author | wenzelm |
Thu, 05 Dec 2013 17:51:29 +0100 | |
changeset 54669 | 1b153cb9699f |
parent 47101 | ded5cc757bc9 |
child 58871 | c399ae4b836f |
permissions | -rw-r--r-- |
1478 | 1 |
(* Title: ZF/CardinalArith.thy |
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
437 | 3 |
Copyright 1994 University of Cambridge |
13328 | 4 |
*) |
13216 | 5 |
|
13328 | 6 |
header{*Cardinal Arithmetic Without the Axiom of Choice*} |
437 | 7 |
|
16417 | 8 |
theory CardinalArith imports Cardinal OrderArith ArithSimp Finite begin |
467 | 9 |
|
24893 | 10 |
definition |
11 |
InfCard :: "i=>o" where |
|
46820 | 12 |
"InfCard(i) == Card(i) & nat \<le> i" |
437 | 13 |
|
24893 | 14 |
definition |
15 |
cmult :: "[i,i]=>i" (infixl "|*|" 70) where |
|
12667 | 16 |
"i |*| j == |i*j|" |
46820 | 17 |
|
24893 | 18 |
definition |
19 |
cadd :: "[i,i]=>i" (infixl "|+|" 65) where |
|
12667 | 20 |
"i |+| j == |i+j|" |
437 | 21 |
|
24893 | 22 |
definition |
23 |
csquare_rel :: "i=>i" where |
|
46820 | 24 |
"csquare_rel(K) == |
25 |
rvimage(K*K, |
|
26 |
lam <x,y>:K*K. <x \<union> y, x, y>, |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
27517
diff
changeset
|
27 |
rmult(K,Memrel(K), K*K, rmult(K,Memrel(K), K,Memrel(K))))" |
437 | 28 |
|
24893 | 29 |
definition |
30 |
jump_cardinal :: "i=>i" where |
|
14883 | 31 |
--{*This def is more complex than Kunen's but it more easily proved to |
32 |
be a cardinal*} |
|
46820 | 33 |
"jump_cardinal(K) == |
46953 | 34 |
\<Union>X\<in>Pow(K). {z. r \<in> Pow(K*K), well_ord(X,r) & z = ordertype(X,r)}" |
46820 | 35 |
|
24893 | 36 |
definition |
37 |
csucc :: "i=>i" where |
|
14883 | 38 |
--{*needed because @{term "jump_cardinal(K)"} might not be the successor |
39 |
of @{term K}*} |
|
12667 | 40 |
"csucc(K) == LEAST L. Card(L) & K<L" |
484 | 41 |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
42 |
notation (xsymbols) |
24893 | 43 |
cadd (infixl "\<oplus>" 65) and |
44 |
cmult (infixl "\<otimes>" 70) |
|
45 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
46 |
notation (HTML) |
24893 | 47 |
cadd (infixl "\<oplus>" 65) and |
48 |
cmult (infixl "\<otimes>" 70) |
|
12667 | 49 |
|
50 |
||
46953 | 51 |
lemma Card_Union [simp,intro,TC]: |
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
52 |
assumes A: "\<And>x. x\<in>A \<Longrightarrow> Card(x)" shows "Card(\<Union>(A))" |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
53 |
proof (rule CardI) |
46953 | 54 |
show "Ord(\<Union>A)" using A |
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
55 |
by (simp add: Card_is_Ord) |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
56 |
next |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
57 |
fix j |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
58 |
assume j: "j < \<Union>A" |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
59 |
hence "\<exists>c\<in>A. j < c & Card(c)" using A |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
60 |
by (auto simp add: lt_def intro: Card_is_Ord) |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
61 |
then obtain c where c: "c\<in>A" "j < c" "Card(c)" |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
62 |
by blast |
46953 | 63 |
hence jls: "j \<prec> c" |
64 |
by (simp add: lt_Card_imp_lesspoll) |
|
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
65 |
{ assume eqp: "j \<approx> \<Union>A" |
46901 | 66 |
have "c \<lesssim> \<Union>A" using c |
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
67 |
by (blast intro: subset_imp_lepoll) |
46901 | 68 |
also have "... \<approx> j" by (rule eqpoll_sym [OF eqp]) |
69 |
also have "... \<prec> c" by (rule jls) |
|
70 |
finally have "c \<prec> c" . |
|
46953 | 71 |
hence False |
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
72 |
by auto |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
73 |
} thus "\<not> j \<approx> \<Union>A" by blast |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
74 |
qed |
12667 | 75 |
|
46953 | 76 |
lemma Card_UN: "(!!x. x \<in> A ==> Card(K(x))) ==> Card(\<Union>x\<in>A. K(x))" |
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
77 |
by blast |
12667 | 78 |
|
79 |
lemma Card_OUN [simp,intro,TC]: |
|
46953 | 80 |
"(!!x. x \<in> A ==> Card(K(x))) ==> Card(\<Union>x<A. K(x))" |
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
81 |
by (auto simp add: OUnion_def Card_0) |
12776 | 82 |
|
83 |
lemma in_Card_imp_lesspoll: "[| Card(K); b \<in> K |] ==> b \<prec> K" |
|
84 |
apply (unfold lesspoll_def) |
|
85 |
apply (simp add: Card_iff_initial) |
|
86 |
apply (fast intro!: le_imp_lepoll ltI leI) |
|
87 |
done |
|
88 |
||
13216 | 89 |
|
13356 | 90 |
subsection{*Cardinal addition*} |
13216 | 91 |
|
13328 | 92 |
text{*Note: Could omit proving the algebraic laws for cardinal addition and |
93 |
multiplication. On finite cardinals these operations coincide with |
|
94 |
addition and multiplication of natural numbers; on infinite cardinals they |
|
95 |
coincide with union (maximum). Either way we get most laws for free.*} |
|
96 |
||
14883 | 97 |
subsubsection{*Cardinal addition is commutative*} |
13216 | 98 |
|
99 |
lemma sum_commute_eqpoll: "A+B \<approx> B+A" |
|
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
100 |
proof (unfold eqpoll_def, rule exI) |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
101 |
show "(\<lambda>z\<in>A+B. case(Inr,Inl,z)) \<in> bij(A+B, B+A)" |
46953 | 102 |
by (auto intro: lam_bijective [where d = "case(Inr,Inl)"]) |
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
103 |
qed |
13216 | 104 |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
105 |
lemma cadd_commute: "i \<oplus> j = j \<oplus> i" |
13216 | 106 |
apply (unfold cadd_def) |
107 |
apply (rule sum_commute_eqpoll [THEN cardinal_cong]) |
|
108 |
done |
|
109 |
||
14883 | 110 |
subsubsection{*Cardinal addition is associative*} |
13216 | 111 |
|
112 |
lemma sum_assoc_eqpoll: "(A+B)+C \<approx> A+(B+C)" |
|
113 |
apply (unfold eqpoll_def) |
|
114 |
apply (rule exI) |
|
115 |
apply (rule sum_assoc_bij) |
|
116 |
done |
|
117 |
||
46901 | 118 |
text{*Unconditional version requires AC*} |
46820 | 119 |
lemma well_ord_cadd_assoc: |
46901 | 120 |
assumes i: "well_ord(i,ri)" and j: "well_ord(j,rj)" and k: "well_ord(k,rk)" |
121 |
shows "(i \<oplus> j) \<oplus> k = i \<oplus> (j \<oplus> k)" |
|
122 |
proof (unfold cadd_def, rule cardinal_cong) |
|
123 |
have "|i + j| + k \<approx> (i + j) + k" |
|
46953 | 124 |
by (blast intro: sum_eqpoll_cong well_ord_cardinal_eqpoll eqpoll_refl well_ord_radd i j) |
46901 | 125 |
also have "... \<approx> i + (j + k)" |
46953 | 126 |
by (rule sum_assoc_eqpoll) |
46901 | 127 |
also have "... \<approx> i + |j + k|" |
46953 | 128 |
by (blast intro: sum_eqpoll_cong well_ord_cardinal_eqpoll eqpoll_refl well_ord_radd j k eqpoll_sym) |
46901 | 129 |
finally show "|i + j| + k \<approx> i + |j + k|" . |
130 |
qed |
|
131 |
||
13216 | 132 |
|
14883 | 133 |
subsubsection{*0 is the identity for addition*} |
13216 | 134 |
|
135 |
lemma sum_0_eqpoll: "0+A \<approx> A" |
|
136 |
apply (unfold eqpoll_def) |
|
137 |
apply (rule exI) |
|
138 |
apply (rule bij_0_sum) |
|
139 |
done |
|
140 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
141 |
lemma cadd_0 [simp]: "Card(K) ==> 0 \<oplus> K = K" |
13216 | 142 |
apply (unfold cadd_def) |
143 |
apply (simp add: sum_0_eqpoll [THEN cardinal_cong] Card_cardinal_eq) |
|
144 |
done |
|
145 |
||
14883 | 146 |
subsubsection{*Addition by another cardinal*} |
13216 | 147 |
|
148 |
lemma sum_lepoll_self: "A \<lesssim> A+B" |
|
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
149 |
proof (unfold lepoll_def, rule exI) |
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
150 |
show "(\<lambda>x\<in>A. Inl (x)) \<in> inj(A, A + B)" |
46953 | 151 |
by (simp add: inj_def) |
46841
49b91b716cbe
Structured and calculation-based proofs (with new trans rules!)
paulson
parents:
46821
diff
changeset
|
152 |
qed |
13216 | 153 |
|
154 |
(*Could probably weaken the premises to well_ord(K,r), or removing using AC*) |
|
155 |
||
46820 | 156 |
lemma cadd_le_self: |
46952 | 157 |
assumes K: "Card(K)" and L: "Ord(L)" shows "K \<le> (K \<oplus> L)" |
158 |
proof (unfold cadd_def) |
|
159 |
have "K \<le> |K|" |
|
46953 | 160 |
by (rule Card_cardinal_le [OF K]) |
46952 | 161 |
moreover have "|K| \<le> |K + L|" using K L |
162 |
by (blast intro: well_ord_lepoll_imp_Card_le sum_lepoll_self |
|
46953 | 163 |
well_ord_radd well_ord_Memrel Card_is_Ord) |
164 |
ultimately show "K \<le> |K + L|" |
|
165 |
by (blast intro: le_trans) |
|
46952 | 166 |
qed |
13216 | 167 |
|
14883 | 168 |
subsubsection{*Monotonicity of addition*} |
13216 | 169 |
|
46820 | 170 |
lemma sum_lepoll_mono: |
13221 | 171 |
"[| A \<lesssim> C; B \<lesssim> D |] ==> A + B \<lesssim> C + D" |
13216 | 172 |
apply (unfold lepoll_def) |
13221 | 173 |
apply (elim exE) |
46820 | 174 |
apply (rule_tac x = "\<lambda>z\<in>A+B. case (%w. Inl(f`w), %y. Inr(fa`y), z)" in exI) |
13221 | 175 |
apply (rule_tac d = "case (%w. Inl(converse(f) `w), %y. Inr(converse(fa) ` y))" |
13216 | 176 |
in lam_injective) |
13221 | 177 |
apply (typecheck add: inj_is_fun, auto) |
13216 | 178 |
done |
179 |
||
180 |
lemma cadd_le_mono: |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
181 |
"[| K' \<le> K; L' \<le> L |] ==> (K' \<oplus> L') \<le> (K \<oplus> L)" |
13216 | 182 |
apply (unfold cadd_def) |
183 |
apply (safe dest!: le_subset_iff [THEN iffD1]) |
|
184 |
apply (rule well_ord_lepoll_imp_Card_le) |
|
185 |
apply (blast intro: well_ord_radd well_ord_Memrel) |
|
186 |
apply (blast intro: sum_lepoll_mono subset_imp_lepoll) |
|
187 |
done |
|
188 |
||
14883 | 189 |
subsubsection{*Addition of finite cardinals is "ordinary" addition*} |
13216 | 190 |
|
191 |
lemma sum_succ_eqpoll: "succ(A)+B \<approx> succ(A+B)" |
|
192 |
apply (unfold eqpoll_def) |
|
193 |
apply (rule exI) |
|
46820 | 194 |
apply (rule_tac c = "%z. if z=Inl (A) then A+B else z" |
13216 | 195 |
and d = "%z. if z=A+B then Inl (A) else z" in lam_bijective) |
13221 | 196 |
apply simp_all |
13216 | 197 |
apply (blast dest: sym [THEN eq_imp_not_mem] elim: mem_irrefl)+ |
198 |
done |
|
199 |
||
46953 | 200 |
(*Pulling the succ(...) outside the |...| requires m, n \<in> nat *) |
13216 | 201 |
(*Unconditional version requires AC*) |
202 |
lemma cadd_succ_lemma: |
|
46952 | 203 |
assumes "Ord(m)" "Ord(n)" shows "succ(m) \<oplus> n = |succ(m \<oplus> n)|" |
204 |
proof (unfold cadd_def) |
|
205 |
have [intro]: "m + n \<approx> |m + n|" using assms |
|
206 |
by (blast intro: eqpoll_sym well_ord_cardinal_eqpoll well_ord_radd well_ord_Memrel) |
|
13216 | 207 |
|
46952 | 208 |
have "|succ(m) + n| = |succ(m + n)|" |
46953 | 209 |
by (rule sum_succ_eqpoll [THEN cardinal_cong]) |
210 |
also have "... = |succ(|m + n|)|" |
|
46952 | 211 |
by (blast intro: succ_eqpoll_cong cardinal_cong) |
212 |
finally show "|succ(m) + n| = |succ(|m + n|)|" . |
|
213 |
qed |
|
214 |
||
215 |
lemma nat_cadd_eq_add: |
|
46953 | 216 |
assumes m: "m \<in> nat" and [simp]: "n \<in> nat" shows"m \<oplus> n = m #+ n" |
46952 | 217 |
using m |
218 |
proof (induct m) |
|
219 |
case 0 thus ?case by (simp add: nat_into_Card cadd_0) |
|
220 |
next |
|
221 |
case (succ m) thus ?case by (simp add: cadd_succ_lemma nat_into_Card Card_cardinal_eq) |
|
222 |
qed |
|
13216 | 223 |
|
224 |
||
13356 | 225 |
subsection{*Cardinal multiplication*} |
13216 | 226 |
|
14883 | 227 |
subsubsection{*Cardinal multiplication is commutative*} |
13216 | 228 |
|
229 |
lemma prod_commute_eqpoll: "A*B \<approx> B*A" |
|
230 |
apply (unfold eqpoll_def) |
|
231 |
apply (rule exI) |
|
46820 | 232 |
apply (rule_tac c = "%<x,y>.<y,x>" and d = "%<x,y>.<y,x>" in lam_bijective, |
233 |
auto) |
|
13216 | 234 |
done |
235 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
236 |
lemma cmult_commute: "i \<otimes> j = j \<otimes> i" |
13216 | 237 |
apply (unfold cmult_def) |
238 |
apply (rule prod_commute_eqpoll [THEN cardinal_cong]) |
|
239 |
done |
|
240 |
||
14883 | 241 |
subsubsection{*Cardinal multiplication is associative*} |
13216 | 242 |
|
243 |
lemma prod_assoc_eqpoll: "(A*B)*C \<approx> A*(B*C)" |
|
244 |
apply (unfold eqpoll_def) |
|
245 |
apply (rule exI) |
|
246 |
apply (rule prod_assoc_bij) |
|
247 |
done |
|
248 |
||
46901 | 249 |
text{*Unconditional version requires AC*} |
13216 | 250 |
lemma well_ord_cmult_assoc: |
46901 | 251 |
assumes i: "well_ord(i,ri)" and j: "well_ord(j,rj)" and k: "well_ord(k,rk)" |
252 |
shows "(i \<otimes> j) \<otimes> k = i \<otimes> (j \<otimes> k)" |
|
253 |
proof (unfold cmult_def, rule cardinal_cong) |
|
254 |
have "|i * j| * k \<approx> (i * j) * k" |
|
46953 | 255 |
by (blast intro: prod_eqpoll_cong well_ord_cardinal_eqpoll eqpoll_refl well_ord_rmult i j) |
46901 | 256 |
also have "... \<approx> i * (j * k)" |
46953 | 257 |
by (rule prod_assoc_eqpoll) |
46901 | 258 |
also have "... \<approx> i * |j * k|" |
46953 | 259 |
by (blast intro: prod_eqpoll_cong well_ord_cardinal_eqpoll eqpoll_refl well_ord_rmult j k eqpoll_sym) |
46901 | 260 |
finally show "|i * j| * k \<approx> i * |j * k|" . |
261 |
qed |
|
13216 | 262 |
|
14883 | 263 |
subsubsection{*Cardinal multiplication distributes over addition*} |
13216 | 264 |
|
265 |
lemma sum_prod_distrib_eqpoll: "(A+B)*C \<approx> (A*C)+(B*C)" |
|
266 |
apply (unfold eqpoll_def) |
|
267 |
apply (rule exI) |
|
268 |
apply (rule sum_prod_distrib_bij) |
|
269 |
done |
|
270 |
||
271 |
lemma well_ord_cadd_cmult_distrib: |
|
46901 | 272 |
assumes i: "well_ord(i,ri)" and j: "well_ord(j,rj)" and k: "well_ord(k,rk)" |
273 |
shows "(i \<oplus> j) \<otimes> k = (i \<otimes> k) \<oplus> (j \<otimes> k)" |
|
274 |
proof (unfold cadd_def cmult_def, rule cardinal_cong) |
|
275 |
have "|i + j| * k \<approx> (i + j) * k" |
|
46953 | 276 |
by (blast intro: prod_eqpoll_cong well_ord_cardinal_eqpoll eqpoll_refl well_ord_radd i j) |
46901 | 277 |
also have "... \<approx> i * k + j * k" |
46953 | 278 |
by (rule sum_prod_distrib_eqpoll) |
46901 | 279 |
also have "... \<approx> |i * k| + |j * k|" |
46953 | 280 |
by (blast intro: sum_eqpoll_cong well_ord_cardinal_eqpoll well_ord_rmult i j k eqpoll_sym) |
46901 | 281 |
finally show "|i + j| * k \<approx> |i * k| + |j * k|" . |
282 |
qed |
|
13216 | 283 |
|
14883 | 284 |
subsubsection{*Multiplication by 0 yields 0*} |
13216 | 285 |
|
286 |
lemma prod_0_eqpoll: "0*A \<approx> 0" |
|
287 |
apply (unfold eqpoll_def) |
|
288 |
apply (rule exI) |
|
13221 | 289 |
apply (rule lam_bijective, safe) |
13216 | 290 |
done |
291 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
292 |
lemma cmult_0 [simp]: "0 \<otimes> i = 0" |
13221 | 293 |
by (simp add: cmult_def prod_0_eqpoll [THEN cardinal_cong]) |
13216 | 294 |
|
14883 | 295 |
subsubsection{*1 is the identity for multiplication*} |
13216 | 296 |
|
297 |
lemma prod_singleton_eqpoll: "{x}*A \<approx> A" |
|
298 |
apply (unfold eqpoll_def) |
|
299 |
apply (rule exI) |
|
300 |
apply (rule singleton_prod_bij [THEN bij_converse_bij]) |
|
301 |
done |
|
302 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
303 |
lemma cmult_1 [simp]: "Card(K) ==> 1 \<otimes> K = K" |
13216 | 304 |
apply (unfold cmult_def succ_def) |
305 |
apply (simp add: prod_singleton_eqpoll [THEN cardinal_cong] Card_cardinal_eq) |
|
306 |
done |
|
307 |
||
13356 | 308 |
subsection{*Some inequalities for multiplication*} |
13216 | 309 |
|
310 |
lemma prod_square_lepoll: "A \<lesssim> A*A" |
|
311 |
apply (unfold lepoll_def inj_def) |
|
46820 | 312 |
apply (rule_tac x = "\<lambda>x\<in>A. <x,x>" in exI, simp) |
13216 | 313 |
done |
314 |
||
315 |
(*Could probably weaken the premise to well_ord(K,r), or remove using AC*) |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
316 |
lemma cmult_square_le: "Card(K) ==> K \<le> K \<otimes> K" |
13216 | 317 |
apply (unfold cmult_def) |
318 |
apply (rule le_trans) |
|
319 |
apply (rule_tac [2] well_ord_lepoll_imp_Card_le) |
|
320 |
apply (rule_tac [3] prod_square_lepoll) |
|
13221 | 321 |
apply (simp add: le_refl Card_is_Ord Card_cardinal_eq) |
322 |
apply (blast intro: well_ord_rmult well_ord_Memrel Card_is_Ord) |
|
13216 | 323 |
done |
324 |
||
14883 | 325 |
subsubsection{*Multiplication by a non-zero cardinal*} |
13216 | 326 |
|
46953 | 327 |
lemma prod_lepoll_self: "b \<in> B ==> A \<lesssim> A*B" |
13216 | 328 |
apply (unfold lepoll_def inj_def) |
46820 | 329 |
apply (rule_tac x = "\<lambda>x\<in>A. <x,b>" in exI, simp) |
13216 | 330 |
done |
331 |
||
332 |
(*Could probably weaken the premises to well_ord(K,r), or removing using AC*) |
|
333 |
lemma cmult_le_self: |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
334 |
"[| Card(K); Ord(L); 0<L |] ==> K \<le> (K \<otimes> L)" |
13216 | 335 |
apply (unfold cmult_def) |
336 |
apply (rule le_trans [OF Card_cardinal_le well_ord_lepoll_imp_Card_le]) |
|
13221 | 337 |
apply assumption |
13216 | 338 |
apply (blast intro: well_ord_rmult well_ord_Memrel Card_is_Ord) |
339 |
apply (blast intro: prod_lepoll_self ltD) |
|
340 |
done |
|
341 |
||
14883 | 342 |
subsubsection{*Monotonicity of multiplication*} |
13216 | 343 |
|
344 |
lemma prod_lepoll_mono: |
|
345 |
"[| A \<lesssim> C; B \<lesssim> D |] ==> A * B \<lesssim> C * D" |
|
346 |
apply (unfold lepoll_def) |
|
13221 | 347 |
apply (elim exE) |
13216 | 348 |
apply (rule_tac x = "lam <w,y>:A*B. <f`w, fa`y>" in exI) |
46820 | 349 |
apply (rule_tac d = "%<w,y>. <converse (f) `w, converse (fa) `y>" |
13216 | 350 |
in lam_injective) |
13221 | 351 |
apply (typecheck add: inj_is_fun, auto) |
13216 | 352 |
done |
353 |
||
354 |
lemma cmult_le_mono: |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
355 |
"[| K' \<le> K; L' \<le> L |] ==> (K' \<otimes> L') \<le> (K \<otimes> L)" |
13216 | 356 |
apply (unfold cmult_def) |
357 |
apply (safe dest!: le_subset_iff [THEN iffD1]) |
|
358 |
apply (rule well_ord_lepoll_imp_Card_le) |
|
359 |
apply (blast intro: well_ord_rmult well_ord_Memrel) |
|
360 |
apply (blast intro: prod_lepoll_mono subset_imp_lepoll) |
|
361 |
done |
|
362 |
||
13356 | 363 |
subsection{*Multiplication of finite cardinals is "ordinary" multiplication*} |
13216 | 364 |
|
365 |
lemma prod_succ_eqpoll: "succ(A)*B \<approx> B + A*B" |
|
366 |
apply (unfold eqpoll_def) |
|
13221 | 367 |
apply (rule exI) |
13216 | 368 |
apply (rule_tac c = "%<x,y>. if x=A then Inl (y) else Inr (<x,y>)" |
369 |
and d = "case (%y. <A,y>, %z. z)" in lam_bijective) |
|
370 |
apply safe |
|
371 |
apply (simp_all add: succI2 if_type mem_imp_not_eq) |
|
372 |
done |
|
373 |
||
374 |
(*Unconditional version requires AC*) |
|
375 |
lemma cmult_succ_lemma: |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
376 |
"[| Ord(m); Ord(n) |] ==> succ(m) \<otimes> n = n \<oplus> (m \<otimes> n)" |
13216 | 377 |
apply (unfold cmult_def cadd_def) |
378 |
apply (rule prod_succ_eqpoll [THEN cardinal_cong, THEN trans]) |
|
379 |
apply (rule cardinal_cong [symmetric]) |
|
380 |
apply (rule sum_eqpoll_cong [OF eqpoll_refl well_ord_cardinal_eqpoll]) |
|
381 |
apply (blast intro: well_ord_rmult well_ord_Memrel) |
|
382 |
done |
|
383 |
||
46953 | 384 |
lemma nat_cmult_eq_mult: "[| m \<in> nat; n \<in> nat |] ==> m \<otimes> n = m#*n" |
13244 | 385 |
apply (induct_tac m) |
13221 | 386 |
apply (simp_all add: cmult_succ_lemma nat_cadd_eq_add) |
13216 | 387 |
done |
388 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
389 |
lemma cmult_2: "Card(n) ==> 2 \<otimes> n = n \<oplus> n" |
13221 | 390 |
by (simp add: cmult_succ_lemma Card_is_Ord cadd_commute [of _ 0]) |
13216 | 391 |
|
46953 | 392 |
lemma sum_lepoll_prod: |
46901 | 393 |
assumes C: "2 \<lesssim> C" shows "B+B \<lesssim> C*B" |
394 |
proof - |
|
395 |
have "B+B \<lesssim> 2*B" |
|
46953 | 396 |
by (simp add: sum_eq_2_times) |
46901 | 397 |
also have "... \<lesssim> C*B" |
46953 | 398 |
by (blast intro: prod_lepoll_mono lepoll_refl C) |
46901 | 399 |
finally show "B+B \<lesssim> C*B" . |
400 |
qed |
|
13216 | 401 |
|
402 |
lemma lepoll_imp_sum_lepoll_prod: "[| A \<lesssim> B; 2 \<lesssim> A |] ==> A+B \<lesssim> A*B" |
|
13221 | 403 |
by (blast intro: sum_lepoll_mono sum_lepoll_prod lepoll_trans lepoll_refl) |
13216 | 404 |
|
405 |
||
13356 | 406 |
subsection{*Infinite Cardinals are Limit Ordinals*} |
13216 | 407 |
|
408 |
(*This proof is modelled upon one assuming nat<=A, with injection |
|
46820 | 409 |
\<lambda>z\<in>cons(u,A). if z=u then 0 else if z \<in> nat then succ(z) else z |
46953 | 410 |
and inverse %y. if y \<in> nat then nat_case(u, %z. z, y) else y. \ |
411 |
If f \<in> inj(nat,A) then range(f) behaves like the natural numbers.*) |
|
13216 | 412 |
lemma nat_cons_lepoll: "nat \<lesssim> A ==> cons(u,A) \<lesssim> A" |
413 |
apply (unfold lepoll_def) |
|
414 |
apply (erule exE) |
|
46820 | 415 |
apply (rule_tac x = |
416 |
"\<lambda>z\<in>cons (u,A). |
|
417 |
if z=u then f`0 |
|
46953 | 418 |
else if z \<in> range (f) then f`succ (converse (f) `z) else z" |
13216 | 419 |
in exI) |
420 |
apply (rule_tac d = |
|
46953 | 421 |
"%y. if y \<in> range(f) then nat_case (u, %z. f`z, converse(f) `y) |
46820 | 422 |
else y" |
13216 | 423 |
in lam_injective) |
424 |
apply (fast intro!: if_type apply_type intro: inj_is_fun inj_converse_fun) |
|
425 |
apply (simp add: inj_is_fun [THEN apply_rangeI] |
|
426 |
inj_converse_fun [THEN apply_rangeI] |
|
427 |
inj_converse_fun [THEN apply_funtype]) |
|
428 |
done |
|
429 |
||
430 |
lemma nat_cons_eqpoll: "nat \<lesssim> A ==> cons(u,A) \<approx> A" |
|
431 |
apply (erule nat_cons_lepoll [THEN eqpollI]) |
|
432 |
apply (rule subset_consI [THEN subset_imp_lepoll]) |
|
433 |
done |
|
434 |
||
435 |
(*Specialized version required below*) |
|
46820 | 436 |
lemma nat_succ_eqpoll: "nat \<subseteq> A ==> succ(A) \<approx> A" |
13216 | 437 |
apply (unfold succ_def) |
438 |
apply (erule subset_imp_lepoll [THEN nat_cons_eqpoll]) |
|
439 |
done |
|
440 |
||
441 |
lemma InfCard_nat: "InfCard(nat)" |
|
442 |
apply (unfold InfCard_def) |
|
443 |
apply (blast intro: Card_nat le_refl Card_is_Ord) |
|
444 |
done |
|
445 |
||
446 |
lemma InfCard_is_Card: "InfCard(K) ==> Card(K)" |
|
447 |
apply (unfold InfCard_def) |
|
448 |
apply (erule conjunct1) |
|
449 |
done |
|
450 |
||
451 |
lemma InfCard_Un: |
|
46820 | 452 |
"[| InfCard(K); Card(L) |] ==> InfCard(K \<union> L)" |
13216 | 453 |
apply (unfold InfCard_def) |
454 |
apply (simp add: Card_Un Un_upper1_le [THEN [2] le_trans] Card_is_Ord) |
|
455 |
done |
|
456 |
||
457 |
(*Kunen's Lemma 10.11*) |
|
458 |
lemma InfCard_is_Limit: "InfCard(K) ==> Limit(K)" |
|
459 |
apply (unfold InfCard_def) |
|
460 |
apply (erule conjE) |
|
461 |
apply (frule Card_is_Ord) |
|
462 |
apply (rule ltI [THEN non_succ_LimitI]) |
|
463 |
apply (erule le_imp_subset [THEN subsetD]) |
|
464 |
apply (safe dest!: Limit_nat [THEN Limit_le_succD]) |
|
465 |
apply (unfold Card_def) |
|
466 |
apply (drule trans) |
|
467 |
apply (erule le_imp_subset [THEN nat_succ_eqpoll, THEN cardinal_cong]) |
|
468 |
apply (erule Ord_cardinal_le [THEN lt_trans2, THEN lt_irrefl]) |
|
13221 | 469 |
apply (rule le_eqI, assumption) |
13216 | 470 |
apply (rule Ord_cardinal) |
471 |
done |
|
472 |
||
473 |
||
474 |
(*** An infinite cardinal equals its square (Kunen, Thm 10.12, page 29) ***) |
|
475 |
||
476 |
(*A general fact about ordermap*) |
|
477 |
lemma ordermap_eqpoll_pred: |
|
46953 | 478 |
"[| well_ord(A,r); x \<in> A |] ==> ordermap(A,r)`x \<approx> Order.pred(A,x,r)" |
13216 | 479 |
apply (unfold eqpoll_def) |
480 |
apply (rule exI) |
|
13221 | 481 |
apply (simp add: ordermap_eq_image well_ord_is_wf) |
46820 | 482 |
apply (erule ordermap_bij [THEN bij_is_inj, THEN restrict_bij, |
13221 | 483 |
THEN bij_converse_bij]) |
13216 | 484 |
apply (rule pred_subset) |
485 |
done |
|
486 |
||
14883 | 487 |
subsubsection{*Establishing the well-ordering*} |
13216 | 488 |
|
46953 | 489 |
lemma well_ord_csquare: |
46901 | 490 |
assumes K: "Ord(K)" shows "well_ord(K*K, csquare_rel(K))" |
491 |
proof (unfold csquare_rel_def, rule well_ord_rvimage) |
|
492 |
show "(\<lambda>\<langle>x,y\<rangle>\<in>K \<times> K. \<langle>x \<union> y, x, y\<rangle>) \<in> inj(K \<times> K, K \<times> K \<times> K)" using K |
|
493 |
by (force simp add: inj_def intro: lam_type Un_least_lt [THEN ltD] ltI) |
|
494 |
next |
|
495 |
show "well_ord(K \<times> K \<times> K, rmult(K, Memrel(K), K \<times> K, rmult(K, Memrel(K), K, Memrel(K))))" |
|
496 |
using K by (blast intro: well_ord_rmult well_ord_Memrel) |
|
497 |
qed |
|
13216 | 498 |
|
14883 | 499 |
subsubsection{*Characterising initial segments of the well-ordering*} |
13216 | 500 |
|
501 |
lemma csquareD: |
|
46820 | 502 |
"[| <<x,y>, <z,z>> \<in> csquare_rel(K); x<K; y<K; z<K |] ==> x \<le> z & y \<le> z" |
13216 | 503 |
apply (unfold csquare_rel_def) |
504 |
apply (erule rev_mp) |
|
505 |
apply (elim ltE) |
|
13221 | 506 |
apply (simp add: rvimage_iff Un_absorb Un_least_mem_iff ltD) |
13216 | 507 |
apply (safe elim!: mem_irrefl intro!: Un_upper1_le Un_upper2_le) |
13221 | 508 |
apply (simp_all add: lt_def succI2) |
13216 | 509 |
done |
510 |
||
46820 | 511 |
lemma pred_csquare_subset: |
512 |
"z<K ==> Order.pred(K*K, <z,z>, csquare_rel(K)) \<subseteq> succ(z)*succ(z)" |
|
13216 | 513 |
apply (unfold Order.pred_def) |
46901 | 514 |
apply (safe del: SigmaI dest!: csquareD) |
46820 | 515 |
apply (unfold lt_def, auto) |
13216 | 516 |
done |
517 |
||
518 |
lemma csquare_ltI: |
|
46820 | 519 |
"[| x<z; y<z; z<K |] ==> <<x,y>, <z,z>> \<in> csquare_rel(K)" |
13216 | 520 |
apply (unfold csquare_rel_def) |
521 |
apply (subgoal_tac "x<K & y<K") |
|
46820 | 522 |
prefer 2 apply (blast intro: lt_trans) |
13216 | 523 |
apply (elim ltE) |
13221 | 524 |
apply (simp add: rvimage_iff Un_absorb Un_least_mem_iff ltD) |
13216 | 525 |
done |
526 |
||
527 |
(*Part of the traditional proof. UNUSED since it's harder to prove & apply *) |
|
528 |
lemma csquare_or_eqI: |
|
46820 | 529 |
"[| x \<le> z; y \<le> z; z<K |] ==> <<x,y>, <z,z>> \<in> csquare_rel(K) | x=z & y=z" |
13216 | 530 |
apply (unfold csquare_rel_def) |
531 |
apply (subgoal_tac "x<K & y<K") |
|
46820 | 532 |
prefer 2 apply (blast intro: lt_trans1) |
13216 | 533 |
apply (elim ltE) |
13221 | 534 |
apply (simp add: rvimage_iff Un_absorb Un_least_mem_iff ltD) |
13216 | 535 |
apply (elim succE) |
46820 | 536 |
apply (simp_all add: subset_Un_iff [THEN iff_sym] |
13221 | 537 |
subset_Un_iff2 [THEN iff_sym] OrdmemD) |
13216 | 538 |
done |
539 |
||
14883 | 540 |
subsubsection{*The cardinality of initial segments*} |
13216 | 541 |
|
542 |
lemma ordermap_z_lt: |
|
46820 | 543 |
"[| Limit(K); x<K; y<K; z=succ(x \<union> y) |] ==> |
13216 | 544 |
ordermap(K*K, csquare_rel(K)) ` <x,y> < |
545 |
ordermap(K*K, csquare_rel(K)) ` <z,z>" |
|
546 |
apply (subgoal_tac "z<K & well_ord (K*K, csquare_rel (K))") |
|
547 |
prefer 2 apply (blast intro!: Un_least_lt Limit_has_succ |
|
46820 | 548 |
Limit_is_Ord [THEN well_ord_csquare], clarify) |
13216 | 549 |
apply (rule csquare_ltI [THEN ordermap_mono, THEN ltI]) |
550 |
apply (erule_tac [4] well_ord_is_wf) |
|
551 |
apply (blast intro!: Un_upper1_le Un_upper2_le Ord_ordermap elim!: ltE)+ |
|
552 |
done |
|
553 |
||
46901 | 554 |
text{*Kunen: "each @{term"\<langle>x,y\<rangle> \<in> K \<times> K"} has no more than @{term"z \<times> z"} predecessors..." (page 29) *} |
13216 | 555 |
lemma ordermap_csquare_le: |
46953 | 556 |
assumes K: "Limit(K)" and x: "x<K" and y: " y<K" |
46907
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
557 |
defines "z \<equiv> succ(x \<union> y)" |
46901 | 558 |
shows "|ordermap(K \<times> K, csquare_rel(K)) ` \<langle>x,y\<rangle>| \<le> |succ(z)| \<otimes> |succ(z)|" |
559 |
proof (unfold cmult_def, rule well_ord_lepoll_imp_Card_le) |
|
46953 | 560 |
show "well_ord(|succ(z)| \<times> |succ(z)|, |
46901 | 561 |
rmult(|succ(z)|, Memrel(|succ(z)|), |succ(z)|, Memrel(|succ(z)|)))" |
46953 | 562 |
by (blast intro: Ord_cardinal well_ord_Memrel well_ord_rmult) |
46901 | 563 |
next |
46907
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
564 |
have zK: "z<K" using x y K z_def |
46901 | 565 |
by (blast intro: Un_least_lt Limit_has_succ) |
46953 | 566 |
hence oz: "Ord(z)" by (elim ltE) |
46901 | 567 |
have "ordermap(K \<times> K, csquare_rel(K)) ` \<langle>x,y\<rangle> \<lesssim> ordermap(K \<times> K, csquare_rel(K)) ` \<langle>z,z\<rangle>" |
46907
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
568 |
using z_def |
46953 | 569 |
by (blast intro: ordermap_z_lt leI le_imp_lepoll K x y) |
46901 | 570 |
also have "... \<approx> Order.pred(K \<times> K, \<langle>z,z\<rangle>, csquare_rel(K))" |
571 |
proof (rule ordermap_eqpoll_pred) |
|
46953 | 572 |
show "well_ord(K \<times> K, csquare_rel(K))" using K |
46901 | 573 |
by (rule Limit_is_Ord [THEN well_ord_csquare]) |
574 |
next |
|
575 |
show "\<langle>z, z\<rangle> \<in> K \<times> K" using zK |
|
576 |
by (blast intro: ltD) |
|
577 |
qed |
|
578 |
also have "... \<lesssim> succ(z) \<times> succ(z)" using zK |
|
579 |
by (rule pred_csquare_subset [THEN subset_imp_lepoll]) |
|
580 |
also have "... \<approx> |succ(z)| \<times> |succ(z)|" using oz |
|
46953 | 581 |
by (blast intro: prod_eqpoll_cong Ord_succ Ord_cardinal_eqpoll eqpoll_sym) |
46901 | 582 |
finally show "ordermap(K \<times> K, csquare_rel(K)) ` \<langle>x,y\<rangle> \<lesssim> |succ(z)| \<times> |succ(z)|" . |
583 |
qed |
|
13216 | 584 |
|
46901 | 585 |
text{*Kunen: "... so the order type is @{text"\<le>"} K" *} |
13216 | 586 |
lemma ordertype_csquare_le: |
46907
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
587 |
assumes IK: "InfCard(K)" and eq: "\<And>y. y\<in>K \<Longrightarrow> InfCard(y) \<Longrightarrow> y \<otimes> y = y" |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
588 |
shows "ordertype(K*K, csquare_rel(K)) \<le> K" |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
589 |
proof - |
46953 | 590 |
have CK: "Card(K)" using IK by (rule InfCard_is_Card) |
591 |
hence OK: "Ord(K)" by (rule Card_is_Ord) |
|
46907
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
592 |
moreover have "Ord(ordertype(K \<times> K, csquare_rel(K)))" using OK |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
593 |
by (rule well_ord_csquare [THEN Ord_ordertype]) |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
594 |
ultimately show ?thesis |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
595 |
proof (rule all_lt_imp_le) |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
596 |
fix i |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
597 |
assume i: "i < ordertype(K \<times> K, csquare_rel(K))" |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
598 |
hence Oi: "Ord(i)" by (elim ltE) |
46953 | 599 |
obtain x y where x: "x \<in> K" and y: "y \<in> K" |
46907
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
600 |
and ieq: "i = ordermap(K \<times> K, csquare_rel(K)) ` \<langle>x,y\<rangle>" |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
601 |
using i by (auto simp add: ordertype_unfold elim: ltE) |
46953 | 602 |
hence xy: "Ord(x)" "Ord(y)" "x < K" "y < K" using OK |
46907
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
603 |
by (blast intro: Ord_in_Ord ltI)+ |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
604 |
hence ou: "Ord(x \<union> y)" |
46953 | 605 |
by (simp add: Ord_Un) |
46907
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
606 |
show "i < K" |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
607 |
proof (rule Card_lt_imp_lt [OF _ Oi CK]) |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
608 |
have "|i| \<le> |succ(succ(x \<union> y))| \<otimes> |succ(succ(x \<union> y))|" using IK xy |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
609 |
by (auto simp add: ieq intro: InfCard_is_Limit [THEN ordermap_csquare_le]) |
46953 | 610 |
moreover have "|succ(succ(x \<union> y))| \<otimes> |succ(succ(x \<union> y))| < K" |
46907
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
611 |
proof (cases rule: Ord_linear2 [OF ou Ord_nat]) |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
612 |
assume "x \<union> y < nat" |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
613 |
hence "|succ(succ(x \<union> y))| \<otimes> |succ(succ(x \<union> y))| \<in> nat" |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
614 |
by (simp add: lt_def nat_cmult_eq_mult nat_succI mult_type |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
615 |
nat_into_Card [THEN Card_cardinal_eq] Ord_nat) |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
616 |
also have "... \<subseteq> K" using IK |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
617 |
by (simp add: InfCard_def le_imp_subset) |
46953 | 618 |
finally show "|succ(succ(x \<union> y))| \<otimes> |succ(succ(x \<union> y))| < K" |
619 |
by (simp add: ltI OK) |
|
46907
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
620 |
next |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
621 |
assume natxy: "nat \<le> x \<union> y" |
46953 | 622 |
hence seq: "|succ(succ(x \<union> y))| = |x \<union> y|" using xy |
46907
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
623 |
by (simp add: le_imp_subset nat_succ_eqpoll [THEN cardinal_cong] le_succ_iff) |
46953 | 624 |
also have "... < K" using xy |
46907
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
625 |
by (simp add: Un_least_lt Ord_cardinal_le [THEN lt_trans1]) |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
626 |
finally have "|succ(succ(x \<union> y))| < K" . |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
627 |
moreover have "InfCard(|succ(succ(x \<union> y))|)" using xy natxy |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
628 |
by (simp add: seq InfCard_def Card_cardinal nat_le_cardinal) |
46953 | 629 |
ultimately show ?thesis by (simp add: eq ltD) |
46907
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
630 |
qed |
46953 | 631 |
ultimately show "|i| < K" by (blast intro: lt_trans1) |
46907
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
632 |
qed |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
633 |
qed |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
634 |
qed |
13216 | 635 |
|
636 |
(*Main result: Kunen's Theorem 10.12*) |
|
46953 | 637 |
lemma InfCard_csquare_eq: |
46907
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
638 |
assumes IK: "InfCard(K)" shows "InfCard(K) ==> K \<otimes> K = K" |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
639 |
proof - |
46953 | 640 |
have OK: "Ord(K)" using IK by (simp add: Card_is_Ord InfCard_is_Card) |
46935 | 641 |
show "InfCard(K) ==> K \<otimes> K = K" using OK |
642 |
proof (induct rule: trans_induct) |
|
643 |
case (step i) |
|
644 |
show "i \<otimes> i = i" |
|
645 |
proof (rule le_anti_sym) |
|
46953 | 646 |
have "|i \<times> i| = |ordertype(i \<times> i, csquare_rel(i))|" |
647 |
by (rule cardinal_cong, |
|
46935 | 648 |
simp add: step.hyps well_ord_csquare [THEN ordermap_bij, THEN bij_imp_eqpoll]) |
46953 | 649 |
hence "i \<otimes> i \<le> ordertype(i \<times> i, csquare_rel(i))" |
46935 | 650 |
by (simp add: step.hyps cmult_def Ord_cardinal_le well_ord_csquare [THEN Ord_ordertype]) |
651 |
moreover |
|
652 |
have "ordertype(i \<times> i, csquare_rel(i)) \<le> i" using step |
|
46953 | 653 |
by (simp add: ordertype_csquare_le) |
46935 | 654 |
ultimately show "i \<otimes> i \<le> i" by (rule le_trans) |
655 |
next |
|
656 |
show "i \<le> i \<otimes> i" using step |
|
46953 | 657 |
by (blast intro: cmult_square_le InfCard_is_Card) |
46907
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
658 |
qed |
46935 | 659 |
qed |
46907
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
660 |
qed |
13216 | 661 |
|
662 |
(*Corollary for arbitrary well-ordered sets (all sets, assuming AC)*) |
|
663 |
lemma well_ord_InfCard_square_eq: |
|
46907
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
664 |
assumes r: "well_ord(A,r)" and I: "InfCard(|A|)" shows "A \<times> A \<approx> A" |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
665 |
proof - |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
666 |
have "A \<times> A \<approx> |A| \<times> |A|" |
46953 | 667 |
by (blast intro: prod_eqpoll_cong well_ord_cardinal_eqpoll eqpoll_sym r) |
46907
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
668 |
also have "... \<approx> A" |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
669 |
proof (rule well_ord_cardinal_eqE [OF _ r]) |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
670 |
show "well_ord(|A| \<times> |A|, rmult(|A|, Memrel(|A|), |A|, Memrel(|A|)))" |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
671 |
by (blast intro: Ord_cardinal well_ord_rmult well_ord_Memrel r) |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
672 |
next |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
673 |
show "||A| \<times> |A|| = |A|" using InfCard_csquare_eq I |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
674 |
by (simp add: cmult_def) |
46953 | 675 |
qed |
46907
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
676 |
finally show ?thesis . |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
677 |
qed |
13216 | 678 |
|
13356 | 679 |
lemma InfCard_square_eqpoll: "InfCard(K) ==> K \<times> K \<approx> K" |
46820 | 680 |
apply (rule well_ord_InfCard_square_eq) |
681 |
apply (erule InfCard_is_Card [THEN Card_is_Ord, THEN well_ord_Memrel]) |
|
682 |
apply (simp add: InfCard_is_Card [THEN Card_cardinal_eq]) |
|
13356 | 683 |
done |
684 |
||
47101 | 685 |
lemma Inf_Card_is_InfCard: "[| Card(i); ~ Finite(i) |] ==> InfCard(i)" |
13356 | 686 |
by (simp add: InfCard_def Card_is_Ord [THEN nat_le_infinite_Ord]) |
687 |
||
14883 | 688 |
subsubsection{*Toward's Kunen's Corollary 10.13 (1)*} |
13216 | 689 |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
690 |
lemma InfCard_le_cmult_eq: "[| InfCard(K); L \<le> K; 0<L |] ==> K \<otimes> L = K" |
13216 | 691 |
apply (rule le_anti_sym) |
692 |
prefer 2 |
|
693 |
apply (erule ltE, blast intro: cmult_le_self InfCard_is_Card) |
|
694 |
apply (frule InfCard_is_Card [THEN Card_is_Ord, THEN le_refl]) |
|
695 |
apply (rule cmult_le_mono [THEN le_trans], assumption+) |
|
696 |
apply (simp add: InfCard_csquare_eq) |
|
697 |
done |
|
698 |
||
699 |
(*Corollary 10.13 (1), for cardinal multiplication*) |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
700 |
lemma InfCard_cmult_eq: "[| InfCard(K); InfCard(L) |] ==> K \<otimes> L = K \<union> L" |
13784 | 701 |
apply (rule_tac i = K and j = L in Ord_linear_le) |
13216 | 702 |
apply (typecheck add: InfCard_is_Card Card_is_Ord) |
703 |
apply (rule cmult_commute [THEN ssubst]) |
|
704 |
apply (rule Un_commute [THEN ssubst]) |
|
46820 | 705 |
apply (simp_all add: InfCard_is_Limit [THEN Limit_has_0] InfCard_le_cmult_eq |
13221 | 706 |
subset_Un_iff2 [THEN iffD1] le_imp_subset) |
13216 | 707 |
done |
708 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
709 |
lemma InfCard_cdouble_eq: "InfCard(K) ==> K \<oplus> K = K" |
13221 | 710 |
apply (simp add: cmult_2 [symmetric] InfCard_is_Card cmult_commute) |
711 |
apply (simp add: InfCard_le_cmult_eq InfCard_is_Limit Limit_has_0 Limit_has_succ) |
|
13216 | 712 |
done |
713 |
||
714 |
(*Corollary 10.13 (1), for cardinal addition*) |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
715 |
lemma InfCard_le_cadd_eq: "[| InfCard(K); L \<le> K |] ==> K \<oplus> L = K" |
13216 | 716 |
apply (rule le_anti_sym) |
717 |
prefer 2 |
|
718 |
apply (erule ltE, blast intro: cadd_le_self InfCard_is_Card) |
|
719 |
apply (frule InfCard_is_Card [THEN Card_is_Ord, THEN le_refl]) |
|
720 |
apply (rule cadd_le_mono [THEN le_trans], assumption+) |
|
721 |
apply (simp add: InfCard_cdouble_eq) |
|
722 |
done |
|
723 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
724 |
lemma InfCard_cadd_eq: "[| InfCard(K); InfCard(L) |] ==> K \<oplus> L = K \<union> L" |
13784 | 725 |
apply (rule_tac i = K and j = L in Ord_linear_le) |
13216 | 726 |
apply (typecheck add: InfCard_is_Card Card_is_Ord) |
727 |
apply (rule cadd_commute [THEN ssubst]) |
|
728 |
apply (rule Un_commute [THEN ssubst]) |
|
13221 | 729 |
apply (simp_all add: InfCard_le_cadd_eq subset_Un_iff2 [THEN iffD1] le_imp_subset) |
13216 | 730 |
done |
731 |
||
732 |
(*The other part, Corollary 10.13 (2), refers to the cardinality of the set |
|
733 |
of all n-tuples of elements of K. A better version for the Isabelle theory |
|
734 |
might be InfCard(K) ==> |list(K)| = K. |
|
735 |
*) |
|
736 |
||
27517 | 737 |
subsection{*For Every Cardinal Number There Exists A Greater One*} |
13356 | 738 |
|
739 |
text{*This result is Kunen's Theorem 10.16, which would be trivial using AC*} |
|
13216 | 740 |
|
741 |
lemma Ord_jump_cardinal: "Ord(jump_cardinal(K))" |
|
742 |
apply (unfold jump_cardinal_def) |
|
743 |
apply (rule Ord_is_Transset [THEN [2] OrdI]) |
|
744 |
prefer 2 apply (blast intro!: Ord_ordertype) |
|
745 |
apply (unfold Transset_def) |
|
746 |
apply (safe del: subsetI) |
|
13221 | 747 |
apply (simp add: ordertype_pred_unfold, safe) |
13216 | 748 |
apply (rule UN_I) |
749 |
apply (rule_tac [2] ReplaceI) |
|
750 |
prefer 4 apply (blast intro: well_ord_subset elim!: predE)+ |
|
751 |
done |
|
752 |
||
753 |
(*Allows selective unfolding. Less work than deriving intro/elim rules*) |
|
754 |
lemma jump_cardinal_iff: |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
755 |
"i \<in> jump_cardinal(K) \<longleftrightarrow> |
46820 | 756 |
(\<exists>r X. r \<subseteq> K*K & X \<subseteq> K & well_ord(X,r) & i = ordertype(X,r))" |
13216 | 757 |
apply (unfold jump_cardinal_def) |
46820 | 758 |
apply (blast del: subsetI) |
13216 | 759 |
done |
760 |
||
761 |
(*The easy part of Theorem 10.16: jump_cardinal(K) exceeds K*) |
|
762 |
lemma K_lt_jump_cardinal: "Ord(K) ==> K < jump_cardinal(K)" |
|
763 |
apply (rule Ord_jump_cardinal [THEN [2] ltI]) |
|
764 |
apply (rule jump_cardinal_iff [THEN iffD2]) |
|
765 |
apply (rule_tac x="Memrel(K)" in exI) |
|
46820 | 766 |
apply (rule_tac x=K in exI) |
13216 | 767 |
apply (simp add: ordertype_Memrel well_ord_Memrel) |
768 |
apply (simp add: Memrel_def subset_iff) |
|
769 |
done |
|
770 |
||
771 |
(*The proof by contradiction: the bijection f yields a wellordering of X |
|
772 |
whose ordertype is jump_cardinal(K). *) |
|
773 |
lemma Card_jump_cardinal_lemma: |
|
46820 | 774 |
"[| well_ord(X,r); r \<subseteq> K * K; X \<subseteq> K; |
775 |
f \<in> bij(ordertype(X,r), jump_cardinal(K)) |] |
|
776 |
==> jump_cardinal(K) \<in> jump_cardinal(K)" |
|
777 |
apply (subgoal_tac "f O ordermap (X,r) \<in> bij (X, jump_cardinal (K))") |
|
13216 | 778 |
prefer 2 apply (blast intro: comp_bij ordermap_bij) |
779 |
apply (rule jump_cardinal_iff [THEN iffD2]) |
|
780 |
apply (intro exI conjI) |
|
13221 | 781 |
apply (rule subset_trans [OF rvimage_type Sigma_mono], assumption+) |
13216 | 782 |
apply (erule bij_is_inj [THEN well_ord_rvimage]) |
783 |
apply (rule Ord_jump_cardinal [THEN well_ord_Memrel]) |
|
784 |
apply (simp add: well_ord_Memrel [THEN [2] bij_ordertype_vimage] |
|
785 |
ordertype_Memrel Ord_jump_cardinal) |
|
786 |
done |
|
787 |
||
788 |
(*The hard part of Theorem 10.16: jump_cardinal(K) is itself a cardinal*) |
|
789 |
lemma Card_jump_cardinal: "Card(jump_cardinal(K))" |
|
790 |
apply (rule Ord_jump_cardinal [THEN CardI]) |
|
791 |
apply (unfold eqpoll_def) |
|
792 |
apply (safe dest!: ltD jump_cardinal_iff [THEN iffD1]) |
|
793 |
apply (blast intro: Card_jump_cardinal_lemma [THEN mem_irrefl]) |
|
794 |
done |
|
795 |
||
13356 | 796 |
subsection{*Basic Properties of Successor Cardinals*} |
13216 | 797 |
|
798 |
lemma csucc_basic: "Ord(K) ==> Card(csucc(K)) & K < csucc(K)" |
|
799 |
apply (unfold csucc_def) |
|
800 |
apply (rule LeastI) |
|
801 |
apply (blast intro: Card_jump_cardinal K_lt_jump_cardinal Ord_jump_cardinal)+ |
|
802 |
done |
|
803 |
||
45602 | 804 |
lemmas Card_csucc = csucc_basic [THEN conjunct1] |
13216 | 805 |
|
45602 | 806 |
lemmas lt_csucc = csucc_basic [THEN conjunct2] |
13216 | 807 |
|
808 |
lemma Ord_0_lt_csucc: "Ord(K) ==> 0 < csucc(K)" |
|
13221 | 809 |
by (blast intro: Ord_0_le lt_csucc lt_trans1) |
13216 | 810 |
|
46820 | 811 |
lemma csucc_le: "[| Card(L); K<L |] ==> csucc(K) \<le> L" |
13216 | 812 |
apply (unfold csucc_def) |
813 |
apply (rule Least_le) |
|
814 |
apply (blast intro: Card_is_Ord)+ |
|
815 |
done |
|
816 |
||
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
817 |
lemma lt_csucc_iff: "[| Ord(i); Card(K) |] ==> i < csucc(K) \<longleftrightarrow> |i| \<le> K" |
13216 | 818 |
apply (rule iffI) |
819 |
apply (rule_tac [2] Card_lt_imp_lt) |
|
820 |
apply (erule_tac [2] lt_trans1) |
|
821 |
apply (simp_all add: lt_csucc Card_csucc Card_is_Ord) |
|
822 |
apply (rule notI [THEN not_lt_imp_le]) |
|
13221 | 823 |
apply (rule Card_cardinal [THEN csucc_le, THEN lt_trans1, THEN lt_irrefl], assumption) |
13216 | 824 |
apply (rule Ord_cardinal_le [THEN lt_trans1]) |
46820 | 825 |
apply (simp_all add: Ord_cardinal Card_is_Ord) |
13216 | 826 |
done |
827 |
||
828 |
lemma Card_lt_csucc_iff: |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
829 |
"[| Card(K'); Card(K) |] ==> K' < csucc(K) \<longleftrightarrow> K' \<le> K" |
13221 | 830 |
by (simp add: lt_csucc_iff Card_cardinal_eq Card_is_Ord) |
13216 | 831 |
|
832 |
lemma InfCard_csucc: "InfCard(K) ==> InfCard(csucc(K))" |
|
46820 | 833 |
by (simp add: InfCard_def Card_csucc Card_is_Ord |
13216 | 834 |
lt_csucc [THEN leI, THEN [2] le_trans]) |
835 |
||
836 |
||
14883 | 837 |
subsubsection{*Removing elements from a finite set decreases its cardinality*} |
13216 | 838 |
|
14883 | 839 |
lemma Finite_imp_cardinal_cons [simp]: |
46952 | 840 |
assumes FA: "Finite(A)" and a: "a\<notin>A" shows "|cons(a,A)| = succ(|A|)" |
841 |
proof - |
|
842 |
{ fix X |
|
843 |
have "Finite(X) ==> a \<notin> X \<Longrightarrow> cons(a,X) \<lesssim> X \<Longrightarrow> False" |
|
844 |
proof (induct X rule: Finite_induct) |
|
46953 | 845 |
case 0 thus False by (simp add: lepoll_0_iff) |
46952 | 846 |
next |
46953 | 847 |
case (cons x Y) |
848 |
hence "cons(x, cons(a, Y)) \<lesssim> cons(x, Y)" by (simp add: cons_commute) |
|
46952 | 849 |
hence "cons(a, Y) \<lesssim> Y" using cons by (blast dest: cons_lepoll_consD) |
850 |
thus False using cons by auto |
|
851 |
qed |
|
46953 | 852 |
} |
46952 | 853 |
hence [simp]: "~ cons(a,A) \<lesssim> A" using a FA by auto |
854 |
have [simp]: "|A| \<approx> A" using Finite_imp_well_ord [OF FA] |
|
855 |
by (blast intro: well_ord_cardinal_eqpoll) |
|
46953 | 856 |
have "(\<mu> i. i \<approx> cons(a, A)) = succ(|A|)" |
46952 | 857 |
proof (rule Least_equality [OF _ _ notI]) |
46953 | 858 |
show "succ(|A|) \<approx> cons(a, A)" |
859 |
by (simp add: succ_def cons_eqpoll_cong mem_not_refl a) |
|
46952 | 860 |
next |
861 |
show "Ord(succ(|A|))" by simp |
|
862 |
next |
|
863 |
fix i |
|
864 |
assume i: "i \<le> |A|" "i \<approx> cons(a, A)" |
|
865 |
have "cons(a, A) \<approx> i" by (rule eqpoll_sym) (rule i) |
|
866 |
also have "... \<lesssim> |A|" by (rule le_imp_lepoll) (rule i) |
|
867 |
also have "... \<approx> A" by simp |
|
868 |
finally have "cons(a, A) \<lesssim> A" . |
|
869 |
thus False by simp |
|
870 |
qed |
|
46953 | 871 |
thus ?thesis by (simp add: cardinal_def) |
46952 | 872 |
qed |
13216 | 873 |
|
13221 | 874 |
lemma Finite_imp_succ_cardinal_Diff: |
46953 | 875 |
"[| Finite(A); a \<in> A |] ==> succ(|A-{a}|) = |A|" |
13784 | 876 |
apply (rule_tac b = A in cons_Diff [THEN subst], assumption) |
13221 | 877 |
apply (simp add: Finite_imp_cardinal_cons Diff_subset [THEN subset_Finite]) |
878 |
apply (simp add: cons_Diff) |
|
13216 | 879 |
done |
880 |
||
46953 | 881 |
lemma Finite_imp_cardinal_Diff: "[| Finite(A); a \<in> A |] ==> |A-{a}| < |A|" |
13216 | 882 |
apply (rule succ_leE) |
13221 | 883 |
apply (simp add: Finite_imp_succ_cardinal_Diff) |
13216 | 884 |
done |
885 |
||
46820 | 886 |
lemma Finite_cardinal_in_nat [simp]: "Finite(A) ==> |A| \<in> nat" |
46952 | 887 |
proof (induct rule: Finite_induct) |
888 |
case 0 thus ?case by (simp add: cardinal_0) |
|
889 |
next |
|
890 |
case (cons x A) thus ?case by (simp add: Finite_imp_cardinal_cons) |
|
891 |
qed |
|
13216 | 892 |
|
14883 | 893 |
lemma card_Un_Int: |
46820 | 894 |
"[|Finite(A); Finite(B)|] ==> |A| #+ |B| = |A \<union> B| #+ |A \<inter> B|" |
895 |
apply (erule Finite_induct, simp) |
|
14883 | 896 |
apply (simp add: Finite_Int cons_absorb Un_cons Int_cons_left) |
897 |
done |
|
898 |
||
46820 | 899 |
lemma card_Un_disjoint: |
900 |
"[|Finite(A); Finite(B); A \<inter> B = 0|] ==> |A \<union> B| = |A| #+ |B|" |
|
14883 | 901 |
by (simp add: Finite_Un card_Un_Int) |
902 |
||
46952 | 903 |
lemma card_partition: |
904 |
assumes FC: "Finite(C)" |
|
905 |
shows |
|
906 |
"Finite (\<Union> C) \<Longrightarrow> |
|
907 |
(\<forall>c\<in>C. |c| = k) \<Longrightarrow> |
|
908 |
(\<forall>c1 \<in> C. \<forall>c2 \<in> C. c1 \<noteq> c2 \<longrightarrow> c1 \<inter> c2 = 0) \<Longrightarrow> |
|
14883 | 909 |
k #* |C| = |\<Union> C|" |
46952 | 910 |
using FC |
911 |
proof (induct rule: Finite_induct) |
|
912 |
case 0 thus ?case by simp |
|
913 |
next |
|
914 |
case (cons x B) |
|
915 |
hence "x \<inter> \<Union>B = 0" by auto |
|
916 |
thus ?case using cons |
|
917 |
by (auto simp add: card_Un_disjoint) |
|
918 |
qed |
|
14883 | 919 |
|
920 |
||
921 |
subsubsection{*Theorems by Krzysztof Grabczewski, proofs by lcp*} |
|
13216 | 922 |
|
45602 | 923 |
lemmas nat_implies_well_ord = nat_into_Ord [THEN well_ord_Memrel] |
13216 | 924 |
|
46953 | 925 |
lemma nat_sum_eqpoll_sum: |
46907
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
926 |
assumes m: "m \<in> nat" and n: "n \<in> nat" shows "m + n \<approx> m #+ n" |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
927 |
proof - |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
928 |
have "m + n \<approx> |m+n|" using m n |
46953 | 929 |
by (blast intro: nat_implies_well_ord well_ord_radd well_ord_cardinal_eqpoll eqpoll_sym) |
46907
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
930 |
also have "... = m #+ n" using m n |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
931 |
by (simp add: nat_cadd_eq_add [symmetric] cadd_def) |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
932 |
finally show ?thesis . |
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
paulson
parents:
46901
diff
changeset
|
933 |
qed |
13216 | 934 |
|
46935 | 935 |
lemma Ord_subset_natD [rule_format]: "Ord(i) ==> i \<subseteq> nat \<Longrightarrow> i \<in> nat | i=nat" |
936 |
proof (induct i rule: trans_induct3) |
|
937 |
case 0 thus ?case by auto |
|
938 |
next |
|
939 |
case (succ i) thus ?case by auto |
|
940 |
next |
|
941 |
case (limit l) thus ?case |
|
942 |
by (blast dest: nat_le_Limit le_imp_subset) |
|
943 |
qed |
|
13216 | 944 |
|
46820 | 945 |
lemma Ord_nat_subset_into_Card: "[| Ord(i); i \<subseteq> nat |] ==> Card(i)" |
13221 | 946 |
by (blast dest: Ord_subset_natD intro: Card_nat nat_into_Card) |
13216 | 947 |
|
437 | 948 |
end |