| author | blanchet | 
| Tue, 31 Aug 2010 10:13:04 +0200 | |
| changeset 38937 | 1b1a2f5ccd7d | 
| parent 36452 | d37c6eed8117 | 
| child 39973 | c62b4ff97bfc | 
| permissions | -rw-r--r-- | 
| 15600 | 1 | (* Title: HOLCF/Ssum.thy | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 2 | Author: Franz Regensburger and Brian Huffman | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 3 | *) | 
| 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 4 | |
| 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 5 | header {* The type of strict sums *}
 | 
| 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 6 | |
| 15577 | 7 | theory Ssum | 
| 31115 | 8 | imports Tr | 
| 15577 | 9 | begin | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 10 | |
| 36452 | 11 | default_sort pcpo | 
| 16083 
fca38c55c8fa
added defaultsort declaration, moved cpair_less to Cprod.thy
 huffman parents: 
16070diff
changeset | 12 | |
| 15593 
24d770bbc44a
reordered and arranged for document generation, cleaned up some proofs
 huffman parents: 
15577diff
changeset | 13 | subsection {* Definition of strict sum type *}
 | 
| 
24d770bbc44a
reordered and arranged for document generation, cleaned up some proofs
 huffman parents: 
15577diff
changeset | 14 | |
| 35525 | 15 | pcpodef (Ssum)  ('a, 'b) ssum (infixr "++" 10) = 
 | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 16 |   "{p :: tr \<times> ('a \<times> 'b).
 | 
| 31115 | 17 | (fst p \<sqsubseteq> TT \<longleftrightarrow> snd (snd p) = \<bottom>) \<and> | 
| 18 | (fst p \<sqsubseteq> FF \<longleftrightarrow> fst (snd p) = \<bottom>)}" | |
| 29063 
7619f0561cd7
pcpodef package: state two goals, instead of encoded conjunction;
 wenzelm parents: 
27310diff
changeset | 19 | by simp_all | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 20 | |
| 35525 | 21 | instance ssum :: ("{finite_po,pcpo}", "{finite_po,pcpo}") finite_po
 | 
| 25827 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25756diff
changeset | 22 | by (rule typedef_finite_po [OF type_definition_Ssum]) | 
| 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25756diff
changeset | 23 | |
| 35525 | 24 | instance ssum :: ("{chfin,pcpo}", "{chfin,pcpo}") chfin
 | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29530diff
changeset | 25 | by (rule typedef_chfin [OF type_definition_Ssum below_Ssum_def]) | 
| 25827 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25756diff
changeset | 26 | |
| 35427 | 27 | type_notation (xsymbols) | 
| 35547 | 28 |   ssum  ("(_ \<oplus>/ _)" [21, 20] 20)
 | 
| 35427 | 29 | type_notation (HTML output) | 
| 35547 | 30 |   ssum  ("(_ \<oplus>/ _)" [21, 20] 20)
 | 
| 31 | ||
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 32 | |
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 33 | subsection {* Definitions of constructors *}
 | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 34 | |
| 25131 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
19440diff
changeset | 35 | definition | 
| 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
19440diff
changeset | 36 |   sinl :: "'a \<rightarrow> ('a ++ 'b)" where
 | 
| 31115 | 37 | "sinl = (\<Lambda> a. Abs_Ssum (strictify\<cdot>(\<Lambda> _. TT)\<cdot>a, a, \<bottom>))" | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 38 | |
| 25131 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
19440diff
changeset | 39 | definition | 
| 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
19440diff
changeset | 40 |   sinr :: "'b \<rightarrow> ('a ++ 'b)" where
 | 
| 31115 | 41 | "sinr = (\<Lambda> b. Abs_Ssum (strictify\<cdot>(\<Lambda> _. FF)\<cdot>b, \<bottom>, b))" | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 42 | |
| 31115 | 43 | lemma sinl_Ssum: "(strictify\<cdot>(\<Lambda> _. TT)\<cdot>a, a, \<bottom>) \<in> Ssum" | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 44 | by (simp add: Ssum_def strictify_conv_if) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 45 | |
| 31115 | 46 | lemma sinr_Ssum: "(strictify\<cdot>(\<Lambda> _. FF)\<cdot>b, \<bottom>, b) \<in> Ssum" | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 47 | by (simp add: Ssum_def strictify_conv_if) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 48 | |
| 31115 | 49 | lemma sinl_Abs_Ssum: "sinl\<cdot>a = Abs_Ssum (strictify\<cdot>(\<Lambda> _. TT)\<cdot>a, a, \<bottom>)" | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 50 | by (unfold sinl_def, simp add: cont_Abs_Ssum sinl_Ssum) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 51 | |
| 31115 | 52 | lemma sinr_Abs_Ssum: "sinr\<cdot>b = Abs_Ssum (strictify\<cdot>(\<Lambda> _. FF)\<cdot>b, \<bottom>, b)" | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 53 | by (unfold sinr_def, simp add: cont_Abs_Ssum sinr_Ssum) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 54 | |
| 31115 | 55 | lemma Rep_Ssum_sinl: "Rep_Ssum (sinl\<cdot>a) = (strictify\<cdot>(\<Lambda> _. TT)\<cdot>a, a, \<bottom>)" | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 56 | by (simp add: sinl_Abs_Ssum Abs_Ssum_inverse sinl_Ssum) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 57 | |
| 31115 | 58 | lemma Rep_Ssum_sinr: "Rep_Ssum (sinr\<cdot>b) = (strictify\<cdot>(\<Lambda> _. FF)\<cdot>b, \<bottom>, b)" | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 59 | by (simp add: sinr_Abs_Ssum Abs_Ssum_inverse sinr_Ssum) | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 60 | |
| 35900 
aa5dfb03eb1e
remove LaTeX hyperref warnings by avoiding antiquotations within section headings
 huffman parents: 
35783diff
changeset | 61 | subsection {* Properties of \emph{sinl} and \emph{sinr} *}
 | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 62 | |
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 63 | text {* Ordering *}
 | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 64 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29530diff
changeset | 65 | lemma sinl_below [simp]: "(sinl\<cdot>x \<sqsubseteq> sinl\<cdot>y) = (x \<sqsubseteq> y)" | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29530diff
changeset | 66 | by (simp add: below_Ssum_def Rep_Ssum_sinl strictify_conv_if) | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 67 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29530diff
changeset | 68 | lemma sinr_below [simp]: "(sinr\<cdot>x \<sqsubseteq> sinr\<cdot>y) = (x \<sqsubseteq> y)" | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29530diff
changeset | 69 | by (simp add: below_Ssum_def Rep_Ssum_sinr strictify_conv_if) | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 70 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29530diff
changeset | 71 | lemma sinl_below_sinr [simp]: "(sinl\<cdot>x \<sqsubseteq> sinr\<cdot>y) = (x = \<bottom>)" | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29530diff
changeset | 72 | by (simp add: below_Ssum_def Rep_Ssum_sinl Rep_Ssum_sinr strictify_conv_if) | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 73 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29530diff
changeset | 74 | lemma sinr_below_sinl [simp]: "(sinr\<cdot>x \<sqsubseteq> sinl\<cdot>y) = (x = \<bottom>)" | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29530diff
changeset | 75 | by (simp add: below_Ssum_def Rep_Ssum_sinl Rep_Ssum_sinr strictify_conv_if) | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 76 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 77 | text {* Equality *}
 | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 78 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 79 | lemma sinl_eq [simp]: "(sinl\<cdot>x = sinl\<cdot>y) = (x = y)" | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 80 | by (simp add: po_eq_conv) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 81 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 82 | lemma sinr_eq [simp]: "(sinr\<cdot>x = sinr\<cdot>y) = (x = y)" | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 83 | by (simp add: po_eq_conv) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 84 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 85 | lemma sinl_eq_sinr [simp]: "(sinl\<cdot>x = sinr\<cdot>y) = (x = \<bottom> \<and> y = \<bottom>)" | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 86 | by (subst po_eq_conv, simp) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 87 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 88 | lemma sinr_eq_sinl [simp]: "(sinr\<cdot>x = sinl\<cdot>y) = (x = \<bottom> \<and> y = \<bottom>)" | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 89 | by (subst po_eq_conv, simp) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 90 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 91 | lemma sinl_inject: "sinl\<cdot>x = sinl\<cdot>y \<Longrightarrow> x = y" | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 92 | by (rule sinl_eq [THEN iffD1]) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 93 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 94 | lemma sinr_inject: "sinr\<cdot>x = sinr\<cdot>y \<Longrightarrow> x = y" | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 95 | by (rule sinr_eq [THEN iffD1]) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 96 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 97 | text {* Strictness *}
 | 
| 17837 | 98 | |
| 16211 
faa9691da2bc
changed to use new contI; renamed strict, defined, and inject lemmas
 huffman parents: 
16083diff
changeset | 99 | lemma sinl_strict [simp]: "sinl\<cdot>\<bottom> = \<bottom>" | 
| 25915 | 100 | by (simp add: sinl_Abs_Ssum Abs_Ssum_strict) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 101 | |
| 16211 
faa9691da2bc
changed to use new contI; renamed strict, defined, and inject lemmas
 huffman parents: 
16083diff
changeset | 102 | lemma sinr_strict [simp]: "sinr\<cdot>\<bottom> = \<bottom>" | 
| 25915 | 103 | by (simp add: sinr_Abs_Ssum Abs_Ssum_strict) | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 104 | |
| 16752 
270ec60cc9e8
added lemmas sinl_defined_iff sinr_defined_iff, sinl_eq_sinr, sinr_eq_sinl; added more simp rules; cleaned up
 huffman parents: 
16742diff
changeset | 105 | lemma sinl_defined_iff [simp]: "(sinl\<cdot>x = \<bottom>) = (x = \<bottom>)" | 
| 17837 | 106 | by (cut_tac sinl_eq [of "x" "\<bottom>"], simp) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 107 | |
| 16752 
270ec60cc9e8
added lemmas sinl_defined_iff sinr_defined_iff, sinl_eq_sinr, sinr_eq_sinl; added more simp rules; cleaned up
 huffman parents: 
16742diff
changeset | 108 | lemma sinr_defined_iff [simp]: "(sinr\<cdot>x = \<bottom>) = (x = \<bottom>)" | 
| 17837 | 109 | by (cut_tac sinr_eq [of "x" "\<bottom>"], simp) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 110 | |
| 16752 
270ec60cc9e8
added lemmas sinl_defined_iff sinr_defined_iff, sinl_eq_sinr, sinr_eq_sinl; added more simp rules; cleaned up
 huffman parents: 
16742diff
changeset | 111 | lemma sinl_defined [intro!]: "x \<noteq> \<bottom> \<Longrightarrow> sinl\<cdot>x \<noteq> \<bottom>" | 
| 
270ec60cc9e8
added lemmas sinl_defined_iff sinr_defined_iff, sinl_eq_sinr, sinr_eq_sinl; added more simp rules; cleaned up
 huffman parents: 
16742diff
changeset | 112 | by simp | 
| 
270ec60cc9e8
added lemmas sinl_defined_iff sinr_defined_iff, sinl_eq_sinr, sinr_eq_sinl; added more simp rules; cleaned up
 huffman parents: 
16742diff
changeset | 113 | |
| 
270ec60cc9e8
added lemmas sinl_defined_iff sinr_defined_iff, sinl_eq_sinr, sinr_eq_sinl; added more simp rules; cleaned up
 huffman parents: 
16742diff
changeset | 114 | lemma sinr_defined [intro!]: "x \<noteq> \<bottom> \<Longrightarrow> sinr\<cdot>x \<noteq> \<bottom>" | 
| 
270ec60cc9e8
added lemmas sinl_defined_iff sinr_defined_iff, sinl_eq_sinr, sinr_eq_sinl; added more simp rules; cleaned up
 huffman parents: 
16742diff
changeset | 115 | by simp | 
| 
270ec60cc9e8
added lemmas sinl_defined_iff sinr_defined_iff, sinl_eq_sinr, sinr_eq_sinl; added more simp rules; cleaned up
 huffman parents: 
16742diff
changeset | 116 | |
| 25882 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 117 | text {* Compactness *}
 | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 118 | |
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 119 | lemma compact_sinl: "compact x \<Longrightarrow> compact (sinl\<cdot>x)" | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 120 | by (rule compact_Ssum, simp add: Rep_Ssum_sinl strictify_conv_if) | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 121 | |
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 122 | lemma compact_sinr: "compact x \<Longrightarrow> compact (sinr\<cdot>x)" | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 123 | by (rule compact_Ssum, simp add: Rep_Ssum_sinr strictify_conv_if) | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 124 | |
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 125 | lemma compact_sinlD: "compact (sinl\<cdot>x) \<Longrightarrow> compact x" | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 126 | unfolding compact_def | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 127 | by (drule adm_subst [OF cont_Rep_CFun2 [where f=sinl]], simp) | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 128 | |
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 129 | lemma compact_sinrD: "compact (sinr\<cdot>x) \<Longrightarrow> compact x" | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 130 | unfolding compact_def | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 131 | by (drule adm_subst [OF cont_Rep_CFun2 [where f=sinr]], simp) | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 132 | |
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 133 | lemma compact_sinl_iff [simp]: "compact (sinl\<cdot>x) = compact x" | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 134 | by (safe elim!: compact_sinl compact_sinlD) | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 135 | |
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 136 | lemma compact_sinr_iff [simp]: "compact (sinr\<cdot>x) = compact x" | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 137 | by (safe elim!: compact_sinr compact_sinrD) | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 138 | |
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 139 | subsection {* Case analysis *}
 | 
| 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 140 | |
| 16921 | 141 | lemma Exh_Ssum: | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 142 | "z = \<bottom> \<or> (\<exists>a. z = sinl\<cdot>a \<and> a \<noteq> \<bottom>) \<or> (\<exists>b. z = sinr\<cdot>b \<and> b \<noteq> \<bottom>)" | 
| 31115 | 143 | apply (induct z rule: Abs_Ssum_induct) | 
| 144 | apply (case_tac y, rename_tac t a b) | |
| 145 | apply (case_tac t rule: trE) | |
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 146 | apply (rule disjI1) | 
| 31115 | 147 | apply (simp add: Ssum_def Abs_Ssum_strict) | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 148 | apply (rule disjI2, rule disjI1, rule_tac x=a in exI) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 149 | apply (simp add: sinl_Abs_Ssum Ssum_def) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 150 | apply (rule disjI2, rule disjI2, rule_tac x=b in exI) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 151 | apply (simp add: sinr_Abs_Ssum Ssum_def) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 152 | done | 
| 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 153 | |
| 35783 | 154 | lemma ssumE [case_names bottom sinl sinr, cases type: ssum]: | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 155 | "\<lbrakk>p = \<bottom> \<Longrightarrow> Q; | 
| 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 156 | \<And>x. \<lbrakk>p = sinl\<cdot>x; x \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> Q; | 
| 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 157 | \<And>y. \<lbrakk>p = sinr\<cdot>y; y \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q" | 
| 35783 | 158 | using Exh_Ssum [of p] by auto | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 159 | |
| 35783 | 160 | lemma ssum_induct [case_names bottom sinl sinr, induct type: ssum]: | 
| 25756 | 161 | "\<lbrakk>P \<bottom>; | 
| 162 | \<And>x. x \<noteq> \<bottom> \<Longrightarrow> P (sinl\<cdot>x); | |
| 163 | \<And>y. y \<noteq> \<bottom> \<Longrightarrow> P (sinr\<cdot>y)\<rbrakk> \<Longrightarrow> P x" | |
| 164 | by (cases x, simp_all) | |
| 165 | ||
| 35783 | 166 | lemma ssumE2 [case_names sinl sinr]: | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 167 | "\<lbrakk>\<And>x. p = sinl\<cdot>x \<Longrightarrow> Q; \<And>y. p = sinr\<cdot>y \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q" | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 168 | by (cases p, simp only: sinl_strict [symmetric], simp, simp) | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 169 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29530diff
changeset | 170 | lemma below_sinlD: "p \<sqsubseteq> sinl\<cdot>x \<Longrightarrow> \<exists>y. p = sinl\<cdot>y \<and> y \<sqsubseteq> x" | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 171 | by (cases p, rule_tac x="\<bottom>" in exI, simp_all) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 172 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29530diff
changeset | 173 | lemma below_sinrD: "p \<sqsubseteq> sinr\<cdot>x \<Longrightarrow> \<exists>y. p = sinr\<cdot>y \<and> y \<sqsubseteq> x" | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 174 | by (cases p, rule_tac x="\<bottom>" in exI, simp_all) | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 175 | |
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 176 | subsection {* Case analysis combinator *}
 | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 177 | |
| 25131 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
19440diff
changeset | 178 | definition | 
| 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
19440diff
changeset | 179 |   sscase :: "('a \<rightarrow> 'c) \<rightarrow> ('b \<rightarrow> 'c) \<rightarrow> ('a ++ 'b) \<rightarrow> 'c" where
 | 
| 31115 | 180 | "sscase = (\<Lambda> f g s. (\<lambda>(t, x, y). If t then f\<cdot>x else g\<cdot>y fi) (Rep_Ssum s))" | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 181 | |
| 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 182 | translations | 
| 26046 | 183 | "case s of XCONST sinl\<cdot>x \<Rightarrow> t1 | XCONST sinr\<cdot>y \<Rightarrow> t2" == "CONST sscase\<cdot>(\<Lambda> x. t1)\<cdot>(\<Lambda> y. t2)\<cdot>s" | 
| 18078 
20e5a6440790
change syntax for LAM to use expressions as patterns; define LAM pattern syntax for cpair, spair, sinl, sinr, up
 huffman parents: 
17837diff
changeset | 184 | |
| 
20e5a6440790
change syntax for LAM to use expressions as patterns; define LAM pattern syntax for cpair, spair, sinl, sinr, up
 huffman parents: 
17837diff
changeset | 185 | translations | 
| 26046 | 186 | "\<Lambda>(XCONST sinl\<cdot>x). t" == "CONST sscase\<cdot>(\<Lambda> x. t)\<cdot>\<bottom>" | 
| 187 | "\<Lambda>(XCONST sinr\<cdot>y). t" == "CONST sscase\<cdot>\<bottom>\<cdot>(\<Lambda> y. t)" | |
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 188 | |
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 189 | lemma beta_sscase: | 
| 31115 | 190 | "sscase\<cdot>f\<cdot>g\<cdot>s = (\<lambda>(t, x, y). If t then f\<cdot>x else g\<cdot>y fi) (Rep_Ssum s)" | 
| 191 | unfolding sscase_def by (simp add: cont_Rep_Ssum [THEN cont_compose]) | |
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 192 | |
| 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 193 | lemma sscase1 [simp]: "sscase\<cdot>f\<cdot>g\<cdot>\<bottom> = \<bottom>" | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 194 | unfolding beta_sscase by (simp add: Rep_Ssum_strict) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 195 | |
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 196 | lemma sscase2 [simp]: "x \<noteq> \<bottom> \<Longrightarrow> sscase\<cdot>f\<cdot>g\<cdot>(sinl\<cdot>x) = f\<cdot>x" | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 197 | unfolding beta_sscase by (simp add: Rep_Ssum_sinl) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 198 | |
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 199 | lemma sscase3 [simp]: "y \<noteq> \<bottom> \<Longrightarrow> sscase\<cdot>f\<cdot>g\<cdot>(sinr\<cdot>y) = g\<cdot>y" | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 200 | unfolding beta_sscase by (simp add: Rep_Ssum_sinr) | 
| 15593 
24d770bbc44a
reordered and arranged for document generation, cleaned up some proofs
 huffman parents: 
15577diff
changeset | 201 | |
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 202 | lemma sscase4 [simp]: "sscase\<cdot>sinl\<cdot>sinr\<cdot>z = z" | 
| 25756 | 203 | by (cases z, simp_all) | 
| 15593 
24d770bbc44a
reordered and arranged for document generation, cleaned up some proofs
 huffman parents: 
15577diff
changeset | 204 | |
| 25827 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25756diff
changeset | 205 | subsection {* Strict sum preserves flatness *}
 | 
| 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25756diff
changeset | 206 | |
| 35525 | 207 | instance ssum :: (flat, flat) flat | 
| 25827 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25756diff
changeset | 208 | apply (intro_classes, clarify) | 
| 31115 | 209 | apply (case_tac x, simp) | 
| 210 | apply (case_tac y, simp_all add: flat_below_iff) | |
| 211 | apply (case_tac y, simp_all add: flat_below_iff) | |
| 25827 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25756diff
changeset | 212 | done | 
| 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25756diff
changeset | 213 | |
| 33504 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 214 | subsection {* Map function for strict sums *}
 | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 215 | |
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 216 | definition | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 217 |   ssum_map :: "('a \<rightarrow> 'b) \<rightarrow> ('c \<rightarrow> 'd) \<rightarrow> 'a \<oplus> 'c \<rightarrow> 'b \<oplus> 'd"
 | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 218 | where | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 219 | "ssum_map = (\<Lambda> f g. sscase\<cdot>(sinl oo f)\<cdot>(sinr oo g))" | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 220 | |
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 221 | lemma ssum_map_strict [simp]: "ssum_map\<cdot>f\<cdot>g\<cdot>\<bottom> = \<bottom>" | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 222 | unfolding ssum_map_def by simp | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 223 | |
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 224 | lemma ssum_map_sinl [simp]: "x \<noteq> \<bottom> \<Longrightarrow> ssum_map\<cdot>f\<cdot>g\<cdot>(sinl\<cdot>x) = sinl\<cdot>(f\<cdot>x)" | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 225 | unfolding ssum_map_def by simp | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 226 | |
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 227 | lemma ssum_map_sinr [simp]: "x \<noteq> \<bottom> \<Longrightarrow> ssum_map\<cdot>f\<cdot>g\<cdot>(sinr\<cdot>x) = sinr\<cdot>(g\<cdot>x)" | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 228 | unfolding ssum_map_def by simp | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 229 | |
| 35491 | 230 | lemma ssum_map_sinl': "f\<cdot>\<bottom> = \<bottom> \<Longrightarrow> ssum_map\<cdot>f\<cdot>g\<cdot>(sinl\<cdot>x) = sinl\<cdot>(f\<cdot>x)" | 
| 231 | by (cases "x = \<bottom>") simp_all | |
| 232 | ||
| 233 | lemma ssum_map_sinr': "g\<cdot>\<bottom> = \<bottom> \<Longrightarrow> ssum_map\<cdot>f\<cdot>g\<cdot>(sinr\<cdot>x) = sinr\<cdot>(g\<cdot>x)" | |
| 234 | by (cases "x = \<bottom>") simp_all | |
| 235 | ||
| 33808 | 236 | lemma ssum_map_ID: "ssum_map\<cdot>ID\<cdot>ID = ID" | 
| 237 | unfolding ssum_map_def by (simp add: expand_cfun_eq eta_cfun) | |
| 238 | ||
| 33587 | 239 | lemma ssum_map_map: | 
| 240 | "\<lbrakk>f1\<cdot>\<bottom> = \<bottom>; g1\<cdot>\<bottom> = \<bottom>\<rbrakk> \<Longrightarrow> | |
| 241 | ssum_map\<cdot>f1\<cdot>g1\<cdot>(ssum_map\<cdot>f2\<cdot>g2\<cdot>p) = | |
| 242 | ssum_map\<cdot>(\<Lambda> x. f1\<cdot>(f2\<cdot>x))\<cdot>(\<Lambda> x. g1\<cdot>(g2\<cdot>x))\<cdot>p" | |
| 243 | apply (induct p, simp) | |
| 244 | apply (case_tac "f2\<cdot>x = \<bottom>", simp, simp) | |
| 245 | apply (case_tac "g2\<cdot>y = \<bottom>", simp, simp) | |
| 246 | done | |
| 247 | ||
| 33504 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 248 | lemma ep_pair_ssum_map: | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 249 | assumes "ep_pair e1 p1" and "ep_pair e2 p2" | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 250 | shows "ep_pair (ssum_map\<cdot>e1\<cdot>e2) (ssum_map\<cdot>p1\<cdot>p2)" | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 251 | proof | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 252 | interpret e1p1: pcpo_ep_pair e1 p1 unfolding pcpo_ep_pair_def by fact | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 253 | interpret e2p2: pcpo_ep_pair e2 p2 unfolding pcpo_ep_pair_def by fact | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 254 | fix x show "ssum_map\<cdot>p1\<cdot>p2\<cdot>(ssum_map\<cdot>e1\<cdot>e2\<cdot>x) = x" | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 255 | by (induct x) simp_all | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 256 | fix y show "ssum_map\<cdot>e1\<cdot>e2\<cdot>(ssum_map\<cdot>p1\<cdot>p2\<cdot>y) \<sqsubseteq> y" | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 257 | apply (induct y, simp) | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 258 | apply (case_tac "p1\<cdot>x = \<bottom>", simp, simp add: e1p1.e_p_below) | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 259 | apply (case_tac "p2\<cdot>y = \<bottom>", simp, simp add: e2p2.e_p_below) | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 260 | done | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 261 | qed | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 262 | |
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 263 | lemma deflation_ssum_map: | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 264 | assumes "deflation d1" and "deflation d2" | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 265 | shows "deflation (ssum_map\<cdot>d1\<cdot>d2)" | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 266 | proof | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 267 | interpret d1: deflation d1 by fact | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 268 | interpret d2: deflation d2 by fact | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 269 | fix x | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 270 | show "ssum_map\<cdot>d1\<cdot>d2\<cdot>(ssum_map\<cdot>d1\<cdot>d2\<cdot>x) = ssum_map\<cdot>d1\<cdot>d2\<cdot>x" | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 271 | apply (induct x, simp) | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 272 | apply (case_tac "d1\<cdot>x = \<bottom>", simp, simp add: d1.idem) | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 273 | apply (case_tac "d2\<cdot>y = \<bottom>", simp, simp add: d2.idem) | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 274 | done | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 275 | show "ssum_map\<cdot>d1\<cdot>d2\<cdot>x \<sqsubseteq> x" | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 276 | apply (induct x, simp) | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 277 | apply (case_tac "d1\<cdot>x = \<bottom>", simp, simp add: d1.below) | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 278 | apply (case_tac "d2\<cdot>y = \<bottom>", simp, simp add: d2.below) | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 279 | done | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 280 | qed | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 281 | |
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 282 | lemma finite_deflation_ssum_map: | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 283 | assumes "finite_deflation d1" and "finite_deflation d2" | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 284 | shows "finite_deflation (ssum_map\<cdot>d1\<cdot>d2)" | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 285 | proof (intro finite_deflation.intro finite_deflation_axioms.intro) | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 286 | interpret d1: finite_deflation d1 by fact | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 287 | interpret d2: finite_deflation d2 by fact | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 288 | have "deflation d1" and "deflation d2" by fact+ | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 289 | thus "deflation (ssum_map\<cdot>d1\<cdot>d2)" by (rule deflation_ssum_map) | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 290 |   have "{x. ssum_map\<cdot>d1\<cdot>d2\<cdot>x = x} \<subseteq>
 | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 291 |         (\<lambda>x. sinl\<cdot>x) ` {x. d1\<cdot>x = x} \<union>
 | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 292 |         (\<lambda>x. sinr\<cdot>x) ` {x. d2\<cdot>x = x} \<union> {\<bottom>}"
 | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 293 | by (rule subsetI, case_tac x, simp_all) | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 294 |   thus "finite {x. ssum_map\<cdot>d1\<cdot>d2\<cdot>x = x}"
 | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 295 | by (rule finite_subset, simp add: d1.finite_fixes d2.finite_fixes) | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 296 | qed | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 297 | |
| 25915 | 298 | subsection {* Strict sum is a bifinite domain *}
 | 
| 299 | ||
| 35525 | 300 | instantiation ssum :: (bifinite, bifinite) bifinite | 
| 26962 
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
 huffman parents: 
26046diff
changeset | 301 | begin | 
| 25915 | 302 | |
| 26962 
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
 huffman parents: 
26046diff
changeset | 303 | definition | 
| 25915 | 304 | approx_ssum_def: | 
| 33504 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 305 | "approx = (\<lambda>n. ssum_map\<cdot>(approx n)\<cdot>(approx n))" | 
| 25915 | 306 | |
| 307 | lemma approx_sinl [simp]: "approx i\<cdot>(sinl\<cdot>x) = sinl\<cdot>(approx i\<cdot>x)" | |
| 308 | unfolding approx_ssum_def by (cases "x = \<bottom>") simp_all | |
| 309 | ||
| 310 | lemma approx_sinr [simp]: "approx i\<cdot>(sinr\<cdot>x) = sinr\<cdot>(approx i\<cdot>x)" | |
| 311 | unfolding approx_ssum_def by (cases "x = \<bottom>") simp_all | |
| 312 | ||
| 26962 
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
 huffman parents: 
26046diff
changeset | 313 | instance proof | 
| 25915 | 314 | fix i :: nat and x :: "'a \<oplus> 'b" | 
| 27310 | 315 | show "chain (approx :: nat \<Rightarrow> 'a \<oplus> 'b \<rightarrow> 'a \<oplus> 'b)" | 
| 25915 | 316 | unfolding approx_ssum_def by simp | 
| 317 | show "(\<Squnion>i. approx i\<cdot>x) = x" | |
| 318 | unfolding approx_ssum_def | |
| 33504 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 319 | by (cases x, simp_all add: lub_distribs) | 
| 25915 | 320 | show "approx i\<cdot>(approx i\<cdot>x) = approx i\<cdot>x" | 
| 321 | by (cases x, simp add: approx_ssum_def, simp, simp) | |
| 33504 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 322 |   show "finite {x::'a \<oplus> 'b. approx i\<cdot>x = x}"
 | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 323 | unfolding approx_ssum_def | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 324 | by (intro finite_deflation.finite_fixes | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 325 | finite_deflation_ssum_map | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 326 | finite_deflation_approx) | 
| 25915 | 327 | qed | 
| 328 | ||
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 329 | end | 
| 26962 
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
 huffman parents: 
26046diff
changeset | 330 | |
| 
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
 huffman parents: 
26046diff
changeset | 331 | end |