| 
5078
 | 
     1  | 
(*  Title:      HOL/Integ/Ring.ML
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author:     Tobias Nipkow
  | 
| 
 | 
     4  | 
    Copyright   1996 TU Muenchen
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
Derives a few equational consequences about rings
  | 
| 
 | 
     7  | 
and defines cring_simpl, a simplification tactic for commutative rings.
  | 
| 
 | 
     8  | 
*)
  | 
| 
 | 
     9  | 
  | 
| 
 | 
    10  | 
Goal "!!x::'a::cring. x*(y*z)=y*(x*z)";
  | 
| 
 | 
    11  | 
by (rtac trans 1);
  | 
| 
 | 
    12  | 
by (rtac times_commute 1);
  | 
| 
 | 
    13  | 
by (rtac trans 1);
  | 
| 
 | 
    14  | 
by (rtac times_assoc 1);
  | 
| 
 | 
    15  | 
by (simp_tac (HOL_basic_ss addsimps [times_commute]) 1);
  | 
| 
 | 
    16  | 
qed "times_commuteL";
  | 
| 
 | 
    17  | 
  | 
| 
 | 
    18  | 
val times_cong = read_instantiate [("f1","op *")] (arg_cong RS cong);
 | 
| 
 | 
    19  | 
  | 
| 
 | 
    20  | 
Goal "!!x::'a::ring. zero*x = zero";
  | 
| 
 | 
    21  | 
by (rtac trans 1);
  | 
| 
 | 
    22  | 
 by (rtac right_inv 2);
  | 
| 
 | 
    23  | 
by (rtac trans 1);
  | 
| 
 | 
    24  | 
 by (rtac plus_cong 2);
  | 
| 
 | 
    25  | 
  by (rtac refl 3);
  | 
| 
 | 
    26  | 
 by (rtac trans 2);
  | 
| 
 | 
    27  | 
  by (rtac times_cong 3);
  | 
| 
 | 
    28  | 
   by (rtac zeroL 3);
  | 
| 
 | 
    29  | 
  by (rtac refl 3);
  | 
| 
 | 
    30  | 
 by (rtac (distribR RS sym) 2);
  | 
| 
 | 
    31  | 
by (rtac trans 1);
  | 
| 
 | 
    32  | 
 by (rtac (plus_assoc RS sym) 2);
  | 
| 
 | 
    33  | 
by (rtac trans 1);
  | 
| 
 | 
    34  | 
 by (rtac plus_cong 2);
  | 
| 
 | 
    35  | 
  by (rtac refl 2);
  | 
| 
 | 
    36  | 
 by (rtac (right_inv RS sym) 2);
  | 
| 
 | 
    37  | 
by (rtac (zeroR RS sym) 1);
  | 
| 
 | 
    38  | 
qed "mult_zeroL";
  | 
| 
 | 
    39  | 
  | 
| 
 | 
    40  | 
Goal "!!x::'a::ring. x*zero = zero";
  | 
| 
 | 
    41  | 
by (rtac trans 1);
  | 
| 
 | 
    42  | 
 by (rtac right_inv 2);
  | 
| 
 | 
    43  | 
by (rtac trans 1);
  | 
| 
 | 
    44  | 
 by (rtac plus_cong 2);
  | 
| 
 | 
    45  | 
  by (rtac refl 3);
  | 
| 
 | 
    46  | 
 by (rtac trans 2);
  | 
| 
 | 
    47  | 
  by (rtac times_cong 3);
  | 
| 
 | 
    48  | 
   by (rtac zeroL 4);
  | 
| 
 | 
    49  | 
  by (rtac refl 3);
  | 
| 
 | 
    50  | 
 by (rtac (distribL RS sym) 2);
  | 
| 
 | 
    51  | 
by (rtac trans 1);
  | 
| 
 | 
    52  | 
 by (rtac (plus_assoc RS sym) 2);
  | 
| 
 | 
    53  | 
by (rtac trans 1);
  | 
| 
 | 
    54  | 
 by (rtac plus_cong 2);
  | 
| 
 | 
    55  | 
  by (rtac refl 2);
  | 
| 
 | 
    56  | 
 by (rtac (right_inv RS sym) 2);
  | 
| 
 | 
    57  | 
by (rtac (zeroR RS sym) 1);
  | 
| 
 | 
    58  | 
qed "mult_zeroR";
  | 
| 
 | 
    59  | 
  | 
| 
 | 
    60  | 
Goal "!!x::'a::ring. (zero-x)*y = zero-(x*y)";
  | 
| 
 | 
    61  | 
by (rtac trans 1);
  | 
| 
 | 
    62  | 
 by (rtac zeroL 2);
  | 
| 
 | 
    63  | 
by (rtac trans 1);
  | 
| 
 | 
    64  | 
 by (rtac plus_cong 2);
  | 
| 
 | 
    65  | 
  by (rtac refl 3);
  | 
| 
 | 
    66  | 
 by (rtac mult_zeroL 2);
  | 
| 
 | 
    67  | 
by (rtac trans 1);
  | 
| 
 | 
    68  | 
 by (rtac plus_cong 2);
  | 
| 
 | 
    69  | 
  by (rtac refl 3);
  | 
| 
 | 
    70  | 
 by (rtac times_cong 2);
  | 
| 
 | 
    71  | 
  by (rtac left_inv 2);
  | 
| 
 | 
    72  | 
 by (rtac refl 2);
  | 
| 
 | 
    73  | 
by (rtac trans 1);
  | 
| 
 | 
    74  | 
 by (rtac plus_cong 2);
  | 
| 
 | 
    75  | 
  by (rtac refl 3);
  | 
| 
 | 
    76  | 
 by (rtac (distribR RS sym) 2);
  | 
| 
 | 
    77  | 
by (rtac trans 1);
  | 
| 
 | 
    78  | 
 by (rtac (plus_assoc RS sym) 2);
  | 
| 
 | 
    79  | 
by (rtac trans 1);
  | 
| 
 | 
    80  | 
 by (rtac plus_cong 2);
  | 
| 
 | 
    81  | 
  by (rtac refl 2);
  | 
| 
 | 
    82  | 
 by (rtac (right_inv RS sym) 2);
  | 
| 
 | 
    83  | 
by (rtac (zeroR RS sym) 1);
  | 
| 
 | 
    84  | 
qed "mult_invL";
  | 
| 
 | 
    85  | 
  | 
| 
 | 
    86  | 
Goal "!!x::'a::ring. x*(zero-y) = zero-(x*y)";
  | 
| 
 | 
    87  | 
by (rtac trans 1);
  | 
| 
 | 
    88  | 
 by (rtac zeroL 2);
  | 
| 
 | 
    89  | 
by (rtac trans 1);
  | 
| 
 | 
    90  | 
 by (rtac plus_cong 2);
  | 
| 
 | 
    91  | 
  by (rtac refl 3);
  | 
| 
 | 
    92  | 
 by (rtac mult_zeroR 2);
  | 
| 
 | 
    93  | 
by (rtac trans 1);
  | 
| 
 | 
    94  | 
 by (rtac plus_cong 2);
  | 
| 
 | 
    95  | 
  by (rtac refl 3);
  | 
| 
 | 
    96  | 
 by (rtac times_cong 2);
  | 
| 
 | 
    97  | 
  by (rtac refl 2);
  | 
| 
 | 
    98  | 
 by (rtac left_inv 2);
  | 
| 
 | 
    99  | 
by (rtac trans 1);
  | 
| 
 | 
   100  | 
 by (rtac plus_cong 2);
  | 
| 
 | 
   101  | 
  by (rtac refl 3);
  | 
| 
 | 
   102  | 
 by (rtac (distribL RS sym) 2);
  | 
| 
 | 
   103  | 
by (rtac trans 1);
  | 
| 
 | 
   104  | 
 by (rtac (plus_assoc RS sym) 2);
  | 
| 
 | 
   105  | 
by (rtac trans 1);
  | 
| 
 | 
   106  | 
 by (rtac plus_cong 2);
  | 
| 
 | 
   107  | 
  by (rtac refl 2);
  | 
| 
 | 
   108  | 
 by (rtac (right_inv RS sym) 2);
  | 
| 
 | 
   109  | 
by (rtac (zeroR RS sym) 1);
  | 
| 
 | 
   110  | 
qed "mult_invR";
  | 
| 
 | 
   111  | 
  | 
| 
 | 
   112  | 
Goal "x*(y-z) = (x*y - x*z::'a::ring)";
  | 
| 
 | 
   113  | 
by (mk_group1_tac 1);
  | 
| 
 | 
   114  | 
by (simp_tac (HOL_basic_ss addsimps [distribL,mult_invR]) 1);
  | 
| 
 | 
   115  | 
qed "minus_distribL";
  | 
| 
 | 
   116  | 
  | 
| 
 | 
   117  | 
Goal "(x-y)*z = (x*z - y*z::'a::ring)";
  | 
| 
 | 
   118  | 
by (mk_group1_tac 1);
  | 
| 
 | 
   119  | 
by (simp_tac (HOL_basic_ss addsimps [distribR,mult_invL]) 1);
  | 
| 
 | 
   120  | 
qed "minus_distribR";
  | 
| 
 | 
   121  | 
  | 
| 
 | 
   122  | 
val cring_simps = [times_assoc,times_commute,times_commuteL,
  | 
| 
 | 
   123  | 
                   distribL,distribR,minus_distribL,minus_distribR]
  | 
| 
 | 
   124  | 
                  @ agroup2_simps;
  | 
| 
 | 
   125  | 
  | 
| 
 | 
   126  | 
val cring_tac =
  | 
| 
 | 
   127  | 
  let val ss = HOL_basic_ss addsimps cring_simps
  | 
| 
 | 
   128  | 
  in simp_tac ss end;
  | 
| 
 | 
   129  | 
  | 
| 
 | 
   130  | 
  | 
| 
 | 
   131  | 
(*** The order [minus_plusL3,minus_plusL2] is important because minus_plusL3
  | 
| 
 | 
   132  | 
     MUST be tried first
  | 
| 
 | 
   133  | 
val cring_simp =
  | 
| 
 | 
   134  | 
  let val phase1 = simpset() addsimps
  | 
| 
 | 
   135  | 
                   [plus_minusL,minus_plusR,minus_minusR,plus_minusR]
  | 
| 
 | 
   136  | 
      val phase2 = HOL_ss addsimps [minus_plusL3,minus_plusL2,
  | 
| 
 | 
   137  | 
                                    zeroL,zeroR,mult_zeroL,mult_zeroR]
  | 
| 
 | 
   138  | 
  in simp_tac phase1 THEN' simp_tac phase2 end;
  | 
| 
 | 
   139  | 
***)
  |