| 35652 |      1 | (*  Title:      HOLCF/Domain_Aux.thy
 | 
|  |      2 |     Author:     Brian Huffman
 | 
|  |      3 | *)
 | 
|  |      4 | 
 | 
|  |      5 | header {* Domain package support *}
 | 
|  |      6 | 
 | 
|  |      7 | theory Domain_Aux
 | 
|  |      8 | imports Ssum Sprod Fixrec
 | 
|  |      9 | uses
 | 
|  |     10 |   ("Tools/Domain/domain_take_proofs.ML")
 | 
|  |     11 | begin
 | 
|  |     12 | 
 | 
| 35653 |     13 | subsection {* Continuous isomorphisms *}
 | 
|  |     14 | 
 | 
|  |     15 | text {* A locale for continuous isomorphisms *}
 | 
|  |     16 | 
 | 
|  |     17 | locale iso =
 | 
|  |     18 |   fixes abs :: "'a \<rightarrow> 'b"
 | 
|  |     19 |   fixes rep :: "'b \<rightarrow> 'a"
 | 
|  |     20 |   assumes abs_iso [simp]: "rep\<cdot>(abs\<cdot>x) = x"
 | 
|  |     21 |   assumes rep_iso [simp]: "abs\<cdot>(rep\<cdot>y) = y"
 | 
|  |     22 | begin
 | 
|  |     23 | 
 | 
|  |     24 | lemma swap: "iso rep abs"
 | 
|  |     25 |   by (rule iso.intro [OF rep_iso abs_iso])
 | 
|  |     26 | 
 | 
|  |     27 | lemma abs_below: "(abs\<cdot>x \<sqsubseteq> abs\<cdot>y) = (x \<sqsubseteq> y)"
 | 
|  |     28 | proof
 | 
|  |     29 |   assume "abs\<cdot>x \<sqsubseteq> abs\<cdot>y"
 | 
|  |     30 |   then have "rep\<cdot>(abs\<cdot>x) \<sqsubseteq> rep\<cdot>(abs\<cdot>y)" by (rule monofun_cfun_arg)
 | 
|  |     31 |   then show "x \<sqsubseteq> y" by simp
 | 
|  |     32 | next
 | 
|  |     33 |   assume "x \<sqsubseteq> y"
 | 
|  |     34 |   then show "abs\<cdot>x \<sqsubseteq> abs\<cdot>y" by (rule monofun_cfun_arg)
 | 
|  |     35 | qed
 | 
|  |     36 | 
 | 
|  |     37 | lemma rep_below: "(rep\<cdot>x \<sqsubseteq> rep\<cdot>y) = (x \<sqsubseteq> y)"
 | 
|  |     38 |   by (rule iso.abs_below [OF swap])
 | 
|  |     39 | 
 | 
|  |     40 | lemma abs_eq: "(abs\<cdot>x = abs\<cdot>y) = (x = y)"
 | 
|  |     41 |   by (simp add: po_eq_conv abs_below)
 | 
|  |     42 | 
 | 
|  |     43 | lemma rep_eq: "(rep\<cdot>x = rep\<cdot>y) = (x = y)"
 | 
|  |     44 |   by (rule iso.abs_eq [OF swap])
 | 
|  |     45 | 
 | 
|  |     46 | lemma abs_strict: "abs\<cdot>\<bottom> = \<bottom>"
 | 
|  |     47 | proof -
 | 
|  |     48 |   have "\<bottom> \<sqsubseteq> rep\<cdot>\<bottom>" ..
 | 
|  |     49 |   then have "abs\<cdot>\<bottom> \<sqsubseteq> abs\<cdot>(rep\<cdot>\<bottom>)" by (rule monofun_cfun_arg)
 | 
|  |     50 |   then have "abs\<cdot>\<bottom> \<sqsubseteq> \<bottom>" by simp
 | 
|  |     51 |   then show ?thesis by (rule UU_I)
 | 
|  |     52 | qed
 | 
|  |     53 | 
 | 
|  |     54 | lemma rep_strict: "rep\<cdot>\<bottom> = \<bottom>"
 | 
|  |     55 |   by (rule iso.abs_strict [OF swap])
 | 
|  |     56 | 
 | 
|  |     57 | lemma abs_defin': "abs\<cdot>x = \<bottom> \<Longrightarrow> x = \<bottom>"
 | 
|  |     58 | proof -
 | 
|  |     59 |   have "x = rep\<cdot>(abs\<cdot>x)" by simp
 | 
|  |     60 |   also assume "abs\<cdot>x = \<bottom>"
 | 
|  |     61 |   also note rep_strict
 | 
|  |     62 |   finally show "x = \<bottom>" .
 | 
|  |     63 | qed
 | 
|  |     64 | 
 | 
|  |     65 | lemma rep_defin': "rep\<cdot>z = \<bottom> \<Longrightarrow> z = \<bottom>"
 | 
|  |     66 |   by (rule iso.abs_defin' [OF swap])
 | 
|  |     67 | 
 | 
|  |     68 | lemma abs_defined: "z \<noteq> \<bottom> \<Longrightarrow> abs\<cdot>z \<noteq> \<bottom>"
 | 
|  |     69 |   by (erule contrapos_nn, erule abs_defin')
 | 
|  |     70 | 
 | 
|  |     71 | lemma rep_defined: "z \<noteq> \<bottom> \<Longrightarrow> rep\<cdot>z \<noteq> \<bottom>"
 | 
|  |     72 |   by (rule iso.abs_defined [OF iso.swap]) (rule iso_axioms)
 | 
|  |     73 | 
 | 
|  |     74 | lemma abs_defined_iff: "(abs\<cdot>x = \<bottom>) = (x = \<bottom>)"
 | 
|  |     75 |   by (auto elim: abs_defin' intro: abs_strict)
 | 
|  |     76 | 
 | 
|  |     77 | lemma rep_defined_iff: "(rep\<cdot>x = \<bottom>) = (x = \<bottom>)"
 | 
|  |     78 |   by (rule iso.abs_defined_iff [OF iso.swap]) (rule iso_axioms)
 | 
|  |     79 | 
 | 
|  |     80 | lemma casedist_rule: "rep\<cdot>x = \<bottom> \<or> P \<Longrightarrow> x = \<bottom> \<or> P"
 | 
|  |     81 |   by (simp add: rep_defined_iff)
 | 
|  |     82 | 
 | 
|  |     83 | lemma compact_abs_rev: "compact (abs\<cdot>x) \<Longrightarrow> compact x"
 | 
|  |     84 | proof (unfold compact_def)
 | 
|  |     85 |   assume "adm (\<lambda>y. \<not> abs\<cdot>x \<sqsubseteq> y)"
 | 
|  |     86 |   with cont_Rep_CFun2
 | 
|  |     87 |   have "adm (\<lambda>y. \<not> abs\<cdot>x \<sqsubseteq> abs\<cdot>y)" by (rule adm_subst)
 | 
|  |     88 |   then show "adm (\<lambda>y. \<not> x \<sqsubseteq> y)" using abs_below by simp
 | 
|  |     89 | qed
 | 
|  |     90 | 
 | 
|  |     91 | lemma compact_rep_rev: "compact (rep\<cdot>x) \<Longrightarrow> compact x"
 | 
|  |     92 |   by (rule iso.compact_abs_rev [OF iso.swap]) (rule iso_axioms)
 | 
|  |     93 | 
 | 
|  |     94 | lemma compact_abs: "compact x \<Longrightarrow> compact (abs\<cdot>x)"
 | 
|  |     95 |   by (rule compact_rep_rev) simp
 | 
|  |     96 | 
 | 
|  |     97 | lemma compact_rep: "compact x \<Longrightarrow> compact (rep\<cdot>x)"
 | 
|  |     98 |   by (rule iso.compact_abs [OF iso.swap]) (rule iso_axioms)
 | 
|  |     99 | 
 | 
|  |    100 | lemma iso_swap: "(x = abs\<cdot>y) = (rep\<cdot>x = y)"
 | 
|  |    101 | proof
 | 
|  |    102 |   assume "x = abs\<cdot>y"
 | 
|  |    103 |   then have "rep\<cdot>x = rep\<cdot>(abs\<cdot>y)" by simp
 | 
|  |    104 |   then show "rep\<cdot>x = y" by simp
 | 
|  |    105 | next
 | 
|  |    106 |   assume "rep\<cdot>x = y"
 | 
|  |    107 |   then have "abs\<cdot>(rep\<cdot>x) = abs\<cdot>y" by simp
 | 
|  |    108 |   then show "x = abs\<cdot>y" by simp
 | 
|  |    109 | qed
 | 
|  |    110 | 
 | 
|  |    111 | end
 | 
|  |    112 | 
 | 
|  |    113 | 
 | 
| 35652 |    114 | subsection {* Proofs about take functions *}
 | 
|  |    115 | 
 | 
|  |    116 | text {*
 | 
|  |    117 |   This section contains lemmas that are used in a module that supports
 | 
|  |    118 |   the domain isomorphism package; the module contains proofs related
 | 
|  |    119 |   to take functions and the finiteness predicate.
 | 
|  |    120 | *}
 | 
|  |    121 | 
 | 
|  |    122 | lemma deflation_abs_rep:
 | 
|  |    123 |   fixes abs and rep and d
 | 
|  |    124 |   assumes abs_iso: "\<And>x. rep\<cdot>(abs\<cdot>x) = x"
 | 
|  |    125 |   assumes rep_iso: "\<And>y. abs\<cdot>(rep\<cdot>y) = y"
 | 
|  |    126 |   shows "deflation d \<Longrightarrow> deflation (abs oo d oo rep)"
 | 
|  |    127 | by (rule ep_pair.deflation_e_d_p) (simp add: ep_pair.intro assms)
 | 
|  |    128 | 
 | 
|  |    129 | lemma deflation_chain_min:
 | 
|  |    130 |   assumes chain: "chain d"
 | 
|  |    131 |   assumes defl: "\<And>n. deflation (d n)"
 | 
|  |    132 |   shows "d m\<cdot>(d n\<cdot>x) = d (min m n)\<cdot>x"
 | 
|  |    133 | proof (rule linorder_le_cases)
 | 
|  |    134 |   assume "m \<le> n"
 | 
|  |    135 |   with chain have "d m \<sqsubseteq> d n" by (rule chain_mono)
 | 
|  |    136 |   then have "d m\<cdot>(d n\<cdot>x) = d m\<cdot>x"
 | 
|  |    137 |     by (rule deflation_below_comp1 [OF defl defl])
 | 
|  |    138 |   moreover from `m \<le> n` have "min m n = m" by simp
 | 
|  |    139 |   ultimately show ?thesis by simp
 | 
|  |    140 | next
 | 
|  |    141 |   assume "n \<le> m"
 | 
|  |    142 |   with chain have "d n \<sqsubseteq> d m" by (rule chain_mono)
 | 
|  |    143 |   then have "d m\<cdot>(d n\<cdot>x) = d n\<cdot>x"
 | 
|  |    144 |     by (rule deflation_below_comp2 [OF defl defl])
 | 
|  |    145 |   moreover from `n \<le> m` have "min m n = n" by simp
 | 
|  |    146 |   ultimately show ?thesis by simp
 | 
|  |    147 | qed
 | 
|  |    148 | 
 | 
| 35653 |    149 | lemma lub_ID_take_lemma:
 | 
|  |    150 |   assumes "chain t" and "(\<Squnion>n. t n) = ID"
 | 
|  |    151 |   assumes "\<And>n. t n\<cdot>x = t n\<cdot>y" shows "x = y"
 | 
|  |    152 | proof -
 | 
|  |    153 |   have "(\<Squnion>n. t n\<cdot>x) = (\<Squnion>n. t n\<cdot>y)"
 | 
|  |    154 |     using assms(3) by simp
 | 
|  |    155 |   then have "(\<Squnion>n. t n)\<cdot>x = (\<Squnion>n. t n)\<cdot>y"
 | 
|  |    156 |     using assms(1) by (simp add: lub_distribs)
 | 
|  |    157 |   then show "x = y"
 | 
|  |    158 |     using assms(2) by simp
 | 
|  |    159 | qed
 | 
|  |    160 | 
 | 
|  |    161 | lemma lub_ID_reach:
 | 
|  |    162 |   assumes "chain t" and "(\<Squnion>n. t n) = ID"
 | 
|  |    163 |   shows "(\<Squnion>n. t n\<cdot>x) = x"
 | 
|  |    164 | using assms by (simp add: lub_distribs)
 | 
|  |    165 | 
 | 
| 35655 |    166 | lemma lub_ID_take_induct:
 | 
|  |    167 |   assumes "chain t" and "(\<Squnion>n. t n) = ID"
 | 
|  |    168 |   assumes "adm P" and "\<And>n. P (t n\<cdot>x)" shows "P x"
 | 
|  |    169 | proof -
 | 
|  |    170 |   from `chain t` have "chain (\<lambda>n. t n\<cdot>x)" by simp
 | 
|  |    171 |   from `adm P` this `\<And>n. P (t n\<cdot>x)` have "P (\<Squnion>n. t n\<cdot>x)" by (rule admD)
 | 
|  |    172 |   with `chain t` `(\<Squnion>n. t n) = ID` show "P x" by (simp add: lub_distribs)
 | 
|  |    173 | qed
 | 
|  |    174 | 
 | 
| 35653 |    175 | 
 | 
|  |    176 | subsection {* Finiteness *}
 | 
|  |    177 | 
 | 
|  |    178 | text {*
 | 
|  |    179 |   Let a ``decisive'' function be a deflation that maps every input to
 | 
|  |    180 |   either itself or bottom.  Then if a domain's take functions are all
 | 
|  |    181 |   decisive, then all values in the domain are finite.
 | 
|  |    182 | *}
 | 
|  |    183 | 
 | 
|  |    184 | definition
 | 
|  |    185 |   decisive :: "('a::pcpo \<rightarrow> 'a) \<Rightarrow> bool"
 | 
|  |    186 | where
 | 
|  |    187 |   "decisive d \<longleftrightarrow> (\<forall>x. d\<cdot>x = x \<or> d\<cdot>x = \<bottom>)"
 | 
|  |    188 | 
 | 
|  |    189 | lemma decisiveI: "(\<And>x. d\<cdot>x = x \<or> d\<cdot>x = \<bottom>) \<Longrightarrow> decisive d"
 | 
|  |    190 |   unfolding decisive_def by simp
 | 
|  |    191 | 
 | 
|  |    192 | lemma decisive_cases:
 | 
|  |    193 |   assumes "decisive d" obtains "d\<cdot>x = x" | "d\<cdot>x = \<bottom>"
 | 
|  |    194 | using assms unfolding decisive_def by auto
 | 
|  |    195 | 
 | 
|  |    196 | lemma decisive_bottom: "decisive \<bottom>"
 | 
|  |    197 |   unfolding decisive_def by simp
 | 
|  |    198 | 
 | 
|  |    199 | lemma decisive_ID: "decisive ID"
 | 
|  |    200 |   unfolding decisive_def by simp
 | 
|  |    201 | 
 | 
|  |    202 | lemma decisive_ssum_map:
 | 
|  |    203 |   assumes f: "decisive f"
 | 
|  |    204 |   assumes g: "decisive g"
 | 
|  |    205 |   shows "decisive (ssum_map\<cdot>f\<cdot>g)"
 | 
|  |    206 | apply (rule decisiveI, rename_tac s)
 | 
|  |    207 | apply (case_tac s, simp_all)
 | 
|  |    208 | apply (rule_tac x=x in decisive_cases [OF f], simp_all)
 | 
|  |    209 | apply (rule_tac x=y in decisive_cases [OF g], simp_all)
 | 
|  |    210 | done
 | 
|  |    211 | 
 | 
|  |    212 | lemma decisive_sprod_map:
 | 
|  |    213 |   assumes f: "decisive f"
 | 
|  |    214 |   assumes g: "decisive g"
 | 
|  |    215 |   shows "decisive (sprod_map\<cdot>f\<cdot>g)"
 | 
|  |    216 | apply (rule decisiveI, rename_tac s)
 | 
|  |    217 | apply (case_tac s, simp_all)
 | 
|  |    218 | apply (rule_tac x=x in decisive_cases [OF f], simp_all)
 | 
|  |    219 | apply (rule_tac x=y in decisive_cases [OF g], simp_all)
 | 
|  |    220 | done
 | 
|  |    221 | 
 | 
|  |    222 | lemma decisive_abs_rep:
 | 
|  |    223 |   fixes abs rep
 | 
|  |    224 |   assumes iso: "iso abs rep"
 | 
|  |    225 |   assumes d: "decisive d"
 | 
|  |    226 |   shows "decisive (abs oo d oo rep)"
 | 
|  |    227 | apply (rule decisiveI)
 | 
|  |    228 | apply (rule_tac x="rep\<cdot>x" in decisive_cases [OF d])
 | 
|  |    229 | apply (simp add: iso.rep_iso [OF iso])
 | 
|  |    230 | apply (simp add: iso.abs_strict [OF iso])
 | 
|  |    231 | done
 | 
|  |    232 | 
 | 
|  |    233 | lemma lub_ID_finite:
 | 
|  |    234 |   assumes chain: "chain d"
 | 
|  |    235 |   assumes lub: "(\<Squnion>n. d n) = ID"
 | 
|  |    236 |   assumes decisive: "\<And>n. decisive (d n)"
 | 
|  |    237 |   shows "\<exists>n. d n\<cdot>x = x"
 | 
|  |    238 | proof -
 | 
|  |    239 |   have 1: "chain (\<lambda>n. d n\<cdot>x)" using chain by simp
 | 
|  |    240 |   have 2: "(\<Squnion>n. d n\<cdot>x) = x" using chain lub by (rule lub_ID_reach)
 | 
|  |    241 |   have "\<forall>n. d n\<cdot>x = x \<or> d n\<cdot>x = \<bottom>"
 | 
|  |    242 |     using decisive unfolding decisive_def by simp
 | 
|  |    243 |   hence "range (\<lambda>n. d n\<cdot>x) \<subseteq> {x, \<bottom>}"
 | 
|  |    244 |     by auto
 | 
|  |    245 |   hence "finite (range (\<lambda>n. d n\<cdot>x))"
 | 
|  |    246 |     by (rule finite_subset, simp)
 | 
|  |    247 |   with 1 have "finite_chain (\<lambda>n. d n\<cdot>x)"
 | 
|  |    248 |     by (rule finite_range_imp_finch)
 | 
|  |    249 |   then have "\<exists>n. (\<Squnion>n. d n\<cdot>x) = d n\<cdot>x"
 | 
|  |    250 |     unfolding finite_chain_def by (auto simp add: maxinch_is_thelub)
 | 
|  |    251 |   with 2 show "\<exists>n. d n\<cdot>x = x" by (auto elim: sym)
 | 
|  |    252 | qed
 | 
|  |    253 | 
 | 
| 35655 |    254 | lemma lub_ID_finite_take_induct:
 | 
|  |    255 |   assumes "chain d" and "(\<Squnion>n. d n) = ID" and "\<And>n. decisive (d n)"
 | 
|  |    256 |   shows "(\<And>n. P (d n\<cdot>x)) \<Longrightarrow> P x"
 | 
|  |    257 | using lub_ID_finite [OF assms] by metis
 | 
|  |    258 | 
 | 
| 35653 |    259 | subsection {* ML setup *}
 | 
|  |    260 | 
 | 
| 35652 |    261 | use "Tools/Domain/domain_take_proofs.ML"
 | 
|  |    262 | 
 | 
|  |    263 | end
 |