrightarrow> x \<Longrightarrow> | 
| 1290 | (\<forall>n. a n \<le> x) \<and> (\<forall>m. \<forall>n\<ge>m. a m \<le> a n) \<or> | |
| 1291 | (\<forall>n. x \<le> a n) \<and> (\<forall>m. \<forall>n\<ge>m. a n \<le> a m)" | |
| 1292 | for x :: "'a::linorder_topology" | |
| 51471 | 1293 | by (metis LIMSEQ_le_const LIMSEQ_le_const2 decseq_def incseq_def monoseq_iff) | 
| 1294 | ||
| 63494 | 1295 | lemma LIMSEQ_subseq_LIMSEQ: "X \<longlonglongrightarrow> L \<Longrightarrow> subseq f \<Longrightarrow> (X \<circ> f) \<longlonglongrightarrow> L" | 
| 1296 | unfolding comp_def by (rule filterlim_compose [of X, OF _ filterlim_subseq]) | |
| 1297 | ||
| 1298 | lemma convergent_subseq_convergent: "convergent X \<Longrightarrow> subseq f \<Longrightarrow> convergent (X \<circ> f)" | |
| 1299 | by (auto simp: convergent_def intro: LIMSEQ_subseq_LIMSEQ) | |
| 1300 | ||
| 1301 | lemma limI: "X \<longlonglongrightarrow> L \<Longrightarrow> lim X = L" | |
| 57276 | 1302 | by (rule tendsto_Lim) (rule trivial_limit_sequentially) | 
| 51471 | 1303 | |
| 63494 | 1304 | lemma lim_le: "convergent f \<Longrightarrow> (\<And>n. f n \<le> x) \<Longrightarrow> lim f \<le> x" | 
| 1305 | for x :: "'a::linorder_topology" | |
| 51471 | 1306 | using LIMSEQ_le_const2[of f "lim f" x] by (simp add: convergent_LIMSEQ_iff) | 
| 1307 | ||
| 62217 | 1308 | lemma lim_const [simp]: "lim (\<lambda>m. a) = a" | 
| 1309 | by (simp add: limI) | |
| 1310 | ||
| 63494 | 1311 | |
| 1312 | subsubsection \<open>Increasing and Decreasing Series\<close> | |
| 1313 | ||
| 1314 | lemma incseq_le: "incseq X \<Longrightarrow> X \<longlonglongrightarrow> L \<Longrightarrow> X n \<le> L" | |
| 1315 | for L :: "'a::linorder_topology" | |
| 51471 | 1316 | by (metis incseq_def LIMSEQ_le_const) | 
| 1317 | ||
| 63494 | 1318 | lemma decseq_le: "decseq X \<Longrightarrow> X \<longlonglongrightarrow> L \<Longrightarrow> L \<le> X n" | 
| 1319 | for L :: "'a::linorder_topology" | |
| 51471 | 1320 | by (metis decseq_def LIMSEQ_le_const2) | 
| 1321 | ||
| 63494 | 1322 | |
| 60758 | 1323 | subsection \<open>First countable topologies\<close> | 
| 51473 | 1324 | |
| 1325 | class first_countable_topology = topological_space + | |
| 1326 | assumes first_countable_basis: | |
| 1327 | "\<exists>A::nat \<Rightarrow> 'a set. (\<forall>i. x \<in> A i \<and> open (A i)) \<and> (\<forall>S. open S \<and> x \<in> S \<longrightarrow> (\<exists>i. A i \<subseteq> S))" | |
| 1328 | ||
| 1329 | lemma (in first_countable_topology) countable_basis_at_decseq: | |
| 1330 | obtains A :: "nat \<Rightarrow> 'a set" where | |
| 1331 | "\<And>i. open (A i)" "\<And>i. x \<in> (A i)" | |
| 1332 | "\<And>S. open S \<Longrightarrow> x \<in> S \<Longrightarrow> eventually (\<lambda>i. A i \<subseteq> S) sequentially" | |
| 1333 | proof atomize_elim | |
| 63494 | 1334 | from first_countable_basis[of x] obtain A :: "nat \<Rightarrow> 'a set" | 
| 1335 | where nhds: "\<And>i. open (A i)" "\<And>i. x \<in> A i" | |
| 1336 | and incl: "\<And>S. open S \<Longrightarrow> x \<in> S \<Longrightarrow> \<exists>i. A i \<subseteq> S" | |
| 1337 | by auto | |
| 63040 | 1338 | define F where "F n = (\<Inter>i\<le>n. A i)" for n | 
| 51473 | 1339 | show "\<exists>A. (\<forall>i. open (A i)) \<and> (\<forall>i. x \<in> A i) \<and> | 
| 63494 | 1340 | (\<forall>S. open S \<longrightarrow> x \<in> S \<longrightarrow> eventually (\<lambda>i. A i \<subseteq> S) sequentially)" | 
| 51473 | 1341 | proof (safe intro!: exI[of _ F]) | 
| 1342 | fix i | |
| 63494 | 1343 | show "open (F i)" | 
| 1344 | using nhds(1) by (auto simp: F_def) | |
| 1345 | show "x \<in> F i" | |
| 1346 | using nhds(2) by (auto simp: F_def) | |
| 51473 | 1347 | next | 
| 63494 | 1348 | fix S | 
| 1349 | assume "open S" "x \<in> S" | |
| 1350 | from incl[OF this] obtain i where "F i \<subseteq> S" | |
| 1351 | unfolding F_def by auto | |
| 51473 | 1352 | moreover have "\<And>j. i \<le> j \<Longrightarrow> F j \<subseteq> F i" | 
| 63171 | 1353 | by (simp add: Inf_superset_mono F_def image_mono) | 
| 51473 | 1354 | ultimately show "eventually (\<lambda>i. F i \<subseteq> S) sequentially" | 
| 1355 | by (auto simp: eventually_sequentially) | |
| 1356 | qed | |
| 1357 | qed | |
| 1358 | ||
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1359 | lemma (in first_countable_topology) nhds_countable: | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1360 | obtains X :: "nat \<Rightarrow> 'a set" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1361 | where "decseq X" "\<And>n. open (X n)" "\<And>n. x \<in> X n" "nhds x = (INF n. principal (X n))" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1362 | proof - | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1363 | from first_countable_basis obtain A :: "nat \<Rightarrow> 'a set" | 
| 63494 | 1364 | where *: "\<And>n. x \<in> A n" "\<And>n. open (A n)" "\<And>S. open S \<Longrightarrow> x \<in> S \<Longrightarrow> \<exists>i. A i \<subseteq> S" | 
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1365 | by metis | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1366 | show thesis | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1367 | proof | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1368 | show "decseq (\<lambda>n. \<Inter>i\<le>n. A i)" | 
| 63171 | 1369 | by (simp add: antimono_iff_le_Suc atMost_Suc) | 
| 63494 | 1370 | show "x \<in> (\<Inter>i\<le>n. A i)" "\<And>n. open (\<Inter>i\<le>n. A i)" for n | 
| 1371 | using * by auto | |
| 60585 | 1372 | show "nhds x = (INF n. principal (\<Inter>i\<le>n. A i))" | 
| 63494 | 1373 | using * | 
| 1374 | unfolding nhds_def | |
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62217diff
changeset | 1375 | apply - | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62217diff
changeset | 1376 | apply (rule INF_eq) | 
| 63494 | 1377 | apply simp_all | 
| 1378 | apply fastforce | |
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62217diff
changeset | 1379 | apply (intro exI [of _ "\<Inter>i\<le>n. A i" for n] conjI open_INT) | 
| 63494 | 1380 | apply auto | 
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1381 | done | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1382 | qed | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1383 | qed | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1384 | |
| 51473 | 1385 | lemma (in first_countable_topology) countable_basis: | 
| 1386 | obtains A :: "nat \<Rightarrow> 'a set" where | |
| 1387 | "\<And>i. open (A i)" "\<And>i. x \<in> A i" | |
| 61969 | 1388 | "\<And>F. (\<forall>n. F n \<in> A n) \<Longrightarrow> F \<longlonglongrightarrow> x" | 
| 51473 | 1389 | proof atomize_elim | 
| 63494 | 1390 | obtain A :: "nat \<Rightarrow> 'a set" where *: | 
| 53381 | 1391 | "\<And>i. open (A i)" | 
| 1392 | "\<And>i. x \<in> A i" | |
| 1393 | "\<And>S. open S \<Longrightarrow> x \<in> S \<Longrightarrow> eventually (\<lambda>i. A i \<subseteq> S) sequentially" | |
| 1394 | by (rule countable_basis_at_decseq) blast | |
| 63494 | 1395 | have "eventually (\<lambda>n. F n \<in> S) sequentially" | 
| 1396 | if "\<forall>n. F n \<in> A n" "open S" "x \<in> S" for F S | |
| 1397 | using *(3)[of S] that by (auto elim: eventually_mono simp: subset_eq) | |
| 1398 | with * show "\<exists>A. (\<forall>i. open (A i)) \<and> (\<forall>i. x \<in> A i) \<and> (\<forall>F. (\<forall>n. F n \<in> A n) \<longrightarrow> F \<longlonglongrightarrow> x)" | |
| 51473 | 1399 | by (intro exI[of _ A]) (auto simp: tendsto_def) | 
| 1400 | qed | |
| 1401 | ||
| 1402 | lemma (in first_countable_topology) sequentially_imp_eventually_nhds_within: | |
| 61969 | 1403 | assumes "\<forall>f. (\<forall>n. f n \<in> s) \<and> f \<longlonglongrightarrow> a \<longrightarrow> eventually (\<lambda>n. P (f n)) sequentially" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1404 | shows "eventually P (inf (nhds a) (principal s))" | 
| 51473 | 1405 | proof (rule ccontr) | 
| 63494 | 1406 | obtain A :: "nat \<Rightarrow> 'a set" where *: | 
| 53381 | 1407 | "\<And>i. open (A i)" | 
| 1408 | "\<And>i. a \<in> A i" | |
| 61969 | 1409 | "\<And>F. \<forall>n. F n \<in> A n \<Longrightarrow> F \<longlonglongrightarrow> a" | 
| 53381 | 1410 | by (rule countable_basis) blast | 
| 1411 | assume "\<not> ?thesis" | |
| 63494 | 1412 | with * have "\<exists>F. \<forall>n. F n \<in> s \<and> F n \<in> A n \<and> \<not> P (F n)" | 
| 1413 | unfolding eventually_inf_principal eventually_nhds | |
| 1414 | by (intro choice) fastforce | |
| 1415 | then obtain F where F: "\<forall>n. F n \<in> s" and "\<forall>n. F n \<in> A n" and F': "\<forall>n. \<not> P (F n)" | |
| 53381 | 1416 | by blast | 
| 63494 | 1417 | with * have "F \<longlonglongrightarrow> a" | 
| 1418 | by auto | |
| 1419 | then have "eventually (\<lambda>n. P (F n)) sequentially" | |
| 1420 | using assms F by simp | |
| 1421 | then show False | |
| 1422 | by (simp add: F') | |
| 51473 | 1423 | qed | 
| 1424 | ||
| 1425 | lemma (in first_countable_topology) eventually_nhds_within_iff_sequentially: | |
| 62102 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 1426 | "eventually P (inf (nhds a) (principal s)) \<longleftrightarrow> | 
| 61969 | 1427 | (\<forall>f. (\<forall>n. f n \<in> s) \<and> f \<longlonglongrightarrow> a \<longrightarrow> eventually (\<lambda>n. P (f n)) sequentially)" | 
| 51473 | 1428 | proof (safe intro!: sequentially_imp_eventually_nhds_within) | 
| 62102 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 1429 | assume "eventually P (inf (nhds a) (principal s))" | 
| 51473 | 1430 | then obtain S where "open S" "a \<in> S" "\<forall>x\<in>S. x \<in> s \<longrightarrow> P x" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1431 | by (auto simp: eventually_inf_principal eventually_nhds) | 
| 63494 | 1432 | moreover | 
| 1433 | fix f | |
| 1434 | assume "\<forall>n. f n \<in> s" "f \<longlonglongrightarrow> a" | |
| 51473 | 1435 | ultimately show "eventually (\<lambda>n. P (f n)) sequentially" | 
| 61810 | 1436 | by (auto dest!: topological_tendstoD elim: eventually_mono) | 
| 51473 | 1437 | qed | 
| 1438 | ||
| 1439 | lemma (in first_countable_topology) eventually_nhds_iff_sequentially: | |
| 61969 | 1440 | "eventually P (nhds a) \<longleftrightarrow> (\<forall>f. f \<longlonglongrightarrow> a \<longrightarrow> eventually (\<lambda>n. P (f n)) sequentially)" | 
| 51473 | 1441 | using eventually_nhds_within_iff_sequentially[of P a UNIV] by simp | 
| 1442 | ||
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1443 | lemma tendsto_at_iff_sequentially: | 
| 63494 | 1444 |   "(f \<longlongrightarrow> a) (at x within s) \<longleftrightarrow> (\<forall>X. (\<forall>i. X i \<in> s - {x}) \<longrightarrow> X \<longlonglongrightarrow> x \<longrightarrow> ((f \<circ> X) \<longlonglongrightarrow> a))"
 | 
| 1445 | for f :: "'a::first_countable_topology \<Rightarrow> _" | |
| 1446 | unfolding filterlim_def[of _ "nhds a"] le_filter_def eventually_filtermap | |
| 1447 | at_within_def eventually_nhds_within_iff_sequentially comp_def | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1448 | by metis | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1449 | |
| 64283 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64008diff
changeset | 1450 | lemma approx_from_above_dense_linorder: | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64008diff
changeset | 1451 |   fixes x::"'a::{dense_linorder, linorder_topology, first_countable_topology}"
 | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64008diff
changeset | 1452 | assumes "x < y" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64008diff
changeset | 1453 | shows "\<exists>u. (\<forall>n. u n > x) \<and> (u \<longlonglongrightarrow> x)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64008diff
changeset | 1454 | proof - | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64008diff
changeset | 1455 | obtain A :: "nat \<Rightarrow> 'a set" where A: "\<And>i. open (A i)" "\<And>i. x \<in> A i" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64008diff
changeset | 1456 | "\<And>F. (\<forall>n. F n \<in> A n) \<Longrightarrow> F \<longlonglongrightarrow> x" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64008diff
changeset | 1457 | by (metis first_countable_topology_class.countable_basis) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64008diff
changeset | 1458 | define u where "u = (\<lambda>n. SOME z. z \<in> A n \<and> z > x)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64008diff
changeset | 1459 | have "\<exists>z. z \<in> U \<and> x < z" if "x \<in> U" "open U" for U | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64008diff
changeset | 1460 | using open_right[OF `open U` `x \<in> U` `x < y`] | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64008diff
changeset | 1461 | by (meson atLeastLessThan_iff dense less_imp_le subset_eq) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64008diff
changeset | 1462 | then have *: "u n \<in> A n \<and> x < u n" for n | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64008diff
changeset | 1463 | using `x \<in> A n` `open (A n)` unfolding u_def by (metis (no_types, lifting) someI_ex) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64008diff
changeset | 1464 | then have "u \<longlonglongrightarrow> x" using A(3) by simp | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64008diff
changeset | 1465 | then show ?thesis using * by auto | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64008diff
changeset | 1466 | qed | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64008diff
changeset | 1467 | |
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64008diff
changeset | 1468 | lemma approx_from_below_dense_linorder: | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64008diff
changeset | 1469 |   fixes x::"'a::{dense_linorder, linorder_topology, first_countable_topology}"
 | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64008diff
changeset | 1470 | assumes "x > y" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64008diff
changeset | 1471 | shows "\<exists>u. (\<forall>n. u n < x) \<and> (u \<longlonglongrightarrow> x)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64008diff
changeset | 1472 | proof - | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64008diff
changeset | 1473 | obtain A :: "nat \<Rightarrow> 'a set" where A: "\<And>i. open (A i)" "\<And>i. x \<in> A i" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64008diff
changeset | 1474 | "\<And>F. (\<forall>n. F n \<in> A n) \<Longrightarrow> F \<longlonglongrightarrow> x" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64008diff
changeset | 1475 | by (metis first_countable_topology_class.countable_basis) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64008diff
changeset | 1476 | define u where "u = (\<lambda>n. SOME z. z \<in> A n \<and> z < x)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64008diff
changeset | 1477 | have "\<exists>z. z \<in> U \<and> z < x" if "x \<in> U" "open U" for U | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64008diff
changeset | 1478 | using open_left[OF `open U` `x \<in> U` `x > y`] | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64008diff
changeset | 1479 | by (meson dense greaterThanAtMost_iff less_imp_le subset_eq) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64008diff
changeset | 1480 | then have *: "u n \<in> A n \<and> u n < x" for n | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64008diff
changeset | 1481 | using `x \<in> A n` `open (A n)` unfolding u_def by (metis (no_types, lifting) someI_ex) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64008diff
changeset | 1482 | then have "u \<longlonglongrightarrow> x" using A(3) by simp | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64008diff
changeset | 1483 | then show ?thesis using * by auto | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64008diff
changeset | 1484 | qed | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64008diff
changeset | 1485 | |
| 63494 | 1486 | |
| 60758 | 1487 | subsection \<open>Function limit at a point\<close> | 
| 51471 | 1488 | |
| 63494 | 1489 | abbreviation LIM :: "('a::topological_space \<Rightarrow> 'b::topological_space) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool"
 | 
| 1490 |     ("((_)/ \<midarrow>(_)/\<rightarrow> (_))" [60, 0, 60] 60)
 | |
| 1491 | where "f \<midarrow>a\<rightarrow> L \<equiv> (f \<longlongrightarrow> L) (at a)" | |
| 51471 | 1492 | |
| 61976 | 1493 | lemma tendsto_within_open: "a \<in> S \<Longrightarrow> open S \<Longrightarrow> (f \<longlongrightarrow> l) (at a within S) \<longleftrightarrow> (f \<midarrow>a\<rightarrow> l)" | 
| 63494 | 1494 | by (simp add: tendsto_def at_within_open[where S = S]) | 
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1495 | |
| 62397 
5ae24f33d343
Substantial new material for multivariate analysis. Also removal of some duplicates.
 paulson <lp15@cam.ac.uk> parents: 
62381diff
changeset | 1496 | lemma tendsto_within_open_NO_MATCH: | 
| 63494 | 1497 | "a \<in> S \<Longrightarrow> NO_MATCH UNIV S \<Longrightarrow> open S \<Longrightarrow> (f \<longlongrightarrow> l)(at a within S) \<longleftrightarrow> (f \<longlongrightarrow> l)(at a)" | 
| 1498 | for f :: "'a::topological_space \<Rightarrow> 'b::topological_space" | |
| 1499 | using tendsto_within_open by blast | |
| 1500 | ||
| 1501 | lemma LIM_const_not_eq[tendsto_intros]: "k \<noteq> L \<Longrightarrow> \<not> (\<lambda>x. k) \<midarrow>a\<rightarrow> L" | |
| 1502 | for a :: "'a::perfect_space" and k L :: "'b::t2_space" | |
| 51471 | 1503 | by (simp add: tendsto_const_iff) | 
| 1504 | ||
| 1505 | lemmas LIM_not_zero = LIM_const_not_eq [where L = 0] | |
| 1506 | ||
| 63494 | 1507 | lemma LIM_const_eq: "(\<lambda>x. k) \<midarrow>a\<rightarrow> L \<Longrightarrow> k = L" | 
| 1508 | for a :: "'a::perfect_space" and k L :: "'b::t2_space" | |
| 51471 | 1509 | by (simp add: tendsto_const_iff) | 
| 1510 | ||
| 63494 | 1511 | lemma LIM_unique: "f \<midarrow>a\<rightarrow> L \<Longrightarrow> f \<midarrow>a\<rightarrow> M \<Longrightarrow> L = M" | 
| 1512 | for a :: "'a::perfect_space" and L M :: "'b::t2_space" | |
| 51471 | 1513 | using at_neq_bot by (rule tendsto_unique) | 
| 1514 | ||
| 63494 | 1515 | |
| 1516 | text \<open>Limits are equal for functions equal except at limit point.\<close> | |
| 1517 | lemma LIM_equal: "\<forall>x. x \<noteq> a \<longrightarrow> f x = g x \<Longrightarrow> (f \<midarrow>a\<rightarrow> l) \<longleftrightarrow> (g \<midarrow>a\<rightarrow> l)" | |
| 1518 | by (simp add: tendsto_def eventually_at_topological) | |
| 51471 | 1519 | |
| 61976 | 1520 | lemma LIM_cong: "a = b \<Longrightarrow> (\<And>x. x \<noteq> b \<Longrightarrow> f x = g x) \<Longrightarrow> l = m \<Longrightarrow> (f \<midarrow>a\<rightarrow> l) \<longleftrightarrow> (g \<midarrow>b\<rightarrow> m)" | 
| 51471 | 1521 | by (simp add: LIM_equal) | 
| 1522 | ||
| 61976 | 1523 | lemma LIM_cong_limit: "f \<midarrow>x\<rightarrow> L \<Longrightarrow> K = L \<Longrightarrow> f \<midarrow>x\<rightarrow> K" | 
| 51471 | 1524 | by simp | 
| 1525 | ||
| 63494 | 1526 | lemma tendsto_at_iff_tendsto_nhds: "g \<midarrow>l\<rightarrow> g l \<longleftrightarrow> (g \<longlongrightarrow> g l) (nhds l)" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1527 | unfolding tendsto_def eventually_at_filter | 
| 61810 | 1528 | by (intro ext all_cong imp_cong) (auto elim!: eventually_mono) | 
| 51471 | 1529 | |
| 63494 | 1530 | lemma tendsto_compose: "g \<midarrow>l\<rightarrow> g l \<Longrightarrow> (f \<longlongrightarrow> l) F \<Longrightarrow> ((\<lambda>x. g (f x)) \<longlongrightarrow> g l) F" | 
| 51471 | 1531 | unfolding tendsto_at_iff_tendsto_nhds by (rule filterlim_compose[of g]) | 
| 1532 | ||
| 63494 | 1533 | lemma LIM_o: "g \<midarrow>l\<rightarrow> g l \<Longrightarrow> f \<midarrow>a\<rightarrow> l \<Longrightarrow> (g \<circ> f) \<midarrow>a\<rightarrow> g l" | 
| 51471 | 1534 | unfolding o_def by (rule tendsto_compose) | 
| 1535 | ||
| 1536 | lemma tendsto_compose_eventually: | |
| 61976 | 1537 | "g \<midarrow>l\<rightarrow> m \<Longrightarrow> (f \<longlongrightarrow> l) F \<Longrightarrow> eventually (\<lambda>x. f x \<noteq> l) F \<Longrightarrow> ((\<lambda>x. g (f x)) \<longlongrightarrow> m) F" | 
| 51471 | 1538 | by (rule filterlim_compose[of g _ "at l"]) (auto simp add: filterlim_at) | 
| 1539 | ||
| 1540 | lemma LIM_compose_eventually: | |
| 63494 | 1541 | assumes "f \<midarrow>a\<rightarrow> b" | 
| 1542 | and "g \<midarrow>b\<rightarrow> c" | |
| 1543 | and "eventually (\<lambda>x. f x \<noteq> b) (at a)" | |
| 61976 | 1544 | shows "(\<lambda>x. g (f x)) \<midarrow>a\<rightarrow> c" | 
| 63494 | 1545 | using assms(2,1,3) by (rule tendsto_compose_eventually) | 
| 51471 | 1546 | |
| 61973 | 1547 | lemma tendsto_compose_filtermap: "((g \<circ> f) \<longlongrightarrow> T) F \<longleftrightarrow> (g \<longlongrightarrow> T) (filtermap f F)" | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1548 | by (simp add: filterlim_def filtermap_filtermap comp_def) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1549 | |
| 63494 | 1550 | |
| 1551 | subsubsection \<open>Relation of \<open>LIM\<close> and \<open>LIMSEQ\<close>\<close> | |
| 51473 | 1552 | |
| 1553 | lemma (in first_countable_topology) sequentially_imp_eventually_within: | |
| 61969 | 1554 | "(\<forall>f. (\<forall>n. f n \<in> s \<and> f n \<noteq> a) \<and> f \<longlonglongrightarrow> a \<longrightarrow> eventually (\<lambda>n. P (f n)) sequentially) \<Longrightarrow> | 
| 51473 | 1555 | eventually P (at a within s)" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1556 | unfolding at_within_def | 
| 51473 | 1557 | by (intro sequentially_imp_eventually_nhds_within) auto | 
| 1558 | ||
| 1559 | lemma (in first_countable_topology) sequentially_imp_eventually_at: | |
| 61969 | 1560 | "(\<forall>f. (\<forall>n. f n \<noteq> a) \<and> f \<longlonglongrightarrow> a \<longrightarrow> eventually (\<lambda>n. P (f n)) sequentially) \<Longrightarrow> eventually P (at a)" | 
| 63092 | 1561 | using sequentially_imp_eventually_within [where s=UNIV] by simp | 
| 51473 | 1562 | |
| 1563 | lemma LIMSEQ_SEQ_conv1: | |
| 1564 | fixes f :: "'a::topological_space \<Rightarrow> 'b::topological_space" | |
| 61976 | 1565 | assumes f: "f \<midarrow>a\<rightarrow> l" | 
| 61969 | 1566 | shows "\<forall>S. (\<forall>n. S n \<noteq> a) \<and> S \<longlonglongrightarrow> a \<longrightarrow> (\<lambda>n. f (S n)) \<longlonglongrightarrow> l" | 
| 51473 | 1567 | using tendsto_compose_eventually [OF f, where F=sequentially] by simp | 
| 1568 | ||
| 1569 | lemma LIMSEQ_SEQ_conv2: | |
| 1570 | fixes f :: "'a::first_countable_topology \<Rightarrow> 'b::topological_space" | |
| 61969 | 1571 | assumes "\<forall>S. (\<forall>n. S n \<noteq> a) \<and> S \<longlonglongrightarrow> a \<longrightarrow> (\<lambda>n. f (S n)) \<longlonglongrightarrow> l" | 
| 61976 | 1572 | shows "f \<midarrow>a\<rightarrow> l" | 
| 51473 | 1573 | using assms unfolding tendsto_def [where l=l] by (simp add: sequentially_imp_eventually_at) | 
| 1574 | ||
| 63494 | 1575 | lemma LIMSEQ_SEQ_conv: "(\<forall>S. (\<forall>n. S n \<noteq> a) \<and> S \<longlonglongrightarrow> a \<longrightarrow> (\<lambda>n. X (S n)) \<longlonglongrightarrow> L) \<longleftrightarrow> X \<midarrow>a\<rightarrow> L" | 
| 1576 | for a :: "'a::first_countable_topology" and L :: "'b::topological_space" | |
| 51473 | 1577 | using LIMSEQ_SEQ_conv2 LIMSEQ_SEQ_conv1 .. | 
| 1578 | ||
| 57025 | 1579 | lemma sequentially_imp_eventually_at_left: | 
| 63494 | 1580 |   fixes a :: "'a::{linorder_topology,first_countable_topology}"
 | 
| 57025 | 1581 | assumes b[simp]: "b < a" | 
| 63494 | 1582 | and *: "\<And>f. (\<And>n. b < f n) \<Longrightarrow> (\<And>n. f n < a) \<Longrightarrow> incseq f \<Longrightarrow> f \<longlonglongrightarrow> a \<Longrightarrow> | 
| 1583 | eventually (\<lambda>n. P (f n)) sequentially" | |
| 57025 | 1584 | shows "eventually P (at_left a)" | 
| 1585 | proof (safe intro!: sequentially_imp_eventually_within) | |
| 63494 | 1586 | fix X | 
| 1587 |   assume X: "\<forall>n. X n \<in> {..< a} \<and> X n \<noteq> a" "X \<longlonglongrightarrow> a"
 | |
| 57025 | 1588 | show "eventually (\<lambda>n. P (X n)) sequentially" | 
| 1589 | proof (rule ccontr) | |
| 63494 | 1590 | assume neg: "\<not> ?thesis" | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1591 | have "\<exists>s. \<forall>n. (\<not> P (X (s n)) \<and> b < X (s n)) \<and> (X (s n) \<le> X (s (Suc n)) \<and> Suc (s n) \<le> s (Suc n))" | 
| 63494 | 1592 | (is "\<exists>s. ?P s") | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1593 | proof (rule dependent_nat_choice) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1594 | have "\<not> eventually (\<lambda>n. b < X n \<longrightarrow> P (X n)) sequentially" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1595 | by (intro not_eventually_impI neg order_tendstoD(1) [OF X(2) b]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1596 | then show "\<exists>x. \<not> P (X x) \<and> b < X x" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1597 | by (auto dest!: not_eventuallyD) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1598 | next | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1599 | fix x n | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1600 | have "\<not> eventually (\<lambda>n. Suc x \<le> n \<longrightarrow> b < X n \<longrightarrow> X x < X n \<longrightarrow> P (X n)) sequentially" | 
| 63494 | 1601 | using X | 
| 1602 | by (intro not_eventually_impI order_tendstoD(1)[OF X(2)] eventually_ge_at_top neg) auto | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1603 | then show "\<exists>n. (\<not> P (X n) \<and> b < X n) \<and> (X x \<le> X n \<and> Suc x \<le> n)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1604 | by (auto dest!: not_eventuallyD) | 
| 57025 | 1605 | qed | 
| 63494 | 1606 | then obtain s where "?P s" .. | 
| 1607 | with X have "b < X (s n)" | |
| 1608 | and "X (s n) < a" | |
| 1609 | and "incseq (\<lambda>n. X (s n))" | |
| 1610 | and "(\<lambda>n. X (s n)) \<longlonglongrightarrow> a" | |
| 1611 | and "\<not> P (X (s n))" | |
| 1612 | for n | |
| 1613 | by (auto simp: subseq_Suc_iff Suc_le_eq incseq_Suc_iff | |
| 1614 | intro!: LIMSEQ_subseq_LIMSEQ[OF \<open>X \<longlonglongrightarrow> a\<close>, unfolded comp_def]) | |
| 1615 | from *[OF this(1,2,3,4)] this(5) show False | |
| 1616 | by auto | |
| 57025 | 1617 | qed | 
| 1618 | qed | |
| 1619 | ||
| 1620 | lemma tendsto_at_left_sequentially: | |
| 63494 | 1621 |   fixes a b :: "'b::{linorder_topology,first_countable_topology}"
 | 
| 57025 | 1622 | assumes "b < a" | 
| 63494 | 1623 | assumes *: "\<And>S. (\<And>n. S n < a) \<Longrightarrow> (\<And>n. b < S n) \<Longrightarrow> incseq S \<Longrightarrow> S \<longlonglongrightarrow> a \<Longrightarrow> | 
| 1624 | (\<lambda>n. X (S n)) \<longlonglongrightarrow> L" | |
| 61973 | 1625 | shows "(X \<longlongrightarrow> L) (at_left a)" | 
| 63494 | 1626 | using assms by (simp add: tendsto_def [where l=L] sequentially_imp_eventually_at_left) | 
| 57025 | 1627 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1628 | lemma sequentially_imp_eventually_at_right: | 
| 63494 | 1629 |   fixes a b :: "'a::{linorder_topology,first_countable_topology}"
 | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1630 | assumes b[simp]: "a < b" | 
| 63494 | 1631 | assumes *: "\<And>f. (\<And>n. a < f n) \<Longrightarrow> (\<And>n. f n < b) \<Longrightarrow> decseq f \<Longrightarrow> f \<longlonglongrightarrow> a \<Longrightarrow> | 
| 1632 | eventually (\<lambda>n. P (f n)) sequentially" | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1633 | shows "eventually P (at_right a)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1634 | proof (safe intro!: sequentially_imp_eventually_within) | 
| 63494 | 1635 | fix X | 
| 1636 |   assume X: "\<forall>n. X n \<in> {a <..} \<and> X n \<noteq> a" "X \<longlonglongrightarrow> a"
 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1637 | show "eventually (\<lambda>n. P (X n)) sequentially" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1638 | proof (rule ccontr) | 
| 63494 | 1639 | assume neg: "\<not> ?thesis" | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1640 | have "\<exists>s. \<forall>n. (\<not> P (X (s n)) \<and> X (s n) < b) \<and> (X (s (Suc n)) \<le> X (s n) \<and> Suc (s n) \<le> s (Suc n))" | 
| 63494 | 1641 | (is "\<exists>s. ?P s") | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1642 | proof (rule dependent_nat_choice) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1643 | have "\<not> eventually (\<lambda>n. X n < b \<longrightarrow> P (X n)) sequentially" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1644 | by (intro not_eventually_impI neg order_tendstoD(2) [OF X(2) b]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1645 | then show "\<exists>x. \<not> P (X x) \<and> X x < b" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1646 | by (auto dest!: not_eventuallyD) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1647 | next | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1648 | fix x n | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1649 | have "\<not> eventually (\<lambda>n. Suc x \<le> n \<longrightarrow> X n < b \<longrightarrow> X n < X x \<longrightarrow> P (X n)) sequentially" | 
| 63494 | 1650 | using X | 
| 1651 | by (intro not_eventually_impI order_tendstoD(2)[OF X(2)] eventually_ge_at_top neg) auto | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1652 | then show "\<exists>n. (\<not> P (X n) \<and> X n < b) \<and> (X n \<le> X x \<and> Suc x \<le> n)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1653 | by (auto dest!: not_eventuallyD) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1654 | qed | 
| 63494 | 1655 | then obtain s where "?P s" .. | 
| 1656 | with X have "a < X (s n)" | |
| 1657 | and "X (s n) < b" | |
| 1658 | and "decseq (\<lambda>n. X (s n))" | |
| 1659 | and "(\<lambda>n. X (s n)) \<longlonglongrightarrow> a" | |
| 1660 | and "\<not> P (X (s n))" | |
| 1661 | for n | |
| 1662 | by (auto simp: subseq_Suc_iff Suc_le_eq decseq_Suc_iff | |
| 1663 | intro!: LIMSEQ_subseq_LIMSEQ[OF \<open>X \<longlonglongrightarrow> a\<close>, unfolded comp_def]) | |
| 1664 | from *[OF this(1,2,3,4)] this(5) show False | |
| 1665 | by auto | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1666 | qed | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1667 | qed | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1668 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1669 | lemma tendsto_at_right_sequentially: | 
| 60172 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60150diff
changeset | 1670 |   fixes a :: "_ :: {linorder_topology, first_countable_topology}"
 | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1671 | assumes "a < b" | 
| 63494 | 1672 | and *: "\<And>S. (\<And>n. a < S n) \<Longrightarrow> (\<And>n. S n < b) \<Longrightarrow> decseq S \<Longrightarrow> S \<longlonglongrightarrow> a \<Longrightarrow> | 
| 1673 | (\<lambda>n. X (S n)) \<longlonglongrightarrow> L" | |
| 61973 | 1674 | shows "(X \<longlongrightarrow> L) (at_right a)" | 
| 63494 | 1675 | using assms by (simp add: tendsto_def [where l=L] sequentially_imp_eventually_at_right) | 
| 1676 | ||
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1677 | |
| 60758 | 1678 | subsection \<open>Continuity\<close> | 
| 51471 | 1679 | |
| 60758 | 1680 | subsubsection \<open>Continuity on a set\<close> | 
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1681 | |
| 63494 | 1682 | definition continuous_on :: "'a set \<Rightarrow> ('a::topological_space \<Rightarrow> 'b::topological_space) \<Rightarrow> bool"
 | 
| 1683 | where "continuous_on s f \<longleftrightarrow> (\<forall>x\<in>s. (f \<longlongrightarrow> f x) (at x within s))" | |
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1684 | |
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1685 | lemma continuous_on_cong [cong]: | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1686 | "s = t \<Longrightarrow> (\<And>x. x \<in> t \<Longrightarrow> f x = g x) \<Longrightarrow> continuous_on s f \<longleftrightarrow> continuous_on t g" | 
| 63494 | 1687 | unfolding continuous_on_def | 
| 1688 | by (intro ball_cong filterlim_cong) (auto simp: eventually_at_filter) | |
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1689 | |
| 64008 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63952diff
changeset | 1690 | lemma continuous_on_strong_cong: | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63952diff
changeset | 1691 | "s = t \<Longrightarrow> (\<And>x. x \<in> t =simp=> f x = g x) \<Longrightarrow> continuous_on s f \<longleftrightarrow> continuous_on t g" | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63952diff
changeset | 1692 | unfolding simp_implies_def by (rule continuous_on_cong) | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63952diff
changeset | 1693 | |
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1694 | lemma continuous_on_topological: | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1695 | "continuous_on s f \<longleftrightarrow> | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1696 | (\<forall>x\<in>s. \<forall>B. open B \<longrightarrow> f x \<in> B \<longrightarrow> (\<exists>A. open A \<and> x \<in> A \<and> (\<forall>y\<in>s. y \<in> A \<longrightarrow> f y \<in> B)))" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1697 | unfolding continuous_on_def tendsto_def eventually_at_topological by metis | 
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1698 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1699 | lemma continuous_on_open_invariant: | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1700 | "continuous_on s f \<longleftrightarrow> (\<forall>B. open B \<longrightarrow> (\<exists>A. open A \<and> A \<inter> s = f -` B \<inter> s))" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1701 | proof safe | 
| 63494 | 1702 | fix B :: "'b set" | 
| 1703 | assume "continuous_on s f" "open B" | |
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1704 | then have "\<forall>x\<in>f -` B \<inter> s. (\<exists>A. open A \<and> x \<in> A \<and> s \<inter> A \<subseteq> f -` B)" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1705 | by (auto simp: continuous_on_topological subset_eq Ball_def imp_conjL) | 
| 53381 | 1706 | then obtain A where "\<forall>x\<in>f -` B \<inter> s. open (A x) \<and> x \<in> A x \<and> s \<inter> A x \<subseteq> f -` B" | 
| 1707 | unfolding bchoice_iff .. | |
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1708 | then show "\<exists>A. open A \<and> A \<inter> s = f -` B \<inter> s" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1709 | by (intro exI[of _ "\<Union>x\<in>f -` B \<inter> s. A x"]) auto | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1710 | next | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1711 | assume B: "\<forall>B. open B \<longrightarrow> (\<exists>A. open A \<and> A \<inter> s = f -` B \<inter> s)" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1712 | show "continuous_on s f" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1713 | unfolding continuous_on_topological | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1714 | proof safe | 
| 63494 | 1715 | fix x B | 
| 1716 | assume "x \<in> s" "open B" "f x \<in> B" | |
| 1717 | with B obtain A where A: "open A" "A \<inter> s = f -` B \<inter> s" | |
| 1718 | by auto | |
| 60758 | 1719 | with \<open>x \<in> s\<close> \<open>f x \<in> B\<close> show "\<exists>A. open A \<and> x \<in> A \<and> (\<forall>y\<in>s. y \<in> A \<longrightarrow> f y \<in> B)" | 
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1720 | by (intro exI[of _ A]) auto | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1721 | qed | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1722 | qed | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1723 | |
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1724 | lemma continuous_on_open_vimage: | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1725 | "open s \<Longrightarrow> continuous_on s f \<longleftrightarrow> (\<forall>B. open B \<longrightarrow> open (f -` B \<inter> s))" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1726 | unfolding continuous_on_open_invariant | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1727 | by (metis open_Int Int_absorb Int_commute[of s] Int_assoc[of _ _ s]) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1728 | |
| 55734 | 1729 | corollary continuous_imp_open_vimage: | 
| 1730 | assumes "continuous_on s f" "open s" "open B" "f -` B \<subseteq> s" | |
| 63494 | 1731 | shows "open (f -` B)" | 
| 1732 | by (metis assms continuous_on_open_vimage le_iff_inf) | |
| 55734 | 1733 | |
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 1734 | corollary open_vimage[continuous_intros]: | 
| 63494 | 1735 | assumes "open s" | 
| 1736 | and "continuous_on UNIV f" | |
| 55775 | 1737 | shows "open (f -` s)" | 
| 63494 | 1738 | using assms by (simp add: continuous_on_open_vimage [OF open_UNIV]) | 
| 55775 | 1739 | |
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1740 | lemma continuous_on_closed_invariant: | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1741 | "continuous_on s f \<longleftrightarrow> (\<forall>B. closed B \<longrightarrow> (\<exists>A. closed A \<and> A \<inter> s = f -` B \<inter> s))" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1742 | proof - | 
| 63494 | 1743 | have *: "(\<And>A. P A \<longleftrightarrow> Q (- A)) \<Longrightarrow> (\<forall>A. P A) \<longleftrightarrow> (\<forall>A. Q A)" | 
| 1744 | for P Q :: "'b set \<Rightarrow> bool" | |
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1745 | by (metis double_compl) | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1746 | show ?thesis | 
| 63494 | 1747 | unfolding continuous_on_open_invariant | 
| 1748 | by (intro *) (auto simp: open_closed[symmetric]) | |
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1749 | qed | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1750 | |
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1751 | lemma continuous_on_closed_vimage: | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1752 | "closed s \<Longrightarrow> continuous_on s f \<longleftrightarrow> (\<forall>B. closed B \<longrightarrow> closed (f -` B \<inter> s))" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1753 | unfolding continuous_on_closed_invariant | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1754 | by (metis closed_Int Int_absorb Int_commute[of s] Int_assoc[of _ _ s]) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1755 | |
| 61426 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61342diff
changeset | 1756 | corollary closed_vimage_Int[continuous_intros]: | 
| 63494 | 1757 | assumes "closed s" | 
| 1758 | and "continuous_on t f" | |
| 1759 | and t: "closed t" | |
| 61426 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61342diff
changeset | 1760 | shows "closed (f -` s \<inter> t)" | 
| 63494 | 1761 | using assms by (simp add: continuous_on_closed_vimage [OF t]) | 
| 61426 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61342diff
changeset | 1762 | |
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 1763 | corollary closed_vimage[continuous_intros]: | 
| 63494 | 1764 | assumes "closed s" | 
| 1765 | and "continuous_on UNIV f" | |
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 1766 | shows "closed (f -` s)" | 
| 61426 
d53db136e8fd
new material on path_component_sets, inside, outside, etc. And more default simprules
 paulson <lp15@cam.ac.uk> parents: 
61342diff
changeset | 1767 | using closed_vimage_Int [OF assms] by simp | 
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 1768 | |
| 62843 
313d3b697c9a
Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 1769 | lemma continuous_on_empty [simp]: "continuous_on {} f"
 | 
| 61907 
f0c894ab18c9
Liouville theorem, Fundamental Theorem of Algebra, etc.
 paulson <lp15@cam.ac.uk> parents: 
61810diff
changeset | 1770 | by (simp add: continuous_on_def) | 
| 
f0c894ab18c9
Liouville theorem, Fundamental Theorem of Algebra, etc.
 paulson <lp15@cam.ac.uk> parents: 
61810diff
changeset | 1771 | |
| 62843 
313d3b697c9a
Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 1772 | lemma continuous_on_sing [simp]: "continuous_on {x} f"
 | 
| 61907 
f0c894ab18c9
Liouville theorem, Fundamental Theorem of Algebra, etc.
 paulson <lp15@cam.ac.uk> parents: 
61810diff
changeset | 1773 | by (simp add: continuous_on_def at_within_def) | 
| 
f0c894ab18c9
Liouville theorem, Fundamental Theorem of Algebra, etc.
 paulson <lp15@cam.ac.uk> parents: 
61810diff
changeset | 1774 | |
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1775 | lemma continuous_on_open_Union: | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1776 | "(\<And>s. s \<in> S \<Longrightarrow> open s) \<Longrightarrow> (\<And>s. s \<in> S \<Longrightarrow> continuous_on s f) \<Longrightarrow> continuous_on (\<Union>S) f" | 
| 63494 | 1777 | unfolding continuous_on_def | 
| 1778 | by safe (metis open_Union at_within_open UnionI) | |
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1779 | |
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1780 | lemma continuous_on_open_UN: | 
| 63494 | 1781 | "(\<And>s. s \<in> S \<Longrightarrow> open (A s)) \<Longrightarrow> (\<And>s. s \<in> S \<Longrightarrow> continuous_on (A s) f) \<Longrightarrow> | 
| 1782 | continuous_on (\<Union>s\<in>S. A s) f" | |
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62217diff
changeset | 1783 | by (rule continuous_on_open_Union) auto | 
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1784 | |
| 61204 | 1785 | lemma continuous_on_open_Un: | 
| 1786 | "open s \<Longrightarrow> open t \<Longrightarrow> continuous_on s f \<Longrightarrow> continuous_on t f \<Longrightarrow> continuous_on (s \<union> t) f" | |
| 1787 |   using continuous_on_open_Union [of "{s,t}"] by auto
 | |
| 1788 | ||
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1789 | lemma continuous_on_closed_Un: | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1790 | "closed s \<Longrightarrow> closed t \<Longrightarrow> continuous_on s f \<Longrightarrow> continuous_on t f \<Longrightarrow> continuous_on (s \<union> t) f" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1791 | by (auto simp add: continuous_on_closed_vimage closed_Un Int_Un_distrib) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1792 | |
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1793 | lemma continuous_on_If: | 
| 63494 | 1794 | assumes closed: "closed s" "closed t" | 
| 1795 | and cont: "continuous_on s f" "continuous_on t g" | |
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1796 | and P: "\<And>x. x \<in> s \<Longrightarrow> \<not> P x \<Longrightarrow> f x = g x" "\<And>x. x \<in> t \<Longrightarrow> P x \<Longrightarrow> f x = g x" | 
| 63494 | 1797 | shows "continuous_on (s \<union> t) (\<lambda>x. if P x then f x else g x)" | 
| 1798 | (is "continuous_on _ ?h") | |
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1799 | proof- | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1800 | from P have "\<forall>x\<in>s. f x = ?h x" "\<forall>x\<in>t. g x = ?h x" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1801 | by auto | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1802 | with cont have "continuous_on s ?h" "continuous_on t ?h" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1803 | by simp_all | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1804 | with closed show ?thesis | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1805 | by (rule continuous_on_closed_Un) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1806 | qed | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1807 | |
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 1808 | lemma continuous_on_id[continuous_intros]: "continuous_on s (\<lambda>x. x)" | 
| 58729 
e8ecc79aee43
add tendsto_const and tendsto_ident_at as simp and intro rules
 hoelzl parents: 
57953diff
changeset | 1809 | unfolding continuous_on_def by fast | 
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1810 | |
| 63301 | 1811 | lemma continuous_on_id'[continuous_intros]: "continuous_on s id" | 
| 1812 | unfolding continuous_on_def id_def by fast | |
| 1813 | ||
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 1814 | lemma continuous_on_const[continuous_intros]: "continuous_on s (\<lambda>x. c)" | 
| 58729 
e8ecc79aee43
add tendsto_const and tendsto_ident_at as simp and intro rules
 hoelzl parents: 
57953diff
changeset | 1815 | unfolding continuous_on_def by auto | 
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1816 | |
| 61738 
c4f6031f1310
New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1817 | lemma continuous_on_subset: "continuous_on s f \<Longrightarrow> t \<subseteq> s \<Longrightarrow> continuous_on t f" | 
| 
c4f6031f1310
New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1818 | unfolding continuous_on_def by (metis subset_eq tendsto_within_subset) | 
| 
c4f6031f1310
New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1819 | |
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 1820 | lemma continuous_on_compose[continuous_intros]: | 
| 63494 | 1821 | "continuous_on s f \<Longrightarrow> continuous_on (f ` s) g \<Longrightarrow> continuous_on s (g \<circ> f)" | 
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1822 | unfolding continuous_on_topological by simp metis | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1823 | |
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1824 | lemma continuous_on_compose2: | 
| 61738 
c4f6031f1310
New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1825 | "continuous_on t g \<Longrightarrow> continuous_on s f \<Longrightarrow> f ` s \<subseteq> t \<Longrightarrow> continuous_on s (\<lambda>x. g (f x))" | 
| 
c4f6031f1310
New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1826 | using continuous_on_compose[of s f g] continuous_on_subset by (force simp add: comp_def) | 
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1827 | |
| 60720 | 1828 | lemma continuous_on_generate_topology: | 
| 1829 | assumes *: "open = generate_topology X" | |
| 63494 | 1830 | and **: "\<And>B. B \<in> X \<Longrightarrow> \<exists>C. open C \<and> C \<inter> A = f -` B \<inter> A" | 
| 60720 | 1831 | shows "continuous_on A f" | 
| 1832 | unfolding continuous_on_open_invariant | |
| 1833 | proof safe | |
| 63494 | 1834 | fix B :: "'a set" | 
| 1835 | assume "open B" | |
| 1836 | then show "\<exists>C. open C \<and> C \<inter> A = f -` B \<inter> A" | |
| 60720 | 1837 | unfolding * | 
| 63494 | 1838 | proof induct | 
| 60720 | 1839 | case (UN K) | 
| 1840 | then obtain C where "\<And>k. k \<in> K \<Longrightarrow> open (C k)" "\<And>k. k \<in> K \<Longrightarrow> C k \<inter> A = f -` k \<inter> A" | |
| 1841 | by metis | |
| 1842 | then show ?case | |
| 1843 | by (intro exI[of _ "\<Union>k\<in>K. C k"]) blast | |
| 1844 | qed (auto intro: **) | |
| 1845 | qed | |
| 1846 | ||
| 1847 | lemma continuous_onI_mono: | |
| 63494 | 1848 |   fixes f :: "'a::linorder_topology \<Rightarrow> 'b::{dense_order,linorder_topology}"
 | 
| 60720 | 1849 | assumes "open (f`A)" | 
| 63494 | 1850 | and mono: "\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y" | 
| 60720 | 1851 | shows "continuous_on A f" | 
| 1852 | proof (rule continuous_on_generate_topology[OF open_generated_order], safe) | |
| 1853 | have monoD: "\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> f x < f y \<Longrightarrow> x < y" | |
| 1854 | by (auto simp: not_le[symmetric] mono) | |
| 63494 | 1855 | have "\<exists>x. x \<in> A \<and> f x < b \<and> a < x" if a: "a \<in> A" and fa: "f a < b" for a b | 
| 1856 | proof - | |
| 1857 |     obtain y where "f a < y" "{f a ..< y} \<subseteq> f`A"
 | |
| 1858 | using open_right[OF \<open>open (f`A)\<close>, of "f a" b] a fa | |
| 60720 | 1859 | by auto | 
| 63494 | 1860 | obtain z where z: "f a < z" "z < min b y" | 
| 60720 | 1861 | using dense[of "f a" "min b y"] \<open>f a < y\<close> \<open>f a < b\<close> by auto | 
| 63494 | 1862 | then obtain c where "z = f c" "c \<in> A" | 
| 60720 | 1863 |       using \<open>{f a ..< y} \<subseteq> f`A\<close>[THEN subsetD, of z] by (auto simp: less_imp_le)
 | 
| 63494 | 1864 | with a z show ?thesis | 
| 1865 | by (auto intro!: exI[of _ c] simp: monoD) | |
| 1866 | qed | |
| 60720 | 1867 |   then show "\<exists>C. open C \<and> C \<inter> A = f -` {..<b} \<inter> A" for b
 | 
| 1868 |     by (intro exI[of _ "(\<Union>x\<in>{x\<in>A. f x < b}. {..< x})"])
 | |
| 1869 | (auto intro: le_less_trans[OF mono] less_imp_le) | |
| 1870 | ||
| 63494 | 1871 | have "\<exists>x. x \<in> A \<and> b < f x \<and> x < a" if a: "a \<in> A" and fa: "b < f a" for a b | 
| 1872 | proof - | |
| 1873 | note a fa | |
| 60720 | 1874 | moreover | 
| 63494 | 1875 |     obtain y where "y < f a" "{y <.. f a} \<subseteq> f`A"
 | 
| 1876 | using open_left[OF \<open>open (f`A)\<close>, of "f a" b] a fa | |
| 60720 | 1877 | by auto | 
| 63494 | 1878 | then obtain z where z: "max b y < z" "z < f a" | 
| 60720 | 1879 | using dense[of "max b y" "f a"] \<open>y < f a\<close> \<open>b < f a\<close> by auto | 
| 63494 | 1880 | then obtain c where "z = f c" "c \<in> A" | 
| 60720 | 1881 |       using \<open>{y <.. f a} \<subseteq> f`A\<close>[THEN subsetD, of z] by (auto simp: less_imp_le)
 | 
| 63494 | 1882 | with a z show ?thesis | 
| 1883 | by (auto intro!: exI[of _ c] simp: monoD) | |
| 1884 | qed | |
| 60720 | 1885 |   then show "\<exists>C. open C \<and> C \<inter> A = f -` {b <..} \<inter> A" for b
 | 
| 1886 |     by (intro exI[of _ "(\<Union>x\<in>{x\<in>A. b < f x}. {x <..})"])
 | |
| 1887 | (auto intro: less_le_trans[OF _ mono] less_imp_le) | |
| 1888 | qed | |
| 1889 | ||
| 63494 | 1890 | |
| 60758 | 1891 | subsubsection \<open>Continuity at a point\<close> | 
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1892 | |
| 63494 | 1893 | definition continuous :: "'a::t2_space filter \<Rightarrow> ('a \<Rightarrow> 'b::topological_space) \<Rightarrow> bool"
 | 
| 1894 | where "continuous F f \<longleftrightarrow> (f \<longlongrightarrow> f (Lim F (\<lambda>x. x))) F" | |
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1895 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1896 | lemma continuous_bot[continuous_intros, simp]: "continuous bot f" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1897 | unfolding continuous_def by auto | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1898 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1899 | lemma continuous_trivial_limit: "trivial_limit net \<Longrightarrow> continuous net f" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1900 | by simp | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1901 | |
| 61973 | 1902 | lemma continuous_within: "continuous (at x within s) f \<longleftrightarrow> (f \<longlongrightarrow> f x) (at x within s)" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1903 | by (cases "trivial_limit (at x within s)") (auto simp add: Lim_ident_at continuous_def) | 
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1904 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1905 | lemma continuous_within_topological: | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1906 | "continuous (at x within s) f \<longleftrightarrow> | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1907 | (\<forall>B. open B \<longrightarrow> f x \<in> B \<longrightarrow> (\<exists>A. open A \<and> x \<in> A \<and> (\<forall>y\<in>s. y \<in> A \<longrightarrow> f y \<in> B)))" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1908 | unfolding continuous_within tendsto_def eventually_at_topological by metis | 
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1909 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1910 | lemma continuous_within_compose[continuous_intros]: | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1911 | "continuous (at x within s) f \<Longrightarrow> continuous (at (f x) within f ` s) g \<Longrightarrow> | 
| 63494 | 1912 | continuous (at x within s) (g \<circ> f)" | 
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1913 | by (simp add: continuous_within_topological) metis | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1914 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1915 | lemma continuous_within_compose2: | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1916 | "continuous (at x within s) f \<Longrightarrow> continuous (at (f x) within f ` s) g \<Longrightarrow> | 
| 63494 | 1917 | continuous (at x within s) (\<lambda>x. g (f x))" | 
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1918 | using continuous_within_compose[of x s f g] by (simp add: comp_def) | 
| 51471 | 1919 | |
| 61976 | 1920 | lemma continuous_at: "continuous (at x) f \<longleftrightarrow> f \<midarrow>x\<rightarrow> f x" | 
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1921 | using continuous_within[of x UNIV f] by simp | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1922 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1923 | lemma continuous_ident[continuous_intros, simp]: "continuous (at x within S) (\<lambda>x. x)" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1924 | unfolding continuous_within by (rule tendsto_ident_at) | 
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1925 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1926 | lemma continuous_const[continuous_intros, simp]: "continuous F (\<lambda>x. c)" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1927 | unfolding continuous_def by (rule tendsto_const) | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1928 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1929 | lemma continuous_on_eq_continuous_within: | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1930 | "continuous_on s f \<longleftrightarrow> (\<forall>x\<in>s. continuous (at x within s) f)" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1931 | unfolding continuous_on_def continuous_within .. | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1932 | |
| 63494 | 1933 | abbreviation isCont :: "('a::t2_space \<Rightarrow> 'b::topological_space) \<Rightarrow> 'a \<Rightarrow> bool"
 | 
| 1934 | where "isCont f a \<equiv> continuous (at a) f" | |
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1935 | |
| 61976 | 1936 | lemma isCont_def: "isCont f a \<longleftrightarrow> f \<midarrow>a\<rightarrow> f a" | 
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1937 | by (rule continuous_at) | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1938 | |
| 63295 
52792bb9126e
Facts about HK integration, complex powers, Gamma function
 eberlm parents: 
63171diff
changeset | 1939 | lemma isCont_cong: | 
| 
52792bb9126e
Facts about HK integration, complex powers, Gamma function
 eberlm parents: 
63171diff
changeset | 1940 | assumes "eventually (\<lambda>x. f x = g x) (nhds x)" | 
| 63494 | 1941 | shows "isCont f x \<longleftrightarrow> isCont g x" | 
| 63295 
52792bb9126e
Facts about HK integration, complex powers, Gamma function
 eberlm parents: 
63171diff
changeset | 1942 | proof - | 
| 63494 | 1943 | from assms have [simp]: "f x = g x" | 
| 1944 | by (rule eventually_nhds_x_imp_x) | |
| 63295 
52792bb9126e
Facts about HK integration, complex powers, Gamma function
 eberlm parents: 
63171diff
changeset | 1945 | from assms have "eventually (\<lambda>x. f x = g x) (at x)" | 
| 
52792bb9126e
Facts about HK integration, complex powers, Gamma function
 eberlm parents: 
63171diff
changeset | 1946 | by (auto simp: eventually_at_filter elim!: eventually_mono) | 
| 
52792bb9126e
Facts about HK integration, complex powers, Gamma function
 eberlm parents: 
63171diff
changeset | 1947 | with assms have "isCont f x \<longleftrightarrow> isCont g x" unfolding isCont_def | 
| 
52792bb9126e
Facts about HK integration, complex powers, Gamma function
 eberlm parents: 
63171diff
changeset | 1948 | by (intro filterlim_cong) (auto elim!: eventually_mono) | 
| 
52792bb9126e
Facts about HK integration, complex powers, Gamma function
 eberlm parents: 
63171diff
changeset | 1949 | with assms show ?thesis by simp | 
| 
52792bb9126e
Facts about HK integration, complex powers, Gamma function
 eberlm parents: 
63171diff
changeset | 1950 | qed | 
| 
52792bb9126e
Facts about HK integration, complex powers, Gamma function
 eberlm parents: 
63171diff
changeset | 1951 | |
| 60762 | 1952 | lemma continuous_at_imp_continuous_at_within: "isCont f x \<Longrightarrow> continuous (at x within s) f" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1953 | by (auto intro: tendsto_mono at_le simp: continuous_at continuous_within) | 
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1954 | |
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1955 | lemma continuous_on_eq_continuous_at: "open s \<Longrightarrow> continuous_on s f \<longleftrightarrow> (\<forall>x\<in>s. isCont f x)" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1956 | by (simp add: continuous_on_def continuous_at at_within_open[of _ s]) | 
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1957 | |
| 62083 | 1958 | lemma continuous_within_open: "a \<in> A \<Longrightarrow> open A \<Longrightarrow> continuous (at a within A) f \<longleftrightarrow> isCont f a" | 
| 1959 | by (simp add: at_within_open_NO_MATCH) | |
| 1960 | ||
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1961 | lemma continuous_at_imp_continuous_on: "\<forall>x\<in>s. isCont f x \<Longrightarrow> continuous_on s f" | 
| 60762 | 1962 | by (auto intro: continuous_at_imp_continuous_at_within simp: continuous_on_eq_continuous_within) | 
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1963 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1964 | lemma isCont_o2: "isCont f a \<Longrightarrow> isCont g (f a) \<Longrightarrow> isCont (\<lambda>x. g (f x)) a" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1965 | unfolding isCont_def by (rule tendsto_compose) | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1966 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1967 | lemma isCont_o[continuous_intros]: "isCont f a \<Longrightarrow> isCont g (f a) \<Longrightarrow> isCont (g \<circ> f) a" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1968 | unfolding o_def by (rule isCont_o2) | 
| 51471 | 1969 | |
| 61973 | 1970 | lemma isCont_tendsto_compose: "isCont g l \<Longrightarrow> (f \<longlongrightarrow> l) F \<Longrightarrow> ((\<lambda>x. g (f x)) \<longlongrightarrow> g l) F" | 
| 51471 | 1971 | unfolding isCont_def by (rule tendsto_compose) | 
| 62102 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 1972 | |
| 62049 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 1973 | lemma continuous_on_tendsto_compose: | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 1974 | assumes f_cont: "continuous_on s f" | 
| 63494 | 1975 | and g: "(g \<longlongrightarrow> l) F" | 
| 1976 | and l: "l \<in> s" | |
| 1977 | and ev: "\<forall>\<^sub>Fx in F. g x \<in> s" | |
| 62049 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 1978 | shows "((\<lambda>x. f (g x)) \<longlongrightarrow> f l) F" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 1979 | proof - | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 1980 | from f_cont l have f: "(f \<longlongrightarrow> f l) (at l within s)" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 1981 | by (simp add: continuous_on_def) | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 1982 | have i: "((\<lambda>x. if g x = l then f l else f (g x)) \<longlongrightarrow> f l) F" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 1983 | by (rule filterlim_If) | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 1984 | (auto intro!: filterlim_compose[OF f] eventually_conj tendsto_mono[OF _ g] | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 1985 | simp: filterlim_at eventually_inf_principal eventually_mono[OF ev]) | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 1986 | show ?thesis | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 1987 | by (rule filterlim_cong[THEN iffD1[OF _ i]]) auto | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 1988 | qed | 
| 51471 | 1989 | |
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1990 | lemma continuous_within_compose3: | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1991 | "isCont g (f x) \<Longrightarrow> continuous (at x within s) f \<Longrightarrow> continuous (at x within s) (\<lambda>x. g (f x))" | 
| 63171 | 1992 | using continuous_at_imp_continuous_at_within continuous_within_compose2 by blast | 
| 51471 | 1993 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1994 | lemma filtermap_nhds_open_map: | 
| 63494 | 1995 | assumes cont: "isCont f a" | 
| 1996 | and open_map: "\<And>S. open S \<Longrightarrow> open (f`S)" | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1997 | shows "filtermap f (nhds a) = nhds (f a)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1998 | unfolding filter_eq_iff | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1999 | proof safe | 
| 63494 | 2000 | fix P | 
| 2001 | assume "eventually P (filtermap f (nhds a))" | |
| 2002 | then obtain S where "open S" "a \<in> S" "\<forall>x\<in>S. P (f x)" | |
| 2003 | by (auto simp: eventually_filtermap eventually_nhds) | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2004 | then show "eventually P (nhds (f a))" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2005 | unfolding eventually_nhds by (intro exI[of _ "f`S"]) (auto intro!: open_map) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2006 | qed (metis filterlim_iff tendsto_at_iff_tendsto_nhds isCont_def eventually_filtermap cont) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2007 | |
| 62102 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 2008 | lemma continuous_at_split: | 
| 63494 | 2009 | "continuous (at x) f \<longleftrightarrow> continuous (at_left x) f \<and> continuous (at_right x) f" | 
| 2010 | for x :: "'a::linorder_topology" | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2011 | by (simp add: continuous_within filterlim_at_split) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2012 | |
| 63494 | 2013 | text \<open> | 
| 63495 | 2014 | The following open/closed Collect lemmas are ported from | 
| 2015 | Sébastien Gouëzel's \<open>Ergodic_Theory\<close>. | |
| 63494 | 2016 | \<close> | 
| 63332 | 2017 | lemma open_Collect_neq: | 
| 63494 | 2018 | fixes f g :: "'a::topological_space \<Rightarrow> 'b::t2_space" | 
| 63332 | 2019 | assumes f: "continuous_on UNIV f" and g: "continuous_on UNIV g" | 
| 2020 |   shows "open {x. f x \<noteq> g x}"
 | |
| 2021 | proof (rule openI) | |
| 63494 | 2022 | fix t | 
| 2023 |   assume "t \<in> {x. f x \<noteq> g x}"
 | |
| 63332 | 2024 |   then obtain U V where *: "open U" "open V" "f t \<in> U" "g t \<in> V" "U \<inter> V = {}"
 | 
| 2025 | by (auto simp add: separation_t2) | |
| 2026 | with open_vimage[OF \<open>open U\<close> f] open_vimage[OF \<open>open V\<close> g] | |
| 2027 |   show "\<exists>T. open T \<and> t \<in> T \<and> T \<subseteq> {x. f x \<noteq> g x}"
 | |
| 2028 | by (intro exI[of _ "f -` U \<inter> g -` V"]) auto | |
| 2029 | qed | |
| 2030 | ||
| 2031 | lemma closed_Collect_eq: | |
| 63494 | 2032 | fixes f g :: "'a::topological_space \<Rightarrow> 'b::t2_space" | 
| 63332 | 2033 | assumes f: "continuous_on UNIV f" and g: "continuous_on UNIV g" | 
| 2034 |   shows "closed {x. f x = g x}"
 | |
| 2035 | using open_Collect_neq[OF f g] by (simp add: closed_def Collect_neg_eq) | |
| 2036 | ||
| 2037 | lemma open_Collect_less: | |
| 63494 | 2038 | fixes f g :: "'a::topological_space \<Rightarrow> 'b::linorder_topology" | 
| 63332 | 2039 | assumes f: "continuous_on UNIV f" and g: "continuous_on UNIV g" | 
| 2040 |   shows "open {x. f x < g x}"
 | |
| 2041 | proof (rule openI) | |
| 63494 | 2042 | fix t | 
| 2043 |   assume t: "t \<in> {x. f x < g x}"
 | |
| 63332 | 2044 |   show "\<exists>T. open T \<and> t \<in> T \<and> T \<subseteq> {x. f x < g x}"
 | 
| 63494 | 2045 | proof (cases "\<exists>z. f t < z \<and> z < g t") | 
| 2046 | case True | |
| 2047 | then obtain z where "f t < z \<and> z < g t" by blast | |
| 63332 | 2048 | then show ?thesis | 
| 2049 |       using open_vimage[OF _ f, of "{..< z}"] open_vimage[OF _ g, of "{z <..}"]
 | |
| 2050 |       by (intro exI[of _ "f -` {..<z} \<inter> g -` {z<..}"]) auto
 | |
| 2051 | next | |
| 63494 | 2052 | case False | 
| 63332 | 2053 |     then have *: "{g t ..} = {f t <..}" "{..< g t} = {.. f t}"
 | 
| 2054 | using t by (auto intro: leI) | |
| 2055 | show ?thesis | |
| 2056 |       using open_vimage[OF _ f, of "{..< g t}"] open_vimage[OF _ g, of "{f t <..}"] t
 | |
| 2057 |       apply (intro exI[of _ "f -` {..< g t} \<inter> g -` {f t<..}"])
 | |
| 2058 | apply (simp add: open_Int) | |
| 2059 | apply (auto simp add: *) | |
| 2060 | done | |
| 2061 | qed | |
| 2062 | qed | |
| 2063 | ||
| 2064 | lemma closed_Collect_le: | |
| 2065 | fixes f g :: "'a :: topological_space \<Rightarrow> 'b::linorder_topology" | |
| 63494 | 2066 | assumes f: "continuous_on UNIV f" | 
| 2067 | and g: "continuous_on UNIV g" | |
| 63332 | 2068 |   shows "closed {x. f x \<le> g x}"
 | 
| 63494 | 2069 | using open_Collect_less [OF g f] | 
| 2070 | by (simp add: closed_def Collect_neg_eq[symmetric] not_le) | |
| 2071 | ||
| 63332 | 2072 | |
| 61245 | 2073 | subsubsection \<open>Open-cover compactness\<close> | 
| 51479 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2074 | |
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2075 | context topological_space | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2076 | begin | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2077 | |
| 63494 | 2078 | definition compact :: "'a set \<Rightarrow> bool" | 
| 2079 | where compact_eq_heine_borel: (* This name is used for backwards compatibility *) | |
| 51479 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2080 | "compact S \<longleftrightarrow> (\<forall>C. (\<forall>c\<in>C. open c) \<and> S \<subseteq> \<Union>C \<longrightarrow> (\<exists>D\<subseteq>C. finite D \<and> S \<subseteq> \<Union>D))" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2081 | |
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2082 | lemma compactI: | 
| 60585 | 2083 | assumes "\<And>C. \<forall>t\<in>C. open t \<Longrightarrow> s \<subseteq> \<Union>C \<Longrightarrow> \<exists>C'. C' \<subseteq> C \<and> finite C' \<and> s \<subseteq> \<Union>C'" | 
| 51479 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2084 | shows "compact s" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2085 | unfolding compact_eq_heine_borel using assms by metis | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2086 | |
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2087 | lemma compact_empty[simp]: "compact {}"
 | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2088 | by (auto intro!: compactI) | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2089 | |
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2090 | lemma compactE: | 
| 63494 | 2091 | assumes "compact s" | 
| 2092 | and "\<forall>t\<in>C. open t" | |
| 2093 | and "s \<subseteq> \<Union>C" | |
| 51479 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2094 | obtains C' where "C' \<subseteq> C" and "finite C'" and "s \<subseteq> \<Union>C'" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2095 | using assms unfolding compact_eq_heine_borel by metis | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2096 | |
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2097 | lemma compactE_image: | 
| 63494 | 2098 | assumes "compact s" | 
| 2099 | and "\<forall>t\<in>C. open (f t)" | |
| 2100 | and "s \<subseteq> (\<Union>c\<in>C. f c)" | |
| 51479 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2101 | obtains C' where "C' \<subseteq> C" and "finite C'" and "s \<subseteq> (\<Union>c\<in>C'. f c)" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62217diff
changeset | 2102 | using assms unfolding ball_simps [symmetric] | 
| 51479 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2103 | by (metis (lifting) finite_subset_image compact_eq_heine_borel[of s]) | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2104 | |
| 62843 
313d3b697c9a
Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 2105 | lemma compact_Int_closed [intro]: | 
| 63494 | 2106 | assumes "compact s" | 
| 2107 | and "closed t" | |
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2108 | shows "compact (s \<inter> t)" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2109 | proof (rule compactI) | 
| 63494 | 2110 | fix C | 
| 2111 | assume C: "\<forall>c\<in>C. open c" | |
| 2112 | assume cover: "s \<inter> t \<subseteq> \<Union>C" | |
| 2113 |   from C \<open>closed t\<close> have "\<forall>c\<in>C \<union> {- t}. open c"
 | |
| 2114 | by auto | |
| 2115 |   moreover from cover have "s \<subseteq> \<Union>(C \<union> {- t})"
 | |
| 2116 | by auto | |
| 2117 |   ultimately have "\<exists>D\<subseteq>C \<union> {- t}. finite D \<and> s \<subseteq> \<Union>D"
 | |
| 60758 | 2118 | using \<open>compact s\<close> unfolding compact_eq_heine_borel by auto | 
| 53381 | 2119 |   then obtain D where "D \<subseteq> C \<union> {- t} \<and> finite D \<and> s \<subseteq> \<Union>D" ..
 | 
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2120 | then show "\<exists>D\<subseteq>C. finite D \<and> s \<inter> t \<subseteq> \<Union>D" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2121 |     by (intro exI[of _ "D - {-t}"]) auto
 | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2122 | qed | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2123 | |
| 54797 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2124 | lemma inj_setminus: "inj_on uminus (A::'a set set)" | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2125 | by (auto simp: inj_on_def) | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2126 | |
| 63494 | 2127 | |
| 2128 | subsection \<open>Finite intersection property\<close> | |
| 63301 | 2129 | |
| 54797 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2130 | lemma compact_fip: | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2131 | "compact U \<longleftrightarrow> | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2132 |     (\<forall>A. (\<forall>a\<in>A. closed a) \<longrightarrow> (\<forall>B \<subseteq> A. finite B \<longrightarrow> U \<inter> \<Inter>B \<noteq> {}) \<longrightarrow> U \<inter> \<Inter>A \<noteq> {})"
 | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2133 | (is "_ \<longleftrightarrow> ?R") | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2134 | proof (safe intro!: compact_eq_heine_borel[THEN iffD2]) | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2135 | fix A | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2136 | assume "compact U" | 
| 63494 | 2137 |   assume A: "\<forall>a\<in>A. closed a" "U \<inter> \<Inter>A = {}"
 | 
| 2138 |   assume fin: "\<forall>B \<subseteq> A. finite B \<longrightarrow> U \<inter> \<Inter>B \<noteq> {}"
 | |
| 54797 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2139 | from A have "(\<forall>a\<in>uminus`A. open a) \<and> U \<subseteq> \<Union>(uminus`A)" | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2140 | by auto | 
| 60758 | 2141 | with \<open>compact U\<close> obtain B where "B \<subseteq> A" "finite (uminus`B)" "U \<subseteq> \<Union>(uminus`B)" | 
| 54797 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2142 | unfolding compact_eq_heine_borel by (metis subset_image_iff) | 
| 63494 | 2143 | with fin[THEN spec, of B] show False | 
| 54797 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2144 | by (auto dest: finite_imageD intro: inj_setminus) | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2145 | next | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2146 | fix A | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2147 | assume ?R | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2148 | assume "\<forall>a\<in>A. open a" "U \<subseteq> \<Union>A" | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2149 |   then have "U \<inter> \<Inter>(uminus`A) = {}" "\<forall>a\<in>uminus`A. closed a"
 | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2150 | by auto | 
| 60758 | 2151 |   with \<open>?R\<close> obtain B where "B \<subseteq> A" "finite (uminus`B)" "U \<inter> \<Inter>(uminus`B) = {}"
 | 
| 54797 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2152 | by (metis subset_image_iff) | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2153 | then show "\<exists>T\<subseteq>A. finite T \<and> U \<subseteq> \<Union>T" | 
| 63494 | 2154 | by (auto intro!: exI[of _ B] inj_setminus dest: finite_imageD) | 
| 54797 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2155 | qed | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2156 | |
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2157 | lemma compact_imp_fip: | 
| 63494 | 2158 | assumes "compact S" | 
| 2159 | and "\<And>T. T \<in> F \<Longrightarrow> closed T" | |
| 2160 |     and "\<And>F'. finite F' \<Longrightarrow> F' \<subseteq> F \<Longrightarrow> S \<inter> (\<Inter>F') \<noteq> {}"
 | |
| 2161 |   shows "S \<inter> (\<Inter>F) \<noteq> {}"
 | |
| 2162 | using assms unfolding compact_fip by auto | |
| 54797 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2163 | |
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2164 | lemma compact_imp_fip_image: | 
| 56166 | 2165 | assumes "compact s" | 
| 2166 | and P: "\<And>i. i \<in> I \<Longrightarrow> closed (f i)" | |
| 2167 |     and Q: "\<And>I'. finite I' \<Longrightarrow> I' \<subseteq> I \<Longrightarrow> (s \<inter> (\<Inter>i\<in>I'. f i) \<noteq> {})"
 | |
| 2168 |   shows "s \<inter> (\<Inter>i\<in>I. f i) \<noteq> {}"
 | |
| 2169 | proof - | |
| 60758 | 2170 | note \<open>compact s\<close> | 
| 63494 | 2171 | moreover from P have "\<forall>i \<in> f ` I. closed i" | 
| 2172 | by blast | |
| 56166 | 2173 |   moreover have "\<forall>A. finite A \<and> A \<subseteq> f ` I \<longrightarrow> (s \<inter> (\<Inter>A) \<noteq> {})"
 | 
| 63494 | 2174 | apply rule | 
| 2175 | apply rule | |
| 2176 | apply (erule conjE) | |
| 2177 | proof - | |
| 56166 | 2178 | fix A :: "'a set set" | 
| 63494 | 2179 | assume "finite A" and "A \<subseteq> f ` I" | 
| 2180 | then obtain B where "B \<subseteq> I" and "finite B" and "A = f ` B" | |
| 56166 | 2181 | using finite_subset_image [of A f I] by blast | 
| 63494 | 2182 |     with Q [of B] show "s \<inter> \<Inter>A \<noteq> {}"
 | 
| 2183 | by simp | |
| 56166 | 2184 | qed | 
| 63494 | 2185 |   ultimately have "s \<inter> (\<Inter>(f ` I)) \<noteq> {}"
 | 
| 2186 | by (metis compact_imp_fip) | |
| 56166 | 2187 | then show ?thesis by simp | 
| 2188 | qed | |
| 54797 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2189 | |
| 51471 | 2190 | end | 
| 2191 | ||
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2192 | lemma (in t2_space) compact_imp_closed: | 
| 63494 | 2193 | assumes "compact s" | 
| 2194 | shows "closed s" | |
| 2195 | unfolding closed_def | |
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2196 | proof (rule openI) | 
| 63494 | 2197 | fix y | 
| 2198 | assume "y \<in> - s" | |
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2199 |   let ?C = "\<Union>x\<in>s. {u. open u \<and> x \<in> u \<and> eventually (\<lambda>y. y \<notin> u) (nhds y)}"
 | 
| 60758 | 2200 | note \<open>compact s\<close> | 
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2201 | moreover have "\<forall>u\<in>?C. open u" by simp | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2202 | moreover have "s \<subseteq> \<Union>?C" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2203 | proof | 
| 63494 | 2204 | fix x | 
| 2205 | assume "x \<in> s" | |
| 60758 | 2206 | with \<open>y \<in> - s\<close> have "x \<noteq> y" by clarsimp | 
| 63494 | 2207 |     then have "\<exists>u v. open u \<and> open v \<and> x \<in> u \<and> y \<in> v \<and> u \<inter> v = {}"
 | 
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2208 | by (rule hausdorff) | 
| 60758 | 2209 | with \<open>x \<in> s\<close> show "x \<in> \<Union>?C" | 
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2210 | unfolding eventually_nhds by auto | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2211 | qed | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2212 | ultimately obtain D where "D \<subseteq> ?C" and "finite D" and "s \<subseteq> \<Union>D" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2213 | by (rule compactE) | 
| 63494 | 2214 | from \<open>D \<subseteq> ?C\<close> have "\<forall>x\<in>D. eventually (\<lambda>y. y \<notin> x) (nhds y)" | 
| 2215 | by auto | |
| 60758 | 2216 | with \<open>finite D\<close> have "eventually (\<lambda>y. y \<notin> \<Union>D) (nhds y)" | 
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60036diff
changeset | 2217 | by (simp add: eventually_ball_finite) | 
| 60758 | 2218 | with \<open>s \<subseteq> \<Union>D\<close> have "eventually (\<lambda>y. y \<notin> s) (nhds y)" | 
| 61810 | 2219 | by (auto elim!: eventually_mono) | 
| 63494 | 2220 | then show "\<exists>t. open t \<and> y \<in> t \<and> t \<subseteq> - s" | 
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2221 | by (simp add: eventually_nhds subset_eq) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2222 | qed | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2223 | |
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2224 | lemma compact_continuous_image: | 
| 63494 | 2225 | assumes f: "continuous_on s f" | 
| 2226 | and s: "compact s" | |
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2227 | shows "compact (f ` s)" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2228 | proof (rule compactI) | 
| 63494 | 2229 | fix C | 
| 2230 | assume "\<forall>c\<in>C. open c" and cover: "f`s \<subseteq> \<Union>C" | |
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2231 | with f have "\<forall>c\<in>C. \<exists>A. open A \<and> A \<inter> s = f -` c \<inter> s" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2232 | unfolding continuous_on_open_invariant by blast | 
| 53381 | 2233 | then obtain A where A: "\<forall>c\<in>C. open (A c) \<and> A c \<inter> s = f -` c \<inter> s" | 
| 2234 | unfolding bchoice_iff .. | |
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2235 | with cover have "\<forall>c\<in>C. open (A c)" "s \<subseteq> (\<Union>c\<in>C. A c)" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2236 | by (fastforce simp add: subset_eq set_eq_iff)+ | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2237 | from compactE_image[OF s this] obtain D where "D \<subseteq> C" "finite D" "s \<subseteq> (\<Union>c\<in>D. A c)" . | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2238 | with A show "\<exists>D \<subseteq> C. finite D \<and> f`s \<subseteq> \<Union>D" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2239 | by (intro exI[of _ D]) (fastforce simp add: subset_eq set_eq_iff)+ | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2240 | qed | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2241 | |
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2242 | lemma continuous_on_inv: | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2243 | fixes f :: "'a::topological_space \<Rightarrow> 'b::t2_space" | 
| 63494 | 2244 | assumes "continuous_on s f" | 
| 2245 | and "compact s" | |
| 2246 | and "\<forall>x\<in>s. g (f x) = x" | |
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2247 | shows "continuous_on (f ` s) g" | 
| 63494 | 2248 | unfolding continuous_on_topological | 
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2249 | proof (clarsimp simp add: assms(3)) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2250 | fix x :: 'a and B :: "'a set" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2251 | assume "x \<in> s" and "open B" and "x \<in> B" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2252 | have 1: "\<forall>x\<in>s. f x \<in> f ` (s - B) \<longleftrightarrow> x \<in> s - B" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2253 | using assms(3) by (auto, metis) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2254 | have "continuous_on (s - B) f" | 
| 60758 | 2255 | using \<open>continuous_on s f\<close> Diff_subset | 
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2256 | by (rule continuous_on_subset) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2257 | moreover have "compact (s - B)" | 
| 60758 | 2258 | using \<open>open B\<close> and \<open>compact s\<close> | 
| 62843 
313d3b697c9a
Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
 paulson <lp15@cam.ac.uk> parents: 
62533diff
changeset | 2259 | unfolding Diff_eq by (intro compact_Int_closed closed_Compl) | 
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2260 | ultimately have "compact (f ` (s - B))" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2261 | by (rule compact_continuous_image) | 
| 63494 | 2262 | then have "closed (f ` (s - B))" | 
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2263 | by (rule compact_imp_closed) | 
| 63494 | 2264 | then have "open (- f ` (s - B))" | 
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2265 | by (rule open_Compl) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2266 | moreover have "f x \<in> - f ` (s - B)" | 
| 60758 | 2267 | using \<open>x \<in> s\<close> and \<open>x \<in> B\<close> by (simp add: 1) | 
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2268 | moreover have "\<forall>y\<in>s. f y \<in> - f ` (s - B) \<longrightarrow> y \<in> B" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2269 | by (simp add: 1) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2270 | ultimately show "\<exists>A. open A \<and> f x \<in> A \<and> (\<forall>y\<in>s. f y \<in> A \<longrightarrow> y \<in> B)" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2271 | by fast | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2272 | qed | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2273 | |
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2274 | lemma continuous_on_inv_into: | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2275 | fixes f :: "'a::topological_space \<Rightarrow> 'b::t2_space" | 
| 63494 | 2276 | assumes s: "continuous_on s f" "compact s" | 
| 2277 | and f: "inj_on f s" | |
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2278 | shows "continuous_on (f ` s) (the_inv_into s f)" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2279 | by (rule continuous_on_inv[OF s]) (auto simp: the_inv_into_f_f[OF f]) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2280 | |
| 51479 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2281 | lemma (in linorder_topology) compact_attains_sup: | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2282 |   assumes "compact S" "S \<noteq> {}"
 | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2283 | shows "\<exists>s\<in>S. \<forall>t\<in>S. t \<le> s" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2284 | proof (rule classical) | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2285 | assume "\<not> (\<exists>s\<in>S. \<forall>t\<in>S. t \<le> s)" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2286 | then obtain t where t: "\<forall>s\<in>S. t s \<in> S" and "\<forall>s\<in>S. s < t s" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2287 | by (metis not_le) | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2288 |   then have "\<forall>s\<in>S. open {..< t s}" "S \<subseteq> (\<Union>s\<in>S. {..< t s})"
 | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2289 | by auto | 
| 60758 | 2290 |   with \<open>compact S\<close> obtain C where "C \<subseteq> S" "finite C" and C: "S \<subseteq> (\<Union>s\<in>C. {..< t s})"
 | 
| 51479 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2291 | by (erule compactE_image) | 
| 60758 | 2292 |   with \<open>S \<noteq> {}\<close> have Max: "Max (t`C) \<in> t`C" and "\<forall>s\<in>t`C. s \<le> Max (t`C)"
 | 
| 51479 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2293 | by (auto intro!: Max_in) | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2294 |   with C have "S \<subseteq> {..< Max (t`C)}"
 | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2295 | by (auto intro: less_le_trans simp: subset_eq) | 
| 60758 | 2296 | with t Max \<open>C \<subseteq> S\<close> show ?thesis | 
| 51479 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2297 | by fastforce | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2298 | qed | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2299 | |
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2300 | lemma (in linorder_topology) compact_attains_inf: | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2301 |   assumes "compact S" "S \<noteq> {}"
 | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2302 | shows "\<exists>s\<in>S. \<forall>t\<in>S. s \<le> t" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2303 | proof (rule classical) | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2304 | assume "\<not> (\<exists>s\<in>S. \<forall>t\<in>S. s \<le> t)" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2305 | then obtain t where t: "\<forall>s\<in>S. t s \<in> S" and "\<forall>s\<in>S. t s < s" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2306 | by (metis not_le) | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2307 |   then have "\<forall>s\<in>S. open {t s <..}" "S \<subseteq> (\<Union>s\<in>S. {t s <..})"
 | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2308 | by auto | 
| 60758 | 2309 |   with \<open>compact S\<close> obtain C where "C \<subseteq> S" "finite C" and C: "S \<subseteq> (\<Union>s\<in>C. {t s <..})"
 | 
| 51479 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2310 | by (erule compactE_image) | 
| 60758 | 2311 |   with \<open>S \<noteq> {}\<close> have Min: "Min (t`C) \<in> t`C" and "\<forall>s\<in>t`C. Min (t`C) \<le> s"
 | 
| 51479 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2312 | by (auto intro!: Min_in) | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2313 |   with C have "S \<subseteq> {Min (t`C) <..}"
 | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2314 | by (auto intro: le_less_trans simp: subset_eq) | 
| 60758 | 2315 | with t Min \<open>C \<subseteq> S\<close> show ?thesis | 
| 51479 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2316 | by fastforce | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2317 | qed | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2318 | |
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2319 | lemma continuous_attains_sup: | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2320 | fixes f :: "'a::topological_space \<Rightarrow> 'b::linorder_topology" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2321 |   shows "compact s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> continuous_on s f \<Longrightarrow> (\<exists>x\<in>s. \<forall>y\<in>s.  f y \<le> f x)"
 | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2322 | using compact_attains_sup[of "f ` s"] compact_continuous_image[of s f] by auto | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2323 | |
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2324 | lemma continuous_attains_inf: | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2325 | fixes f :: "'a::topological_space \<Rightarrow> 'b::linorder_topology" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2326 |   shows "compact s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> continuous_on s f \<Longrightarrow> (\<exists>x\<in>s. \<forall>y\<in>s. f x \<le> f y)"
 | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2327 | using compact_attains_inf[of "f ` s"] compact_continuous_image[of s f] by auto | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2328 | |
| 63494 | 2329 | |
| 60758 | 2330 | subsection \<open>Connectedness\<close> | 
| 51480 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2331 | |
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2332 | context topological_space | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2333 | begin | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2334 | |
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2335 | definition "connected S \<longleftrightarrow> | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2336 |   \<not> (\<exists>A B. open A \<and> open B \<and> S \<subseteq> A \<union> B \<and> A \<inter> B \<inter> S = {} \<and> A \<inter> S \<noteq> {} \<and> B \<inter> S \<noteq> {})"
 | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2337 | |
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2338 | lemma connectedI: | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2339 |   "(\<And>A B. open A \<Longrightarrow> open B \<Longrightarrow> A \<inter> U \<noteq> {} \<Longrightarrow> B \<inter> U \<noteq> {} \<Longrightarrow> A \<inter> B \<inter> U = {} \<Longrightarrow> U \<subseteq> A \<union> B \<Longrightarrow> False)
 | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2340 | \<Longrightarrow> connected U" | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2341 | by (auto simp: connected_def) | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2342 | |
| 61306 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2343 | lemma connected_empty [simp]: "connected {}"
 | 
| 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2344 | by (auto intro!: connectedI) | 
| 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2345 | |
| 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2346 | lemma connected_sing [simp]: "connected {x}"
 | 
| 51480 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2347 | by (auto intro!: connectedI) | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2348 | |
| 56329 | 2349 | lemma connectedD: | 
| 62102 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 2350 |   "connected A \<Longrightarrow> open U \<Longrightarrow> open V \<Longrightarrow> U \<inter> V \<inter> A = {} \<Longrightarrow> A \<subseteq> U \<union> V \<Longrightarrow> U \<inter> A = {} \<or> V \<inter> A = {}"
 | 
| 56329 | 2351 | by (auto simp: connected_def) | 
| 2352 | ||
| 51479 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2353 | end | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2354 | |
| 61306 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2355 | lemma connected_closed: | 
| 63494 | 2356 | "connected s \<longleftrightarrow> | 
| 2357 |     \<not> (\<exists>A B. closed A \<and> closed B \<and> s \<subseteq> A \<union> B \<and> A \<inter> B \<inter> s = {} \<and> A \<inter> s \<noteq> {} \<and> B \<inter> s \<noteq> {})"
 | |
| 2358 | apply (simp add: connected_def del: ex_simps, safe) | |
| 2359 | apply (drule_tac x="-A" in spec) | |
| 2360 | apply (drule_tac x="-B" in spec) | |
| 2361 | apply (fastforce simp add: closed_def [symmetric]) | |
| 2362 | apply (drule_tac x="-A" in spec) | |
| 2363 | apply (drule_tac x="-B" in spec) | |
| 2364 | apply (fastforce simp add: open_closed [symmetric]) | |
| 2365 | done | |
| 61306 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2366 | |
| 62397 
5ae24f33d343
Substantial new material for multivariate analysis. Also removal of some duplicates.
 paulson <lp15@cam.ac.uk> parents: 
62381diff
changeset | 2367 | lemma connected_closedD: | 
| 63494 | 2368 |   "\<lbrakk>connected s; A \<inter> B \<inter> s = {}; s \<subseteq> A \<union> B; closed A; closed B\<rbrakk> \<Longrightarrow> A \<inter> s = {} \<or> B \<inter> s = {}"
 | 
| 2369 | by (simp add: connected_closed) | |
| 61306 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2370 | |
| 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2371 | lemma connected_Union: | 
| 63494 | 2372 | assumes cs: "\<And>s. s \<in> S \<Longrightarrow> connected s" | 
| 2373 |     and ne: "\<Inter>S \<noteq> {}"
 | |
| 2374 | shows "connected(\<Union>S)" | |
| 61306 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2375 | proof (rule connectedI) | 
| 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2376 | fix A B | 
| 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2377 |   assume A: "open A" and B: "open B" and Alap: "A \<inter> \<Union>S \<noteq> {}" and Blap: "B \<inter> \<Union>S \<noteq> {}"
 | 
| 63494 | 2378 |     and disj: "A \<inter> B \<inter> \<Union>S = {}" and cover: "\<Union>S \<subseteq> A \<union> B"
 | 
| 61306 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2379 |   have disjs:"\<And>s. s \<in> S \<Longrightarrow> A \<inter> B \<inter> s = {}"
 | 
| 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2380 | using disj by auto | 
| 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2381 |   obtain sa where sa: "sa \<in> S" "A \<inter> sa \<noteq> {}"
 | 
| 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2382 | using Alap by auto | 
| 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2383 |   obtain sb where sb: "sb \<in> S" "B \<inter> sb \<noteq> {}"
 | 
| 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2384 | using Blap by auto | 
| 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2385 | obtain x where x: "\<And>s. s \<in> S \<Longrightarrow> x \<in> s" | 
| 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2386 | using ne by auto | 
| 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2387 | then have "x \<in> \<Union>S" | 
| 61342 | 2388 | using \<open>sa \<in> S\<close> by blast | 
| 61306 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2389 | then have "x \<in> A \<or> x \<in> B" | 
| 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2390 | using cover by auto | 
| 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2391 | then show False | 
| 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2392 | using cs [unfolded connected_def] | 
| 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2393 | by (metis A B IntI Sup_upper sa sb disjs x cover empty_iff subset_trans) | 
| 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2394 | qed | 
| 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2395 | |
| 63494 | 2396 | lemma connected_Un: "connected s \<Longrightarrow> connected t \<Longrightarrow> s \<inter> t \<noteq> {} \<Longrightarrow> connected (s \<union> t)"
 | 
| 61306 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2397 |   using connected_Union [of "{s,t}"] by auto
 | 
| 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2398 | |
| 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2399 | lemma connected_diff_open_from_closed: | 
| 63494 | 2400 | assumes st: "s \<subseteq> t" | 
| 2401 | and tu: "t \<subseteq> u" | |
| 2402 | and s: "open s" | |
| 2403 | and t: "closed t" | |
| 2404 | and u: "connected u" | |
| 2405 | and ts: "connected (t - s)" | |
| 61306 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2406 | shows "connected(u - s)" | 
| 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2407 | proof (rule connectedI) | 
| 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2408 | fix A B | 
| 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2409 |   assume AB: "open A" "open B" "A \<inter> (u - s) \<noteq> {}" "B \<inter> (u - s) \<noteq> {}"
 | 
| 63494 | 2410 |     and disj: "A \<inter> B \<inter> (u - s) = {}"
 | 
| 2411 | and cover: "u - s \<subseteq> A \<union> B" | |
| 61306 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2412 |   then consider "A \<inter> (t - s) = {}" | "B \<inter> (t - s) = {}"
 | 
| 63494 | 2413 | using st ts tu connectedD [of "t-s" "A" "B"] by auto | 
| 61306 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2414 | then show False | 
| 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2415 | proof cases | 
| 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2416 | case 1 | 
| 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2417 |     then have "(A - t) \<inter> (B \<union> s) \<inter> u = {}"
 | 
| 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2418 | using disj st by auto | 
| 63494 | 2419 | moreover have "u \<subseteq> (A - t) \<union> (B \<union> s)" | 
| 2420 | using 1 cover by auto | |
| 61306 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2421 | ultimately show False | 
| 63494 | 2422 | using connectedD [of u "A - t" "B \<union> s"] AB s t 1 u by auto | 
| 61306 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2423 | next | 
| 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2424 | case 2 | 
| 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2425 |     then have "(A \<union> s) \<inter> (B - t) \<inter> u = {}"
 | 
| 63494 | 2426 | using disj st by auto | 
| 2427 | moreover have "u \<subseteq> (A \<union> s) \<union> (B - t)" | |
| 2428 | using 2 cover by auto | |
| 61306 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2429 | ultimately show False | 
| 63494 | 2430 | using connectedD [of u "A \<union> s" "B - t"] AB s t 2 u by auto | 
| 61306 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2431 | qed | 
| 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2432 | qed | 
| 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2433 | |
| 59106 | 2434 | lemma connected_iff_const: | 
| 2435 | fixes S :: "'a::topological_space set" | |
| 2436 | shows "connected S \<longleftrightarrow> (\<forall>P::'a \<Rightarrow> bool. continuous_on S P \<longrightarrow> (\<exists>c. \<forall>s\<in>S. P s = c))" | |
| 2437 | proof safe | |
| 63494 | 2438 | fix P :: "'a \<Rightarrow> bool" | 
| 2439 | assume "connected S" "continuous_on S P" | |
| 59106 | 2440 |   then have "\<And>b. \<exists>A. open A \<and> A \<inter> S = P -` {b} \<inter> S"
 | 
| 62369 | 2441 | unfolding continuous_on_open_invariant by (simp add: open_discrete) | 
| 59106 | 2442 | from this[of True] this[of False] | 
| 2443 |   obtain t f where "open t" "open f" and *: "f \<inter> S = P -` {False} \<inter> S" "t \<inter> S = P -` {True} \<inter> S"
 | |
| 63171 | 2444 | by meson | 
| 59106 | 2445 |   then have "t \<inter> S = {} \<or> f \<inter> S = {}"
 | 
| 60758 | 2446 | by (intro connectedD[OF \<open>connected S\<close>]) auto | 
| 59106 | 2447 | then show "\<exists>c. \<forall>s\<in>S. P s = c" | 
| 2448 | proof (rule disjE) | |
| 63494 | 2449 |     assume "t \<inter> S = {}"
 | 
| 2450 | then show ?thesis | |
| 59106 | 2451 | unfolding * by (intro exI[of _ False]) auto | 
| 2452 | next | |
| 63494 | 2453 |     assume "f \<inter> S = {}"
 | 
| 2454 | then show ?thesis | |
| 59106 | 2455 | unfolding * by (intro exI[of _ True]) auto | 
| 2456 | qed | |
| 2457 | next | |
| 2458 | assume P: "\<forall>P::'a \<Rightarrow> bool. continuous_on S P \<longrightarrow> (\<exists>c. \<forall>s\<in>S. P s = c)" | |
| 2459 | show "connected S" | |
| 2460 | proof (rule connectedI) | |
| 63494 | 2461 | fix A B | 
| 2462 |     assume *: "open A" "open B" "A \<inter> S \<noteq> {}" "B \<inter> S \<noteq> {}" "A \<inter> B \<inter> S = {}" "S \<subseteq> A \<union> B"
 | |
| 59106 | 2463 | have "continuous_on S (\<lambda>x. x \<in> A)" | 
| 2464 | unfolding continuous_on_open_invariant | |
| 2465 | proof safe | |
| 2466 | fix C :: "bool set" | |
| 2467 |       have "C = UNIV \<or> C = {True} \<or> C = {False} \<or> C = {}"
 | |
| 2468 | using subset_UNIV[of C] unfolding UNIV_bool by auto | |
| 2469 | with * show "\<exists>T. open T \<and> T \<inter> S = (\<lambda>x. x \<in> A) -` C \<inter> S" | |
| 2470 |         by (intro exI[of _ "(if True \<in> C then A else {}) \<union> (if False \<in> C then B else {})"]) auto
 | |
| 2471 | qed | |
| 63494 | 2472 | from P[rule_format, OF this] obtain c where "\<And>s. s \<in> S \<Longrightarrow> (s \<in> A) = c" | 
| 2473 | by blast | |
| 59106 | 2474 | with * show False | 
| 2475 | by (cases c) auto | |
| 2476 | qed | |
| 2477 | qed | |
| 2478 | ||
| 63494 | 2479 | lemma connectedD_const: "connected S \<Longrightarrow> continuous_on S P \<Longrightarrow> \<exists>c. \<forall>s\<in>S. P s = c" | 
| 2480 | for P :: "'a::topological_space \<Rightarrow> bool" | |
| 2481 | by (auto simp: connected_iff_const) | |
| 59106 | 2482 | |
| 2483 | lemma connectedI_const: | |
| 2484 | "(\<And>P::'a::topological_space \<Rightarrow> bool. continuous_on S P \<Longrightarrow> \<exists>c. \<forall>s\<in>S. P s = c) \<Longrightarrow> connected S" | |
| 63494 | 2485 | by (auto simp: connected_iff_const) | 
| 59106 | 2486 | |
| 56329 | 2487 | lemma connected_local_const: | 
| 2488 | assumes "connected A" "a \<in> A" "b \<in> A" | |
| 63494 | 2489 | and *: "\<forall>a\<in>A. eventually (\<lambda>b. f a = f b) (at a within A)" | 
| 56329 | 2490 | shows "f a = f b" | 
| 2491 | proof - | |
| 2492 | obtain S where S: "\<And>a. a \<in> A \<Longrightarrow> a \<in> S a" "\<And>a. a \<in> A \<Longrightarrow> open (S a)" | |
| 2493 | "\<And>a x. a \<in> A \<Longrightarrow> x \<in> S a \<Longrightarrow> x \<in> A \<Longrightarrow> f a = f x" | |
| 2494 | using * unfolding eventually_at_topological by metis | |
| 2495 |   let ?P = "\<Union>b\<in>{b\<in>A. f a = f b}. S b" and ?N = "\<Union>b\<in>{b\<in>A. f a \<noteq> f b}. S b"
 | |
| 2496 |   have "?P \<inter> A = {} \<or> ?N \<inter> A = {}"
 | |
| 60758 | 2497 | using \<open>connected A\<close> S \<open>a\<in>A\<close> | 
| 56329 | 2498 | by (intro connectedD) (auto, metis) | 
| 2499 | then show "f a = f b" | |
| 2500 | proof | |
| 2501 |     assume "?N \<inter> A = {}"
 | |
| 2502 | then have "\<forall>x\<in>A. f a = f x" | |
| 2503 | using S(1) by auto | |
| 60758 | 2504 | with \<open>b\<in>A\<close> show ?thesis by auto | 
| 56329 | 2505 | next | 
| 2506 |     assume "?P \<inter> A = {}" then show ?thesis
 | |
| 60758 | 2507 | using \<open>a \<in> A\<close> S(1)[of a] by auto | 
| 56329 | 2508 | qed | 
| 2509 | qed | |
| 2510 | ||
| 51480 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2511 | lemma (in linorder_topology) connectedD_interval: | 
| 63494 | 2512 | assumes "connected U" | 
| 2513 | and xy: "x \<in> U" "y \<in> U" | |
| 2514 | and "x \<le> z" "z \<le> y" | |
| 51480 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2515 | shows "z \<in> U" | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2516 | proof - | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2517 |   have eq: "{..<z} \<union> {z<..} = - {z}"
 | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2518 | by auto | 
| 63494 | 2519 | have "\<not> connected U" if "z \<notin> U" "x < z" "z < y" | 
| 2520 | using xy that | |
| 2521 | apply (simp only: connected_def simp_thms) | |
| 2522 |     apply (rule_tac exI[of _ "{..< z}"])
 | |
| 2523 |     apply (rule_tac exI[of _ "{z <..}"])
 | |
| 2524 | apply (auto simp add: eq) | |
| 2525 | done | |
| 51480 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2526 | with assms show "z \<in> U" | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2527 | by (metis less_le) | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2528 | qed | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2529 | |
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2530 | lemma connected_continuous_image: | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2531 | assumes *: "continuous_on s f" | 
| 63494 | 2532 | and "connected s" | 
| 51480 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2533 | shows "connected (f ` s)" | 
| 59106 | 2534 | proof (rule connectedI_const) | 
| 63494 | 2535 | fix P :: "'b \<Rightarrow> bool" | 
| 2536 | assume "continuous_on (f ` s) P" | |
| 59106 | 2537 | then have "continuous_on s (P \<circ> f)" | 
| 2538 | by (rule continuous_on_compose[OF *]) | |
| 60758 | 2539 | from connectedD_const[OF \<open>connected s\<close> this] show "\<exists>c. \<forall>s\<in>f ` s. P s = c" | 
| 59106 | 2540 | by auto | 
| 51480 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2541 | qed | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2542 | |
| 61306 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2543 | |
| 
9dd394c866fc
New theorems about connected sets. And pairwise moved to Set.thy.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2544 | section \<open>Linear Continuum Topologies\<close> | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2545 | |
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2546 | class linear_continuum_topology = linorder_topology + linear_continuum | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2547 | begin | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2548 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2549 | lemma Inf_notin_open: | 
| 63494 | 2550 | assumes A: "open A" | 
| 2551 | and bnd: "\<forall>a\<in>A. x < a" | |
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2552 | shows "Inf A \<notin> A" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2553 | proof | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2554 | assume "Inf A \<in> A" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2555 |   then obtain b where "b < Inf A" "{b <.. Inf A} \<subseteq> A"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2556 | using open_left[of A "Inf A" x] assms by auto | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2557 | with dense[of b "Inf A"] obtain c where "c < Inf A" "c \<in> A" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2558 | by (auto simp: subset_eq) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2559 | then show False | 
| 63494 | 2560 | using cInf_lower[OF \<open>c \<in> A\<close>] bnd | 
| 2561 | by (metis not_le less_imp_le bdd_belowI) | |
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2562 | qed | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2563 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2564 | lemma Sup_notin_open: | 
| 63494 | 2565 | assumes A: "open A" | 
| 2566 | and bnd: "\<forall>a\<in>A. a < x" | |
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2567 | shows "Sup A \<notin> A" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2568 | proof | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2569 | assume "Sup A \<in> A" | 
| 63494 | 2570 |   with assms obtain b where "Sup A < b" "{Sup A ..< b} \<subseteq> A"
 | 
| 2571 | using open_right[of A "Sup A" x] by auto | |
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2572 | with dense[of "Sup A" b] obtain c where "Sup A < c" "c \<in> A" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2573 | by (auto simp: subset_eq) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2574 | then show False | 
| 63494 | 2575 | using cSup_upper[OF \<open>c \<in> A\<close>] bnd | 
| 2576 | by (metis less_imp_le not_le bdd_aboveI) | |
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2577 | qed | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2578 | |
| 51480 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2579 | end | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2580 | |
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2581 | instance linear_continuum_topology \<subseteq> perfect_space | 
| 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2582 | proof | 
| 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2583 | fix x :: 'a | 
| 53381 | 2584 | obtain y where "x < y \<or> y < x" | 
| 2585 | using ex_gt_or_lt [of x] .. | |
| 63494 | 2586 |   with Inf_notin_open[of "{x}" y] Sup_notin_open[of "{x}" y] show "\<not> open {x}"
 | 
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2587 | by auto | 
| 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2588 | qed | 
| 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2589 | |
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2590 | lemma connectedI_interval: | 
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2591 | fixes U :: "'a :: linear_continuum_topology set" | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2592 | assumes *: "\<And>x y z. x \<in> U \<Longrightarrow> y \<in> U \<Longrightarrow> x \<le> z \<Longrightarrow> z \<le> y \<Longrightarrow> z \<in> U" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2593 | shows "connected U" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2594 | proof (rule connectedI) | 
| 63494 | 2595 |   {
 | 
| 2596 | fix A B | |
| 2597 |     assume "open A" "open B" "A \<inter> B \<inter> U = {}" "U \<subseteq> A \<union> B"
 | |
| 2598 | fix x y | |
| 2599 | assume "x < y" "x \<in> A" "y \<in> B" "x \<in> U" "y \<in> U" | |
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2600 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2601 |     let ?z = "Inf (B \<inter> {x <..})"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2602 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2603 | have "x \<le> ?z" "?z \<le> y" | 
| 60758 | 2604 | using \<open>y \<in> B\<close> \<open>x < y\<close> by (auto intro: cInf_lower cInf_greatest) | 
| 2605 | with \<open>x \<in> U\<close> \<open>y \<in> U\<close> have "?z \<in> U" | |
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2606 | by (rule *) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2607 |     moreover have "?z \<notin> B \<inter> {x <..}"
 | 
| 60758 | 2608 | using \<open>open B\<close> by (intro Inf_notin_open) auto | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2609 | ultimately have "?z \<in> A" | 
| 60758 | 2610 |       using \<open>x \<le> ?z\<close> \<open>A \<inter> B \<inter> U = {}\<close> \<open>x \<in> A\<close> \<open>U \<subseteq> A \<union> B\<close> by auto
 | 
| 63494 | 2611 | have "\<exists>b\<in>B. b \<in> A \<and> b \<in> U" if "?z < y" | 
| 2612 | proof - | |
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2613 |       obtain a where "?z < a" "{?z ..< a} \<subseteq> A"
 | 
| 60758 | 2614 | using open_right[OF \<open>open A\<close> \<open>?z \<in> A\<close> \<open>?z < y\<close>] by auto | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2615 | moreover obtain b where "b \<in> B" "x < b" "b < min a y" | 
| 60758 | 2616 |         using cInf_less_iff[of "B \<inter> {x <..}" "min a y"] \<open>?z < a\<close> \<open>?z < y\<close> \<open>x < y\<close> \<open>y \<in> B\<close>
 | 
| 63171 | 2617 | by auto | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53215diff
changeset | 2618 | moreover have "?z \<le> b" | 
| 60758 | 2619 | using \<open>b \<in> B\<close> \<open>x < b\<close> | 
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
53946diff
changeset | 2620 | by (intro cInf_lower) auto | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2621 | moreover have "b \<in> U" | 
| 60758 | 2622 | using \<open>x \<le> ?z\<close> \<open>?z \<le> b\<close> \<open>b < min a y\<close> | 
| 2623 | by (intro *[OF \<open>x \<in> U\<close> \<open>y \<in> U\<close>]) (auto simp: less_imp_le) | |
| 63494 | 2624 | ultimately show ?thesis | 
| 2625 | by (intro bexI[of _ b]) auto | |
| 2626 | qed | |
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2627 | then have False | 
| 63494 | 2628 |       using \<open>?z \<le> y\<close> \<open>?z \<in> A\<close> \<open>y \<in> B\<close> \<open>y \<in> U\<close> \<open>A \<inter> B \<inter> U = {}\<close>
 | 
| 2629 | unfolding le_less by blast | |
| 2630 | } | |
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2631 | note not_disjoint = this | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2632 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2633 |   fix A B assume AB: "open A" "open B" "U \<subseteq> A \<union> B" "A \<inter> B \<inter> U = {}"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2634 |   moreover assume "A \<inter> U \<noteq> {}" then obtain x where x: "x \<in> U" "x \<in> A" by auto
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2635 |   moreover assume "B \<inter> U \<noteq> {}" then obtain y where y: "y \<in> U" "y \<in> B" by auto
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2636 | moreover note not_disjoint[of B A y x] not_disjoint[of A B x y] | 
| 63494 | 2637 | ultimately show False | 
| 2638 | by (cases x y rule: linorder_cases) auto | |
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2639 | qed | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2640 | |
| 63494 | 2641 | lemma connected_iff_interval: "connected U \<longleftrightarrow> (\<forall>x\<in>U. \<forall>y\<in>U. \<forall>z. x \<le> z \<longrightarrow> z \<le> y \<longrightarrow> z \<in> U)" | 
| 2642 | for U :: "'a::linear_continuum_topology set" | |
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2643 | by (auto intro: connectedI_interval dest: connectedD_interval) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2644 | |
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2645 | lemma connected_UNIV[simp]: "connected (UNIV::'a::linear_continuum_topology set)" | 
| 63494 | 2646 | by (simp add: connected_iff_interval) | 
| 2647 | ||
| 2648 | lemma connected_Ioi[simp]: "connected {a<..}"
 | |
| 2649 | for a :: "'a::linear_continuum_topology" | |
| 2650 | by (auto simp: connected_iff_interval) | |
| 2651 | ||
| 2652 | lemma connected_Ici[simp]: "connected {a..}"
 | |
| 2653 | for a :: "'a::linear_continuum_topology" | |
| 2654 | by (auto simp: connected_iff_interval) | |
| 2655 | ||
| 2656 | lemma connected_Iio[simp]: "connected {..<a}"
 | |
| 2657 | for a :: "'a::linear_continuum_topology" | |
| 2658 | by (auto simp: connected_iff_interval) | |
| 2659 | ||
| 2660 | lemma connected_Iic[simp]: "connected {..a}"
 | |
| 2661 | for a :: "'a::linear_continuum_topology" | |
| 2662 | by (auto simp: connected_iff_interval) | |
| 2663 | ||
| 2664 | lemma connected_Ioo[simp]: "connected {a<..<b}"
 | |
| 2665 | for a b :: "'a::linear_continuum_topology" | |
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2666 | unfolding connected_iff_interval by auto | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2667 | |
| 63494 | 2668 | lemma connected_Ioc[simp]: "connected {a<..b}"
 | 
| 2669 | for a b :: "'a::linear_continuum_topology" | |
| 2670 | by (auto simp: connected_iff_interval) | |
| 2671 | ||
| 2672 | lemma connected_Ico[simp]: "connected {a..<b}"
 | |
| 2673 | for a b :: "'a::linear_continuum_topology" | |
| 2674 | by (auto simp: connected_iff_interval) | |
| 2675 | ||
| 2676 | lemma connected_Icc[simp]: "connected {a..b}"
 | |
| 2677 | for a b :: "'a::linear_continuum_topology" | |
| 2678 | by (auto simp: connected_iff_interval) | |
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2679 | |
| 62102 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 2680 | lemma connected_contains_Ioo: | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2681 | fixes A :: "'a :: linorder_topology set" | 
| 63494 | 2682 |   assumes "connected A" "a \<in> A" "b \<in> A" shows "{a <..< b} \<subseteq> A"
 | 
| 2683 | using connectedD_interval[OF assms] by (simp add: subset_eq Ball_def less_imp_le) | |
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2684 | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 2685 | lemma connected_contains_Icc: | 
| 63494 | 2686 | fixes A :: "'a::linorder_topology set" | 
| 2687 | assumes "connected A" "a \<in> A" "b \<in> A" | |
| 2688 |   shows "{a..b} \<subseteq> A"
 | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 2689 | proof | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 2690 |   fix x assume "x \<in> {a..b}"
 | 
| 63494 | 2691 |   then have "x = a \<or> x = b \<or> x \<in> {a<..<b}"
 | 
| 2692 | by auto | |
| 2693 | then show "x \<in> A" | |
| 2694 | using assms connected_contains_Ioo[of A a b] by auto | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 2695 | qed | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61520diff
changeset | 2696 | |
| 63494 | 2697 | |
| 60758 | 2698 | subsection \<open>Intermediate Value Theorem\<close> | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2699 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2700 | lemma IVT': | 
| 63494 | 2701 | fixes f :: "'a::linear_continuum_topology \<Rightarrow> 'b::linorder_topology" | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2702 | assumes y: "f a \<le> y" "y \<le> f b" "a \<le> b" | 
| 63494 | 2703 |     and *: "continuous_on {a .. b} f"
 | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2704 | shows "\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = y" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2705 | proof - | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2706 |   have "connected {a..b}"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2707 | unfolding connected_iff_interval by auto | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2708 | from connected_continuous_image[OF * this, THEN connectedD_interval, of "f a" "f b" y] y | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2709 | show ?thesis | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2710 | by (auto simp add: atLeastAtMost_def atLeast_def atMost_def) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2711 | qed | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2712 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2713 | lemma IVT2': | 
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2714 | fixes f :: "'a :: linear_continuum_topology \<Rightarrow> 'b :: linorder_topology" | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2715 | assumes y: "f b \<le> y" "y \<le> f a" "a \<le> b" | 
| 63494 | 2716 |     and *: "continuous_on {a .. b} f"
 | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2717 | shows "\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = y" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2718 | proof - | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2719 |   have "connected {a..b}"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2720 | unfolding connected_iff_interval by auto | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2721 | from connected_continuous_image[OF * this, THEN connectedD_interval, of "f b" "f a" y] y | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2722 | show ?thesis | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2723 | by (auto simp add: atLeastAtMost_def atLeast_def atMost_def) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2724 | qed | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2725 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2726 | lemma IVT: | 
| 63494 | 2727 | fixes f :: "'a::linear_continuum_topology \<Rightarrow> 'b::linorder_topology" | 
| 2728 | shows "f a \<le> y \<Longrightarrow> y \<le> f b \<Longrightarrow> a \<le> b \<Longrightarrow> (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x) \<Longrightarrow> | |
| 2729 | \<exists>x. a \<le> x \<and> x \<le> b \<and> f x = y" | |
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2730 | by (rule IVT') (auto intro: continuous_at_imp_continuous_on) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2731 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2732 | lemma IVT2: | 
| 63494 | 2733 | fixes f :: "'a::linear_continuum_topology \<Rightarrow> 'b::linorder_topology" | 
| 2734 | shows "f b \<le> y \<Longrightarrow> y \<le> f a \<Longrightarrow> a \<le> b \<Longrightarrow> (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x) \<Longrightarrow> | |
| 2735 | \<exists>x. a \<le> x \<and> x \<le> b \<and> f x = y" | |
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2736 | by (rule IVT2') (auto intro: continuous_at_imp_continuous_on) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2737 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2738 | lemma continuous_inj_imp_mono: | 
| 63494 | 2739 | fixes f :: "'a::linear_continuum_topology \<Rightarrow> 'b::linorder_topology" | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2740 | assumes x: "a < x" "x < b" | 
| 63494 | 2741 |     and cont: "continuous_on {a..b} f"
 | 
| 2742 |     and inj: "inj_on f {a..b}"
 | |
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2743 | shows "(f a < f x \<and> f x < f b) \<or> (f b < f x \<and> f x < f a)" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2744 | proof - | 
| 61520 
8f85bb443d33
Cauchy's integral formula, required lemmas, and a bit of reorganisation
 paulson <lp15@cam.ac.uk> parents: 
61426diff
changeset | 2745 | note I = inj_on_eq_iff[OF inj] | 
| 63494 | 2746 |   {
 | 
| 2747 | assume "f x < f a" "f x < f b" | |
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2748 | then obtain s t where "x \<le> s" "s \<le> b" "a \<le> t" "t \<le> x" "f s = f t" "f x < f s" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2749 | using IVT'[of f x "min (f a) (f b)" b] IVT2'[of f x "min (f a) (f b)" a] x | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2750 | by (auto simp: continuous_on_subset[OF cont] less_imp_le) | 
| 63494 | 2751 | with x I have False by auto | 
| 2752 | } | |
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2753 | moreover | 
| 63494 | 2754 |   {
 | 
| 2755 | assume "f a < f x" "f b < f x" | |
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2756 | then obtain s t where "x \<le> s" "s \<le> b" "a \<le> t" "t \<le> x" "f s = f t" "f s < f x" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2757 | using IVT'[of f a "max (f a) (f b)" x] IVT2'[of f b "max (f a) (f b)" x] x | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2758 | by (auto simp: continuous_on_subset[OF cont] less_imp_le) | 
| 63494 | 2759 | with x I have False by auto | 
| 2760 | } | |
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2761 | ultimately show ?thesis | 
| 63494 | 2762 | using I[of a x] I[of x b] x less_trans[OF x] | 
| 2763 | by (auto simp add: le_less less_imp_neq neq_iff) | |
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2764 | qed | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2765 | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2766 | lemma continuous_at_Sup_mono: | 
| 63494 | 2767 |   fixes f :: "'a::{linorder_topology,conditionally_complete_linorder} \<Rightarrow>
 | 
| 2768 |     'b::{linorder_topology,conditionally_complete_linorder}"
 | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2769 | assumes "mono f" | 
| 63494 | 2770 | and cont: "continuous (at_left (Sup S)) f" | 
| 2771 |     and S: "S \<noteq> {}" "bdd_above S"
 | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2772 | shows "f (Sup S) = (SUP s:S. f s)" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2773 | proof (rule antisym) | 
| 61973 | 2774 | have f: "(f \<longlongrightarrow> f (Sup S)) (at_left (Sup S))" | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2775 | using cont unfolding continuous_within . | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2776 | show "f (Sup S) \<le> (SUP s:S. f s)" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2777 | proof cases | 
| 63494 | 2778 | assume "Sup S \<in> S" | 
| 2779 | then show ?thesis | |
| 60758 | 2780 | by (rule cSUP_upper) (auto intro: bdd_above_image_mono S \<open>mono f\<close>) | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2781 | next | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2782 | assume "Sup S \<notin> S" | 
| 60758 | 2783 |     from \<open>S \<noteq> {}\<close> obtain s where "s \<in> S"
 | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2784 | by auto | 
| 60758 | 2785 | with \<open>Sup S \<notin> S\<close> S have "s < Sup S" | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2786 | unfolding less_le by (blast intro: cSup_upper) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2787 | show ?thesis | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2788 | proof (rule ccontr) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2789 | assume "\<not> ?thesis" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2790 | with order_tendstoD(1)[OF f, of "SUP s:S. f s"] obtain b where "b < Sup S" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2791 | and *: "\<And>y. b < y \<Longrightarrow> y < Sup S \<Longrightarrow> (SUP s:S. f s) < f y" | 
| 60758 | 2792 | by (auto simp: not_le eventually_at_left[OF \<open>s < Sup S\<close>]) | 
| 2793 |       with \<open>S \<noteq> {}\<close> obtain c where "c \<in> S" "b < c"
 | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2794 | using less_cSupD[of S b] by auto | 
| 60758 | 2795 | with \<open>Sup S \<notin> S\<close> S have "c < Sup S" | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2796 | unfolding less_le by (blast intro: cSup_upper) | 
| 60758 | 2797 | from *[OF \<open>b < c\<close> \<open>c < Sup S\<close>] cSUP_upper[OF \<open>c \<in> S\<close> bdd_above_image_mono[of f]] | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2798 | show False | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2799 | by (auto simp: assms) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2800 | qed | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2801 | qed | 
| 60758 | 2802 | qed (intro cSUP_least \<open>mono f\<close>[THEN monoD] cSup_upper S) | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2803 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2804 | lemma continuous_at_Sup_antimono: | 
| 63494 | 2805 |   fixes f :: "'a::{linorder_topology,conditionally_complete_linorder} \<Rightarrow>
 | 
| 2806 |     'b::{linorder_topology,conditionally_complete_linorder}"
 | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2807 | assumes "antimono f" | 
| 63494 | 2808 | and cont: "continuous (at_left (Sup S)) f" | 
| 2809 |     and S: "S \<noteq> {}" "bdd_above S"
 | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2810 | shows "f (Sup S) = (INF s:S. f s)" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2811 | proof (rule antisym) | 
| 61973 | 2812 | have f: "(f \<longlongrightarrow> f (Sup S)) (at_left (Sup S))" | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2813 | using cont unfolding continuous_within . | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2814 | show "(INF s:S. f s) \<le> f (Sup S)" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2815 | proof cases | 
| 63494 | 2816 | assume "Sup S \<in> S" | 
| 2817 | then show ?thesis | |
| 60758 | 2818 | by (intro cINF_lower) (auto intro: bdd_below_image_antimono S \<open>antimono f\<close>) | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2819 | next | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2820 | assume "Sup S \<notin> S" | 
| 60758 | 2821 |     from \<open>S \<noteq> {}\<close> obtain s where "s \<in> S"
 | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2822 | by auto | 
| 60758 | 2823 | with \<open>Sup S \<notin> S\<close> S have "s < Sup S" | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2824 | unfolding less_le by (blast intro: cSup_upper) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2825 | show ?thesis | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2826 | proof (rule ccontr) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2827 | assume "\<not> ?thesis" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2828 | with order_tendstoD(2)[OF f, of "INF s:S. f s"] obtain b where "b < Sup S" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2829 | and *: "\<And>y. b < y \<Longrightarrow> y < Sup S \<Longrightarrow> f y < (INF s:S. f s)" | 
| 60758 | 2830 | by (auto simp: not_le eventually_at_left[OF \<open>s < Sup S\<close>]) | 
| 2831 |       with \<open>S \<noteq> {}\<close> obtain c where "c \<in> S" "b < c"
 | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2832 | using less_cSupD[of S b] by auto | 
| 60758 | 2833 | with \<open>Sup S \<notin> S\<close> S have "c < Sup S" | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2834 | unfolding less_le by (blast intro: cSup_upper) | 
| 60758 | 2835 | from *[OF \<open>b < c\<close> \<open>c < Sup S\<close>] cINF_lower[OF bdd_below_image_antimono, of f S c] \<open>c \<in> S\<close> | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2836 | show False | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2837 | by (auto simp: assms) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2838 | qed | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2839 | qed | 
| 60758 | 2840 | qed (intro cINF_greatest \<open>antimono f\<close>[THEN antimonoD] cSup_upper S) | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2841 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2842 | lemma continuous_at_Inf_mono: | 
| 63494 | 2843 |   fixes f :: "'a::{linorder_topology,conditionally_complete_linorder} \<Rightarrow>
 | 
| 2844 |     'b::{linorder_topology,conditionally_complete_linorder}"
 | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2845 | assumes "mono f" | 
| 63494 | 2846 | and cont: "continuous (at_right (Inf S)) f" | 
| 2847 |     and S: "S \<noteq> {}" "bdd_below S"
 | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2848 | shows "f (Inf S) = (INF s:S. f s)" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2849 | proof (rule antisym) | 
| 61973 | 2850 | have f: "(f \<longlongrightarrow> f (Inf S)) (at_right (Inf S))" | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2851 | using cont unfolding continuous_within . | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2852 | show "(INF s:S. f s) \<le> f (Inf S)" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2853 | proof cases | 
| 63494 | 2854 | assume "Inf S \<in> S" | 
| 2855 | then show ?thesis | |
| 60758 | 2856 | by (rule cINF_lower[rotated]) (auto intro: bdd_below_image_mono S \<open>mono f\<close>) | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2857 | next | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2858 | assume "Inf S \<notin> S" | 
| 60758 | 2859 |     from \<open>S \<noteq> {}\<close> obtain s where "s \<in> S"
 | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2860 | by auto | 
| 60758 | 2861 | with \<open>Inf S \<notin> S\<close> S have "Inf S < s" | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2862 | unfolding less_le by (blast intro: cInf_lower) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2863 | show ?thesis | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2864 | proof (rule ccontr) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2865 | assume "\<not> ?thesis" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2866 | with order_tendstoD(2)[OF f, of "INF s:S. f s"] obtain b where "Inf S < b" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2867 | and *: "\<And>y. Inf S < y \<Longrightarrow> y < b \<Longrightarrow> f y < (INF s:S. f s)" | 
| 60758 | 2868 | by (auto simp: not_le eventually_at_right[OF \<open>Inf S < s\<close>]) | 
| 2869 |       with \<open>S \<noteq> {}\<close> obtain c where "c \<in> S" "c < b"
 | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2870 | using cInf_lessD[of S b] by auto | 
| 60758 | 2871 | with \<open>Inf S \<notin> S\<close> S have "Inf S < c" | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2872 | unfolding less_le by (blast intro: cInf_lower) | 
| 60758 | 2873 | from *[OF \<open>Inf S < c\<close> \<open>c < b\<close>] cINF_lower[OF bdd_below_image_mono[of f] \<open>c \<in> S\<close>] | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2874 | show False | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2875 | by (auto simp: assms) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2876 | qed | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2877 | qed | 
| 60758 | 2878 | qed (intro cINF_greatest \<open>mono f\<close>[THEN monoD] cInf_lower \<open>bdd_below S\<close> \<open>S \<noteq> {}\<close>)
 | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2879 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2880 | lemma continuous_at_Inf_antimono: | 
| 63494 | 2881 |   fixes f :: "'a::{linorder_topology,conditionally_complete_linorder} \<Rightarrow>
 | 
| 2882 |     'b::{linorder_topology,conditionally_complete_linorder}"
 | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2883 | assumes "antimono f" | 
| 63494 | 2884 | and cont: "continuous (at_right (Inf S)) f" | 
| 2885 |     and S: "S \<noteq> {}" "bdd_below S"
 | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2886 | shows "f (Inf S) = (SUP s:S. f s)" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2887 | proof (rule antisym) | 
| 61973 | 2888 | have f: "(f \<longlongrightarrow> f (Inf S)) (at_right (Inf S))" | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2889 | using cont unfolding continuous_within . | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2890 | show "f (Inf S) \<le> (SUP s:S. f s)" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2891 | proof cases | 
| 63494 | 2892 | assume "Inf S \<in> S" | 
| 2893 | then show ?thesis | |
| 60758 | 2894 | by (rule cSUP_upper) (auto intro: bdd_above_image_antimono S \<open>antimono f\<close>) | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2895 | next | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2896 | assume "Inf S \<notin> S" | 
| 60758 | 2897 |     from \<open>S \<noteq> {}\<close> obtain s where "s \<in> S"
 | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2898 | by auto | 
| 60758 | 2899 | with \<open>Inf S \<notin> S\<close> S have "Inf S < s" | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2900 | unfolding less_le by (blast intro: cInf_lower) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2901 | show ?thesis | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2902 | proof (rule ccontr) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2903 | assume "\<not> ?thesis" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2904 | with order_tendstoD(1)[OF f, of "SUP s:S. f s"] obtain b where "Inf S < b" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2905 | and *: "\<And>y. Inf S < y \<Longrightarrow> y < b \<Longrightarrow> (SUP s:S. f s) < f y" | 
| 60758 | 2906 | by (auto simp: not_le eventually_at_right[OF \<open>Inf S < s\<close>]) | 
| 2907 |       with \<open>S \<noteq> {}\<close> obtain c where "c \<in> S" "c < b"
 | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2908 | using cInf_lessD[of S b] by auto | 
| 60758 | 2909 | with \<open>Inf S \<notin> S\<close> S have "Inf S < c" | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2910 | unfolding less_le by (blast intro: cInf_lower) | 
| 60758 | 2911 | from *[OF \<open>Inf S < c\<close> \<open>c < b\<close>] cSUP_upper[OF \<open>c \<in> S\<close> bdd_above_image_antimono[of f]] | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2912 | show False | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2913 | by (auto simp: assms) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2914 | qed | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2915 | qed | 
| 60758 | 2916 | qed (intro cSUP_least \<open>antimono f\<close>[THEN antimonoD] cInf_lower S) | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59106diff
changeset | 2917 | |
| 63494 | 2918 | |
| 62101 | 2919 | subsection \<open>Uniform spaces\<close> | 
| 2920 | ||
| 62102 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 2921 | class uniformity = | 
| 62101 | 2922 |   fixes uniformity :: "('a \<times> 'a) filter"
 | 
| 2923 | begin | |
| 2924 | ||
| 63494 | 2925 | abbreviation uniformity_on :: "'a set \<Rightarrow> ('a \<times> 'a) filter"
 | 
| 2926 | where "uniformity_on s \<equiv> inf uniformity (principal (s\<times>s))" | |
| 62101 | 2927 | |
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2928 | end | 
| 62101 | 2929 | |
| 62102 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 2930 | lemma uniformity_Abort: | 
| 62123 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2931 | "uniformity = | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2932 | Filter.abstract_filter (\<lambda>u. Code.abort (STR ''uniformity is not executable'') (\<lambda>u. uniformity))" | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 2933 | by simp | 
| 62102 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 2934 | |
| 62101 | 2935 | class open_uniformity = "open" + uniformity + | 
| 63494 | 2936 | assumes open_uniformity: | 
| 2937 | "\<And>U. open U \<longleftrightarrow> (\<forall>x\<in>U. eventually (\<lambda>(x', y). x' = x \<longrightarrow> y \<in> U) uniformity)" | |
| 62101 | 2938 | |
| 2939 | class uniform_space = open_uniformity + | |
| 2940 | assumes uniformity_refl: "eventually E uniformity \<Longrightarrow> E (x, x)" | |
| 63494 | 2941 | and uniformity_sym: "eventually E uniformity \<Longrightarrow> eventually (\<lambda>(x, y). E (y, x)) uniformity" | 
| 2942 | and uniformity_trans: | |
| 2943 | "eventually E uniformity \<Longrightarrow> | |
| 2944 | \<exists>D. eventually D uniformity \<and> (\<forall>x y z. D (x, y) \<longrightarrow> D (y, z) \<longrightarrow> E (x, z))" | |
| 62101 | 2945 | begin | 
| 2946 | ||
| 2947 | subclass topological_space | |
| 63494 | 2948 | by standard (force elim: eventually_mono eventually_elim2 simp: split_beta' open_uniformity)+ | 
| 62101 | 2949 | |
| 2950 | lemma uniformity_bot: "uniformity \<noteq> bot" | |
| 2951 | using uniformity_refl by auto | |
| 2952 | ||
| 2953 | lemma uniformity_trans': | |
| 63494 | 2954 | "eventually E uniformity \<Longrightarrow> | 
| 2955 | eventually (\<lambda>((x, y), (y', z)). y = y' \<longrightarrow> E (x, z)) (uniformity \<times>\<^sub>F uniformity)" | |
| 62101 | 2956 | by (drule uniformity_trans) (auto simp add: eventually_prod_same) | 
| 2957 | ||
| 2958 | lemma uniformity_transE: | |
| 63494 | 2959 | assumes "eventually E uniformity" | 
| 62101 | 2960 | obtains D where "eventually D uniformity" "\<And>x y z. D (x, y) \<Longrightarrow> D (y, z) \<Longrightarrow> E (x, z)" | 
| 63494 | 2961 | using uniformity_trans [OF assms] by auto | 
| 62101 | 2962 | |
| 2963 | lemma eventually_nhds_uniformity: | |
| 63494 | 2964 | "eventually P (nhds x) \<longleftrightarrow> eventually (\<lambda>(x', y). x' = x \<longrightarrow> P y) uniformity" | 
| 2965 | (is "_ \<longleftrightarrow> ?N P x") | |
| 62101 | 2966 | unfolding eventually_nhds | 
| 2967 | proof safe | |
| 2968 | assume *: "?N P x" | |
| 63494 | 2969 | have "?N (?N P) x" if "?N P x" for x | 
| 2970 | proof - | |
| 2971 | from that obtain D where ev: "eventually D uniformity" | |
| 2972 | and D: "D (a, b) \<Longrightarrow> D (b, c) \<Longrightarrow> case (a, c) of (x', y) \<Rightarrow> x' = x \<longrightarrow> P y" for a b c | |
| 2973 | by (rule uniformity_transE) simp | |
| 2974 | from ev show ?thesis | |
| 2975 | by eventually_elim (insert ev D, force elim: eventually_mono split: prod.split) | |
| 2976 | qed | |
| 62101 | 2977 |   then have "open {x. ?N P x}"
 | 
| 2978 | by (simp add: open_uniformity) | |
| 2979 | then show "\<exists>S. open S \<and> x \<in> S \<and> (\<forall>x\<in>S. P x)" | |
| 2980 |     by (intro exI[of _ "{x. ?N P x}"]) (auto dest: uniformity_refl simp: *)
 | |
| 2981 | qed (force simp add: open_uniformity elim: eventually_mono) | |
| 2982 | ||
| 63494 | 2983 | |
| 62101 | 2984 | subsubsection \<open>Totally bounded sets\<close> | 
| 2985 | ||
| 63494 | 2986 | definition totally_bounded :: "'a set \<Rightarrow> bool" | 
| 2987 | where "totally_bounded S \<longleftrightarrow> | |
| 62101 | 2988 | (\<forall>E. eventually E uniformity \<longrightarrow> (\<exists>X. finite X \<and> (\<forall>s\<in>S. \<exists>x\<in>X. E (x, s))))" | 
| 2989 | ||
| 2990 | lemma totally_bounded_empty[iff]: "totally_bounded {}"
 | |
| 2991 | by (auto simp add: totally_bounded_def) | |
| 2992 | ||
| 2993 | lemma totally_bounded_subset: "totally_bounded S \<Longrightarrow> T \<subseteq> S \<Longrightarrow> totally_bounded T" | |
| 63171 | 2994 | by (fastforce simp add: totally_bounded_def) | 
| 62101 | 2995 | |
| 62102 
877463945ce9
fix code generation for uniformity: uniformity is a non-computable pure data.
 hoelzl parents: 
62101diff
changeset | 2996 | lemma totally_bounded_Union[intro]: | 
| 63494 | 2997 | assumes M: "finite M" "\<And>S. S \<in> M \<Longrightarrow> totally_bounded S" | 
| 2998 | shows "totally_bounded (\<Union>M)" | |
| 62101 | 2999 | unfolding totally_bounded_def | 
| 3000 | proof safe | |
| 63494 | 3001 | fix E | 
| 3002 | assume "eventually E uniformity" | |
| 62101 | 3003 | with M obtain X where "\<forall>S\<in>M. finite (X S) \<and> (\<forall>s\<in>S. \<exists>x\<in>X S. E (x, s))" | 
| 3004 | by (metis totally_bounded_def) | |
| 62175 | 3005 | with \<open>finite M\<close> show "\<exists>X. finite X \<and> (\<forall>s\<in>\<Union>M. \<exists>x\<in>X. E (x, s))" | 
| 62101 | 3006 | by (intro exI[of _ "\<Union>S\<in>M. X S"]) force | 
| 3007 | qed | |
| 3008 | ||
| 63494 | 3009 | |
| 62101 | 3010 | subsubsection \<open>Cauchy filter\<close> | 
| 3011 | ||
| 63494 | 3012 | definition cauchy_filter :: "'a filter \<Rightarrow> bool" | 
| 3013 | where "cauchy_filter F \<longleftrightarrow> F \<times>\<^sub>F F \<le> uniformity" | |
| 3014 | ||
| 3015 | definition Cauchy :: "(nat \<Rightarrow> 'a) \<Rightarrow> bool" | |
| 3016 | where Cauchy_uniform: "Cauchy X = cauchy_filter (filtermap X sequentially)" | |
| 62101 | 3017 | |
| 3018 | lemma Cauchy_uniform_iff: | |
| 3019 | "Cauchy X \<longleftrightarrow> (\<forall>P. eventually P uniformity \<longrightarrow> (\<exists>N. \<forall>n\<ge>N. \<forall>m\<ge>N. P (X n, X m)))" | |
| 3020 | unfolding Cauchy_uniform cauchy_filter_def le_filter_def eventually_prod_same | |
| 3021 | eventually_filtermap eventually_sequentially | |
| 3022 | proof safe | |
| 3023 | let ?U = "\<lambda>P. eventually P uniformity" | |
| 63494 | 3024 |   {
 | 
| 3025 | fix P | |
| 3026 | assume "?U P" "\<forall>P. ?U P \<longrightarrow> (\<exists>Q. (\<exists>N. \<forall>n\<ge>N. Q (X n)) \<and> (\<forall>x y. Q x \<longrightarrow> Q y \<longrightarrow> P (x, y)))" | |
| 62101 | 3027 | then obtain Q N where "\<And>n. n \<ge> N \<Longrightarrow> Q (X n)" "\<And>x y. Q x \<Longrightarrow> Q y \<Longrightarrow> P (x, y)" | 
| 3028 | by metis | |
| 3029 | then show "\<exists>N. \<forall>n\<ge>N. \<forall>m\<ge>N. P (X n, X m)" | |
| 63494 | 3030 | by blast | 
| 3031 | next | |
| 3032 | fix P | |
| 3033 | assume "?U P" and P: "\<forall>P. ?U P \<longrightarrow> (\<exists>N. \<forall>n\<ge>N. \<forall>m\<ge>N. P (X n, X m))" | |
| 62101 | 3034 | then obtain Q where "?U Q" and Q: "\<And>x y z. Q (x, y) \<Longrightarrow> Q (y, z) \<Longrightarrow> P (x, z)" | 
| 3035 | by (auto elim: uniformity_transE) | |
| 3036 | then have "?U (\<lambda>x. Q x \<and> (\<lambda>(x, y). Q (y, x)) x)" | |
| 3037 | unfolding eventually_conj_iff by (simp add: uniformity_sym) | |
| 3038 | from P[rule_format, OF this] | |
| 3039 | obtain N where N: "\<And>n m. n \<ge> N \<Longrightarrow> m \<ge> N \<Longrightarrow> Q (X n, X m) \<and> Q (X m, X n)" | |
| 3040 | by auto | |
| 3041 | show "\<exists>Q. (\<exists>N. \<forall>n\<ge>N. Q (X n)) \<and> (\<forall>x y. Q x \<longrightarrow> Q y \<longrightarrow> P (x, y))" | |
| 3042 | proof (safe intro!: exI[of _ "\<lambda>x. \<forall>n\<ge>N. Q (x, X n) \<and> Q (X n, x)"] exI[of _ N] N) | |
| 63494 | 3043 | fix x y | 
| 3044 | assume "\<forall>n\<ge>N. Q (x, X n) \<and> Q (X n, x)" "\<forall>n\<ge>N. Q (y, X n) \<and> Q (X n, y)" | |
| 62101 | 3045 | then have "Q (x, X N)" "Q (X N, y)" by auto | 
| 3046 | then show "P (x, y)" | |
| 3047 | by (rule Q) | |
| 63494 | 3048 | qed | 
| 3049 | } | |
| 62101 | 3050 | qed | 
| 3051 | ||
| 3052 | lemma nhds_imp_cauchy_filter: | |
| 63494 | 3053 | assumes *: "F \<le> nhds x" | 
| 3054 | shows "cauchy_filter F" | |
| 62101 | 3055 | proof - | 
| 3056 | have "F \<times>\<^sub>F F \<le> nhds x \<times>\<^sub>F nhds x" | |
| 3057 | by (intro prod_filter_mono *) | |
| 3058 | also have "\<dots> \<le> uniformity" | |
| 3059 | unfolding le_filter_def eventually_nhds_uniformity eventually_prod_same | |
| 3060 | proof safe | |
| 63494 | 3061 | fix P | 
| 3062 | assume "eventually P uniformity" | |
| 3063 | then obtain Ql where ev: "eventually Ql uniformity" | |
| 3064 | and "Ql (x, y) \<Longrightarrow> Ql (y, z) \<Longrightarrow> P (x, z)" for x y z | |
| 3065 | by (rule uniformity_transE) simp | |
| 3066 | with ev[THEN uniformity_sym] | |
| 3067 | show "\<exists>Q. eventually (\<lambda>(x', y). x' = x \<longrightarrow> Q y) uniformity \<and> | |
| 3068 | (\<forall>x y. Q x \<longrightarrow> Q y \<longrightarrow> P (x, y))" | |
| 62101 | 3069 | by (rule_tac exI[of _ "\<lambda>y. Ql (y, x) \<and> Ql (x, y)"]) (fastforce elim: eventually_elim2) | 
| 3070 | qed | |
| 3071 | finally show ?thesis | |
| 3072 | by (simp add: cauchy_filter_def) | |
| 3073 | qed | |
| 3074 | ||
| 3075 | lemma LIMSEQ_imp_Cauchy: "X \<longlonglongrightarrow> x \<Longrightarrow> Cauchy X" | |
| 3076 | unfolding Cauchy_uniform filterlim_def by (intro nhds_imp_cauchy_filter) | |
| 3077 | ||
| 63494 | 3078 | lemma Cauchy_subseq_Cauchy: | 
| 3079 | assumes "Cauchy X" "subseq f" | |
| 3080 | shows "Cauchy (X \<circ> f)" | |
| 62101 | 3081 | unfolding Cauchy_uniform comp_def filtermap_filtermap[symmetric] cauchy_filter_def | 
| 3082 | by (rule order_trans[OF _ \<open>Cauchy X\<close>[unfolded Cauchy_uniform cauchy_filter_def]]) | |
| 3083 | (intro prod_filter_mono filtermap_mono filterlim_subseq[OF \<open>subseq f\<close>, unfolded filterlim_def]) | |
| 3084 | ||
| 3085 | lemma convergent_Cauchy: "convergent X \<Longrightarrow> Cauchy X" | |
| 3086 | unfolding convergent_def by (erule exE, erule LIMSEQ_imp_Cauchy) | |
| 3087 | ||
| 63494 | 3088 | definition complete :: "'a set \<Rightarrow> bool" | 
| 3089 | where complete_uniform: "complete S \<longleftrightarrow> | |
| 3090 | (\<forall>F \<le> principal S. F \<noteq> bot \<longrightarrow> cauchy_filter F \<longrightarrow> (\<exists>x\<in>S. F \<le> nhds x))" | |
| 62101 | 3091 | |
| 3092 | end | |
| 3093 | ||
| 63494 | 3094 | |
| 62101 | 3095 | subsubsection \<open>Uniformly continuous functions\<close> | 
| 3096 | ||
| 63494 | 3097 | definition uniformly_continuous_on :: "'a set \<Rightarrow> ('a::uniform_space \<Rightarrow> 'b::uniform_space) \<Rightarrow> bool"
 | 
| 3098 | where uniformly_continuous_on_uniformity: "uniformly_continuous_on s f \<longleftrightarrow> | |
| 62101 | 3099 | (LIM (x, y) (uniformity_on s). (f x, f y) :> uniformity)" | 
| 3100 | ||
| 3101 | lemma uniformly_continuous_onD: | |
| 63494 | 3102 | "uniformly_continuous_on s f \<Longrightarrow> eventually E uniformity \<Longrightarrow> | 
| 3103 | eventually (\<lambda>(x, y). x \<in> s \<longrightarrow> y \<in> s \<longrightarrow> E (f x, f y)) uniformity" | |
| 3104 | by (simp add: uniformly_continuous_on_uniformity filterlim_iff | |
| 3105 | eventually_inf_principal split_beta' mem_Times_iff imp_conjL) | |
| 62101 | 3106 | |
| 3107 | lemma uniformly_continuous_on_const[continuous_intros]: "uniformly_continuous_on s (\<lambda>x. c)" | |
| 3108 | by (auto simp: uniformly_continuous_on_uniformity filterlim_iff uniformity_refl) | |
| 3109 | ||
| 3110 | lemma uniformly_continuous_on_id[continuous_intros]: "uniformly_continuous_on s (\<lambda>x. x)" | |
| 3111 | by (auto simp: uniformly_continuous_on_uniformity filterlim_def) | |
| 3112 | ||
| 3113 | lemma uniformly_continuous_on_compose[continuous_intros]: | |
| 63494 | 3114 | "uniformly_continuous_on s g \<Longrightarrow> uniformly_continuous_on (g`s) f \<Longrightarrow> | 
| 3115 | uniformly_continuous_on s (\<lambda>x. f (g x))" | |
| 3116 | using filterlim_compose[of "\<lambda>(x, y). (f x, f y)" uniformity | |
| 3117 | "uniformity_on (g`s)" "\<lambda>(x, y). (g x, g y)" "uniformity_on s"] | |
| 3118 | by (simp add: split_beta' uniformly_continuous_on_uniformity | |
| 3119 | filterlim_inf filterlim_principal eventually_inf_principal mem_Times_iff) | |
| 3120 | ||
| 3121 | lemma uniformly_continuous_imp_continuous: | |
| 3122 | assumes f: "uniformly_continuous_on s f" | |
| 3123 | shows "continuous_on s f" | |
| 62101 | 3124 | by (auto simp: filterlim_iff eventually_at_filter eventually_nhds_uniformity continuous_on_def | 
| 3125 | elim: eventually_mono dest!: uniformly_continuous_onD[OF f]) | |
| 3126 | ||
| 63494 | 3127 | |
| 62367 | 3128 | section \<open>Product Topology\<close> | 
| 3129 | ||
| 3130 | subsection \<open>Product is a topological space\<close> | |
| 3131 | ||
| 3132 | instantiation prod :: (topological_space, topological_space) topological_space | |
| 3133 | begin | |
| 3134 | ||
| 3135 | definition open_prod_def[code del]: | |
| 3136 |   "open (S :: ('a \<times> 'b) set) \<longleftrightarrow>
 | |
| 3137 | (\<forall>x\<in>S. \<exists>A B. open A \<and> open B \<and> x \<in> A \<times> B \<and> A \<times> B \<subseteq> S)" | |
| 3138 | ||
| 3139 | lemma open_prod_elim: | |
| 3140 | assumes "open S" and "x \<in> S" | |
| 3141 | obtains A B where "open A" and "open B" and "x \<in> A \<times> B" and "A \<times> B \<subseteq> S" | |
| 63494 | 3142 | using assms unfolding open_prod_def by fast | 
| 62367 | 3143 | |
| 3144 | lemma open_prod_intro: | |
| 3145 | assumes "\<And>x. x \<in> S \<Longrightarrow> \<exists>A B. open A \<and> open B \<and> x \<in> A \<times> B \<and> A \<times> B \<subseteq> S" | |
| 3146 | shows "open S" | |
| 63494 | 3147 | using assms unfolding open_prod_def by fast | 
| 62367 | 3148 | |
| 3149 | instance | |
| 3150 | proof | |
| 3151 |   show "open (UNIV :: ('a \<times> 'b) set)"
 | |
| 3152 | unfolding open_prod_def by auto | |
| 3153 | next | |
| 3154 |   fix S T :: "('a \<times> 'b) set"
 | |
| 3155 | assume "open S" "open T" | |
| 3156 | show "open (S \<inter> T)" | |
| 3157 | proof (rule open_prod_intro) | |
| 63494 | 3158 | fix x | 
| 3159 | assume x: "x \<in> S \<inter> T" | |
| 62367 | 3160 | from x have "x \<in> S" by simp | 
| 3161 | obtain Sa Sb where A: "open Sa" "open Sb" "x \<in> Sa \<times> Sb" "Sa \<times> Sb \<subseteq> S" | |
| 3162 | using \<open>open S\<close> and \<open>x \<in> S\<close> by (rule open_prod_elim) | |
| 3163 | from x have "x \<in> T" by simp | |
| 3164 | obtain Ta Tb where B: "open Ta" "open Tb" "x \<in> Ta \<times> Tb" "Ta \<times> Tb \<subseteq> T" | |
| 3165 | using \<open>open T\<close> and \<open>x \<in> T\<close> by (rule open_prod_elim) | |
| 3166 | let ?A = "Sa \<inter> Ta" and ?B = "Sb \<inter> Tb" | |
| 3167 | have "open ?A \<and> open ?B \<and> x \<in> ?A \<times> ?B \<and> ?A \<times> ?B \<subseteq> S \<inter> T" | |
| 3168 | using A B by (auto simp add: open_Int) | |
| 63494 | 3169 | then show "\<exists>A B. open A \<and> open B \<and> x \<in> A \<times> B \<and> A \<times> B \<subseteq> S \<inter> T" | 
| 62367 | 3170 | by fast | 
| 3171 | qed | |
| 3172 | next | |
| 3173 |   fix K :: "('a \<times> 'b) set set"
 | |
| 63494 | 3174 | assume "\<forall>S\<in>K. open S" | 
| 3175 | then show "open (\<Union>K)" | |
| 62367 | 3176 | unfolding open_prod_def by fast | 
| 3177 | qed | |
| 3178 | ||
| 62101 | 3179 | end | 
| 62367 | 3180 | |
| 63494 | 3181 | declare [[code abort: "open :: ('a::topological_space \<times> 'b::topological_space) set \<Rightarrow> bool"]]
 | 
| 62367 | 3182 | |
| 3183 | lemma open_Times: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<times> T)" | |
| 63494 | 3184 | unfolding open_prod_def by auto | 
| 62367 | 3185 | |
| 3186 | lemma fst_vimage_eq_Times: "fst -` S = S \<times> UNIV" | |
| 63494 | 3187 | by auto | 
| 62367 | 3188 | |
| 3189 | lemma snd_vimage_eq_Times: "snd -` S = UNIV \<times> S" | |
| 63494 | 3190 | by auto | 
| 62367 | 3191 | |
| 3192 | lemma open_vimage_fst: "open S \<Longrightarrow> open (fst -` S)" | |
| 63494 | 3193 | by (simp add: fst_vimage_eq_Times open_Times) | 
| 62367 | 3194 | |
| 3195 | lemma open_vimage_snd: "open S \<Longrightarrow> open (snd -` S)" | |
| 63494 | 3196 | by (simp add: snd_vimage_eq_Times open_Times) | 
| 62367 | 3197 | |
| 3198 | lemma closed_vimage_fst: "closed S \<Longrightarrow> closed (fst -` S)" | |
| 63494 | 3199 | unfolding closed_open vimage_Compl [symmetric] | 
| 3200 | by (rule open_vimage_fst) | |
| 62367 | 3201 | |
| 3202 | lemma closed_vimage_snd: "closed S \<Longrightarrow> closed (snd -` S)" | |
| 63494 | 3203 | unfolding closed_open vimage_Compl [symmetric] | 
| 3204 | by (rule open_vimage_snd) | |
| 62367 | 3205 | |
| 3206 | lemma closed_Times: "closed S \<Longrightarrow> closed T \<Longrightarrow> closed (S \<times> T)" | |
| 3207 | proof - | |
| 63494 | 3208 | have "S \<times> T = (fst -` S) \<inter> (snd -` T)" | 
| 3209 | by auto | |
| 3210 | then show "closed S \<Longrightarrow> closed T \<Longrightarrow> closed (S \<times> T)" | |
| 62367 | 3211 | by (simp add: closed_vimage_fst closed_vimage_snd closed_Int) | 
| 3212 | qed | |
| 3213 | ||
| 3214 | lemma subset_fst_imageI: "A \<times> B \<subseteq> S \<Longrightarrow> y \<in> B \<Longrightarrow> A \<subseteq> fst ` S" | |
| 3215 | unfolding image_def subset_eq by force | |
| 3216 | ||
| 3217 | lemma subset_snd_imageI: "A \<times> B \<subseteq> S \<Longrightarrow> x \<in> A \<Longrightarrow> B \<subseteq> snd ` S" | |
| 3218 | unfolding image_def subset_eq by force | |
| 3219 | ||
| 63494 | 3220 | lemma open_image_fst: | 
| 3221 | assumes "open S" | |
| 3222 | shows "open (fst ` S)" | |
| 62367 | 3223 | proof (rule openI) | 
| 63494 | 3224 | fix x | 
| 3225 | assume "x \<in> fst ` S" | |
| 3226 | then obtain y where "(x, y) \<in> S" | |
| 3227 | by auto | |
| 62367 | 3228 | then obtain A B where "open A" "open B" "x \<in> A" "y \<in> B" "A \<times> B \<subseteq> S" | 
| 3229 | using \<open>open S\<close> unfolding open_prod_def by auto | |
| 63494 | 3230 | from \<open>A \<times> B \<subseteq> S\<close> \<open>y \<in> B\<close> have "A \<subseteq> fst ` S" | 
| 3231 | by (rule subset_fst_imageI) | |
| 3232 | with \<open>open A\<close> \<open>x \<in> A\<close> have "open A \<and> x \<in> A \<and> A \<subseteq> fst ` S" | |
| 3233 | by simp | |
| 3234 | then show "\<exists>T. open T \<and> x \<in> T \<and> T \<subseteq> fst ` S" .. | |
| 62367 | 3235 | qed | 
| 3236 | ||
| 63494 | 3237 | lemma open_image_snd: | 
| 3238 | assumes "open S" | |
| 3239 | shows "open (snd ` S)" | |
| 62367 | 3240 | proof (rule openI) | 
| 63494 | 3241 | fix y | 
| 3242 | assume "y \<in> snd ` S" | |
| 3243 | then obtain x where "(x, y) \<in> S" | |
| 3244 | by auto | |
| 62367 | 3245 | then obtain A B where "open A" "open B" "x \<in> A" "y \<in> B" "A \<times> B \<subseteq> S" | 
| 3246 | using \<open>open S\<close> unfolding open_prod_def by auto | |
| 63494 | 3247 | from \<open>A \<times> B \<subseteq> S\<close> \<open>x \<in> A\<close> have "B \<subseteq> snd ` S" | 
| 3248 | by (rule subset_snd_imageI) | |
| 3249 | with \<open>open B\<close> \<open>y \<in> B\<close> have "open B \<and> y \<in> B \<and> B \<subseteq> snd ` S" | |
| 3250 | by simp | |
| 3251 | then show "\<exists>T. open T \<and> y \<in> T \<and> T \<subseteq> snd ` S" .. | |
| 62367 | 3252 | qed | 
| 3253 | ||
| 3254 | lemma nhds_prod: "nhds (a, b) = nhds a \<times>\<^sub>F nhds b" | |
| 3255 | unfolding nhds_def | |
| 3256 | proof (subst prod_filter_INF, auto intro!: antisym INF_greatest simp: principal_prod_principal) | |
| 63494 | 3257 | fix S T | 
| 3258 | assume "open S" "a \<in> S" "open T" "b \<in> T" | |
| 62367 | 3259 |   then show "(INF x : {S. open S \<and> (a, b) \<in> S}. principal x) \<le> principal (S \<times> T)"
 | 
| 3260 | by (intro INF_lower) (auto intro!: open_Times) | |
| 3261 | next | |
| 63494 | 3262 | fix S' | 
| 3263 | assume "open S'" "(a, b) \<in> S'" | |
| 62367 | 3264 | then obtain S T where "open S" "a \<in> S" "open T" "b \<in> T" "S \<times> T \<subseteq> S'" | 
| 3265 | by (auto elim: open_prod_elim) | |
| 63494 | 3266 |   then show "(INF x : {S. open S \<and> a \<in> S}. INF y : {S. open S \<and> b \<in> S}.
 | 
| 3267 | principal (x \<times> y)) \<le> principal S'" | |
| 62367 | 3268 | by (auto intro!: INF_lower2) | 
| 3269 | qed | |
| 3270 | ||
| 63494 | 3271 | |
| 62367 | 3272 | subsubsection \<open>Continuity of operations\<close> | 
| 3273 | ||
| 3274 | lemma tendsto_fst [tendsto_intros]: | |
| 3275 | assumes "(f \<longlongrightarrow> a) F" | |
| 3276 | shows "((\<lambda>x. fst (f x)) \<longlongrightarrow> fst a) F" | |
| 3277 | proof (rule topological_tendstoI) | |
| 63494 | 3278 | fix S | 
| 3279 | assume "open S" and "fst a \<in> S" | |
| 62367 | 3280 | then have "open (fst -` S)" and "a \<in> fst -` S" | 
| 3281 | by (simp_all add: open_vimage_fst) | |
| 3282 | with assms have "eventually (\<lambda>x. f x \<in> fst -` S) F" | |
| 3283 | by (rule topological_tendstoD) | |
| 3284 | then show "eventually (\<lambda>x. fst (f x) \<in> S) F" | |
| 3285 | by simp | |
| 3286 | qed | |
| 3287 | ||
| 3288 | lemma tendsto_snd [tendsto_intros]: | |
| 3289 | assumes "(f \<longlongrightarrow> a) F" | |
| 3290 | shows "((\<lambda>x. snd (f x)) \<longlongrightarrow> snd a) F" | |
| 3291 | proof (rule topological_tendstoI) | |
| 63494 | 3292 | fix S | 
| 3293 | assume "open S" and "snd a \<in> S" | |
| 62367 | 3294 | then have "open (snd -` S)" and "a \<in> snd -` S" | 
| 3295 | by (simp_all add: open_vimage_snd) | |
| 3296 | with assms have "eventually (\<lambda>x. f x \<in> snd -` S) F" | |
| 3297 | by (rule topological_tendstoD) | |
| 3298 | then show "eventually (\<lambda>x. snd (f x) \<in> S) F" | |
| 3299 | by simp | |
| 3300 | qed | |
| 3301 | ||
| 3302 | lemma tendsto_Pair [tendsto_intros]: | |
| 3303 | assumes "(f \<longlongrightarrow> a) F" and "(g \<longlongrightarrow> b) F" | |
| 3304 | shows "((\<lambda>x. (f x, g x)) \<longlongrightarrow> (a, b)) F" | |
| 3305 | proof (rule topological_tendstoI) | |
| 63494 | 3306 | fix S | 
| 3307 | assume "open S" and "(a, b) \<in> S" | |
| 62367 | 3308 | then obtain A B where "open A" "open B" "a \<in> A" "b \<in> B" "A \<times> B \<subseteq> S" | 
| 3309 | unfolding open_prod_def by fast | |
| 3310 | have "eventually (\<lambda>x. f x \<in> A) F" | |
| 3311 | using \<open>(f \<longlongrightarrow> a) F\<close> \<open>open A\<close> \<open>a \<in> A\<close> | |
| 3312 | by (rule topological_tendstoD) | |
| 3313 | moreover | |
| 3314 | have "eventually (\<lambda>x. g x \<in> B) F" | |
| 3315 | using \<open>(g \<longlongrightarrow> b) F\<close> \<open>open B\<close> \<open>b \<in> B\<close> | |
| 3316 | by (rule topological_tendstoD) | |
| 3317 | ultimately | |
| 3318 | show "eventually (\<lambda>x. (f x, g x) \<in> S) F" | |
| 3319 | by (rule eventually_elim2) | |
| 3320 | (simp add: subsetD [OF \<open>A \<times> B \<subseteq> S\<close>]) | |
| 3321 | qed | |
| 3322 | ||
| 3323 | lemma continuous_fst[continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. fst (f x))" | |
| 3324 | unfolding continuous_def by (rule tendsto_fst) | |
| 3325 | ||
| 3326 | lemma continuous_snd[continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. snd (f x))" | |
| 3327 | unfolding continuous_def by (rule tendsto_snd) | |
| 3328 | ||
| 63494 | 3329 | lemma continuous_Pair[continuous_intros]: | 
| 3330 | "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. (f x, g x))" | |
| 62367 | 3331 | unfolding continuous_def by (rule tendsto_Pair) | 
| 3332 | ||
| 63494 | 3333 | lemma continuous_on_fst[continuous_intros]: | 
| 3334 | "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. fst (f x))" | |
| 62367 | 3335 | unfolding continuous_on_def by (auto intro: tendsto_fst) | 
| 3336 | ||
| 63494 | 3337 | lemma continuous_on_snd[continuous_intros]: | 
| 3338 | "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. snd (f x))" | |
| 62367 | 3339 | unfolding continuous_on_def by (auto intro: tendsto_snd) | 
| 3340 | ||
| 63494 | 3341 | lemma continuous_on_Pair[continuous_intros]: | 
| 3342 | "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. (f x, g x))" | |
| 62367 | 3343 | unfolding continuous_on_def by (auto intro: tendsto_Pair) | 
| 3344 | ||
| 3345 | lemma continuous_on_swap[continuous_intros]: "continuous_on A prod.swap" | |
| 63494 | 3346 | by (simp add: prod.swap_def continuous_on_fst continuous_on_snd | 
| 3347 | continuous_on_Pair continuous_on_id) | |
| 62367 | 3348 | |
| 3349 | lemma continuous_on_swap_args: | |
| 3350 | assumes "continuous_on (A\<times>B) (\<lambda>(x,y). d x y)" | |
| 3351 | shows "continuous_on (B\<times>A) (\<lambda>(x,y). d y x)" | |
| 3352 | proof - | |
| 63494 | 3353 | have "(\<lambda>(x,y). d y x) = (\<lambda>(x,y). d x y) \<circ> prod.swap" | 
| 62367 | 3354 | by force | 
| 3355 | then show ?thesis | |
| 3356 | apply (rule ssubst) | |
| 3357 | apply (rule continuous_on_compose) | |
| 3358 | apply (force intro: continuous_on_subset [OF continuous_on_swap]) | |
| 3359 | apply (force intro: continuous_on_subset [OF assms]) | |
| 3360 | done | |
| 3361 | qed | |
| 3362 | ||
| 3363 | lemma isCont_fst [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. fst (f x)) a" | |
| 3364 | by (fact continuous_fst) | |
| 3365 | ||
| 3366 | lemma isCont_snd [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. snd (f x)) a" | |
| 3367 | by (fact continuous_snd) | |
| 3368 | ||
| 3369 | lemma isCont_Pair [simp]: "\<lbrakk>isCont f a; isCont g a\<rbrakk> \<Longrightarrow> isCont (\<lambda>x. (f x, g x)) a" | |
| 3370 | by (fact continuous_Pair) | |
| 3371 | ||
| 63494 | 3372 | |
| 62367 | 3373 | subsubsection \<open>Separation axioms\<close> | 
| 3374 | ||
| 3375 | instance prod :: (t0_space, t0_space) t0_space | |
| 3376 | proof | |
| 63494 | 3377 | fix x y :: "'a \<times> 'b" | 
| 3378 | assume "x \<noteq> y" | |
| 3379 | then have "fst x \<noteq> fst y \<or> snd x \<noteq> snd y" | |
| 62367 | 3380 | by (simp add: prod_eq_iff) | 
| 63494 | 3381 | then show "\<exists>U. open U \<and> (x \<in> U) \<noteq> (y \<in> U)" | 
| 62367 | 3382 | by (fast dest: t0_space elim: open_vimage_fst open_vimage_snd) | 
| 3383 | qed | |
| 3384 | ||
| 3385 | instance prod :: (t1_space, t1_space) t1_space | |
| 3386 | proof | |
| 63494 | 3387 | fix x y :: "'a \<times> 'b" | 
| 3388 | assume "x \<noteq> y" | |
| 3389 | then have "fst x \<noteq> fst y \<or> snd x \<noteq> snd y" | |
| 62367 | 3390 | by (simp add: prod_eq_iff) | 
| 63494 | 3391 | then show "\<exists>U. open U \<and> x \<in> U \<and> y \<notin> U" | 
| 62367 | 3392 | by (fast dest: t1_space elim: open_vimage_fst open_vimage_snd) | 
| 3393 | qed | |
| 3394 | ||
| 3395 | instance prod :: (t2_space, t2_space) t2_space | |
| 3396 | proof | |
| 63494 | 3397 | fix x y :: "'a \<times> 'b" | 
| 3398 | assume "x \<noteq> y" | |
| 3399 | then have "fst x \<noteq> fst y \<or> snd x \<noteq> snd y" | |
| 62367 | 3400 | by (simp add: prod_eq_iff) | 
| 63494 | 3401 |   then show "\<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {}"
 | 
| 62367 | 3402 | by (fast dest: hausdorff elim: open_vimage_fst open_vimage_snd) | 
| 3403 | qed | |
| 3404 | ||
| 3405 | lemma isCont_swap[continuous_intros]: "isCont prod.swap a" | |
| 3406 | using continuous_on_eq_continuous_within continuous_on_swap by blast | |
| 3407 | ||
| 64284 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3408 | lemma open_diagonal_complement: | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3409 |   "open {(x,y) | x y. x \<noteq> (y::('a::t2_space))}"
 | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3410 | proof (rule topological_space_class.openI) | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3411 |   fix t assume "t \<in> {(x, y) | x y. x \<noteq> (y::'a)}"
 | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3412 | then obtain x y where "t = (x,y)" "x \<noteq> y" by blast | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3413 |   then obtain U V where *: "open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {}"
 | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3414 | by (auto simp add: separation_t2) | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3415 | define T where "T = U \<times> V" | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3416 | have "open T" using * open_Times T_def by auto | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3417 | moreover have "t \<in> T" unfolding T_def using `t = (x,y)` * by auto | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3418 |   moreover have "T \<subseteq> {(x, y) | x y. x \<noteq> y}" unfolding T_def using * by auto
 | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3419 |   ultimately show "\<exists>T. open T \<and> t \<in> T \<and> T \<subseteq> {(x, y) | x y. x \<noteq> y}" by auto
 | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3420 | qed | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3421 | |
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3422 | lemma closed_diagonal: | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3423 |   "closed {y. \<exists> x::('a::t2_space). y = (x,x)}"
 | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3424 | proof - | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3425 |   have "{y. \<exists> x::'a. y = (x,x)} = UNIV - {(x,y) | x y. x \<noteq> y}" by auto
 | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3426 | then show ?thesis using open_diagonal_complement closed_Diff by auto | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3427 | qed | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3428 | |
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3429 | lemma open_superdiagonal: | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3430 |   "open {(x,y) | x y. x > (y::'a::{linorder_topology})}"
 | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3431 | proof (rule topological_space_class.openI) | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3432 |   fix t assume "t \<in> {(x, y) | x y. y < (x::'a)}"
 | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3433 | then obtain x y where "t = (x, y)" "x > y" by blast | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3434 |   show "\<exists>T. open T \<and> t \<in> T \<and> T \<subseteq> {(x, y) | x y. y < x}"
 | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3435 | proof (cases) | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3436 | assume "\<exists>z. y < z \<and> z < x" | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3437 | then obtain z where z: "y < z \<and> z < x" by blast | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3438 |     define T where "T = {z<..} \<times> {..<z}"
 | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3439 | have "open T" unfolding T_def by (simp add: open_Times) | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3440 | moreover have "t \<in> T" using T_def z `t = (x,y)` by auto | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3441 |     moreover have "T \<subseteq> {(x, y) | x y. y < x}" unfolding T_def by auto
 | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3442 | ultimately show ?thesis by auto | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3443 | next | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3444 | assume "\<not>(\<exists>z. y < z \<and> z < x)" | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3445 |     then have *: "{x ..} = {y<..}" "{..< x} = {..y}"
 | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3446 | using `x > y` apply auto using leI by blast | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3447 |     define T where "T = {x ..} \<times> {.. y}"
 | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3448 |     then have "T = {y<..} \<times> {..< x}" using * by simp
 | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3449 | then have "open T" unfolding T_def by (simp add: open_Times) | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3450 | moreover have "t \<in> T" using T_def `t = (x,y)` by auto | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3451 |     moreover have "T \<subseteq> {(x, y) | x y. y < x}" unfolding T_def using `x > y` by auto
 | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3452 | ultimately show ?thesis by auto | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3453 | qed | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3454 | qed | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3455 | |
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3456 | lemma closed_subdiagonal: | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3457 |   "closed {(x,y) | x y. x \<le> (y::'a::{linorder_topology})}"
 | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3458 | proof - | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3459 |   have "{(x,y) | x y. x \<le> (y::'a)} = UNIV - {(x,y) | x y. x > (y::'a)}" by auto
 | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3460 | then show ?thesis using open_superdiagonal closed_Diff by auto | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3461 | qed | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3462 | |
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3463 | lemma open_subdiagonal: | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3464 |   "open {(x,y) | x y. x < (y::'a::{linorder_topology})}"
 | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3465 | proof (rule topological_space_class.openI) | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3466 |   fix t assume "t \<in> {(x, y) | x y. y > (x::'a)}"
 | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3467 | then obtain x y where "t = (x, y)" "x < y" by blast | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3468 |   show "\<exists>T. open T \<and> t \<in> T \<and> T \<subseteq> {(x, y) | x y. y > x}"
 | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3469 | proof (cases) | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3470 | assume "\<exists>z. y > z \<and> z > x" | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3471 | then obtain z where z: "y > z \<and> z > x" by blast | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3472 |     define T where "T = {..<z} \<times> {z<..}"
 | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3473 | have "open T" unfolding T_def by (simp add: open_Times) | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3474 | moreover have "t \<in> T" using T_def z `t = (x,y)` by auto | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3475 |     moreover have "T \<subseteq> {(x, y) |x y. y > x}" unfolding T_def by auto
 | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3476 | ultimately show ?thesis by auto | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3477 | next | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3478 | assume "\<not>(\<exists>z. y > z \<and> z > x)" | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3479 |     then have *: "{..x} = {..<y}" "{x<..} = {y..}"
 | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3480 | using `x < y` apply auto using leI by blast | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3481 |     define T where "T = {..x} \<times> {y..}"
 | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3482 |     then have "T = {..<y} \<times> {x<..}" using * by simp
 | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3483 | then have "open T" unfolding T_def by (simp add: open_Times) | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3484 | moreover have "t \<in> T" using T_def `t = (x,y)` by auto | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3485 |     moreover have "T \<subseteq> {(x, y) |x y. y > x}" unfolding T_def using `x < y` by auto
 | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3486 | ultimately show ?thesis by auto | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3487 | qed | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3488 | qed | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3489 | |
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3490 | lemma closed_superdiagonal: | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3491 |   "closed {(x,y) | x y. x \<ge> (y::('a::{linorder_topology}))}"
 | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3492 | proof - | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3493 |   have "{(x,y) | x y. x \<ge> (y::'a)} = UNIV - {(x,y) | x y. x < y}" by auto
 | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3494 | then show ?thesis using open_subdiagonal closed_Diff by auto | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3495 | qed | 
| 
f3b905b2eee2
HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
 hoelzl parents: 
64283diff
changeset | 3496 | |
| 62367 | 3497 | end |