| author | wenzelm | 
| Wed, 13 Dec 2017 16:18:40 +0100 | |
| changeset 67194 | 1c0a6a957114 | 
| parent 61980 | 6b780867d426 | 
| child 76213 | e44d86131648 | 
| permissions | -rw-r--r-- | 
| 12787 | 1  | 
(* Title: ZF/AC/AC7_AC9.thy  | 
2  | 
Author: Krzysztof Grabczewski  | 
|
3  | 
||
4  | 
The proofs needed to state that AC7, AC8 and AC9 are equivalent to the previous  | 
|
5  | 
instances of AC.  | 
|
6  | 
*)  | 
|
7  | 
||
| 27678 | 8  | 
theory AC7_AC9  | 
9  | 
imports AC_Equiv  | 
|
10  | 
begin  | 
|
| 12787 | 11  | 
|
12  | 
(* ********************************************************************** *)  | 
|
13  | 
(* Lemmas used in the proofs AC7 ==> AC6 and AC9 ==> AC1 *)  | 
|
14  | 
(* - Sigma_fun_space_not0 *)  | 
|
15  | 
(* - Sigma_fun_space_eqpoll *)  | 
|
16  | 
(* ********************************************************************** *)  | 
|
17  | 
||
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
18  | 
lemma Sigma_fun_space_not0: "[| 0\<notin>A; B \<in> A |] ==> (nat->\<Union>(A)) * B \<noteq> 0"  | 
| 12787 | 19  | 
by (blast dest!: Sigma_empty_iff [THEN iffD1] Union_empty_iff [THEN iffD1])  | 
20  | 
||
21  | 
lemma inj_lemma:  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
22  | 
"C \<in> A ==> (\<lambda>g \<in> (nat->\<Union>(A))*C.  | 
| 12787 | 23  | 
(\<lambda>n \<in> nat. if(n=0, snd(g), fst(g)`(n #- 1))))  | 
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
24  | 
\<in> inj((nat->\<Union>(A))*C, (nat->\<Union>(A)) ) "  | 
| 12787 | 25  | 
apply (unfold inj_def)  | 
26  | 
apply (rule CollectI)  | 
|
27  | 
apply (fast intro!: lam_type if_type apply_type fst_type snd_type, auto)  | 
|
28  | 
apply (rule fun_extension, assumption+)  | 
|
29  | 
apply (drule lam_eqE [OF _ nat_succI], assumption, simp)  | 
|
30  | 
apply (drule lam_eqE [OF _ nat_0I], simp)  | 
|
31  | 
done  | 
|
32  | 
||
33  | 
lemma Sigma_fun_space_eqpoll:  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
34  | 
"[| C \<in> A; 0\<notin>A |] ==> (nat->\<Union>(A)) * C \<approx> (nat->\<Union>(A))"  | 
| 12787 | 35  | 
apply (rule eqpollI)  | 
36  | 
apply (simp add: lepoll_def)  | 
|
37  | 
apply (fast intro!: inj_lemma)  | 
|
38  | 
apply (fast elim!: prod_lepoll_self not_sym [THEN not_emptyE] subst_elem  | 
|
39  | 
elim: swap)  | 
|
40  | 
done  | 
|
41  | 
||
42  | 
||
43  | 
(* ********************************************************************** *)  | 
|
44  | 
(* AC6 ==> AC7 *)  | 
|
45  | 
(* ********************************************************************** *)  | 
|
46  | 
||
47  | 
lemma AC6_AC7: "AC6 ==> AC7"  | 
|
48  | 
by (unfold AC6_def AC7_def, blast)  | 
|
49  | 
||
50  | 
(* ********************************************************************** *)  | 
|
51  | 
(* AC7 ==> AC6, Rubin & Rubin p. 12, Theorem 2.8 *)  | 
|
52  | 
(* The case of the empty family of sets added in order to complete *)  | 
|
53  | 
(* the proof. *)  | 
|
54  | 
(* ********************************************************************** *)  | 
|
55  | 
||
| 61980 | 56  | 
lemma lemma1_1: "y \<in> (\<Prod>B \<in> A. Y*B) ==> (\<lambda>B \<in> A. snd(y`B)) \<in> (\<Prod>B \<in> A. B)"  | 
| 12787 | 57  | 
by (fast intro!: lam_type snd_type apply_type)  | 
58  | 
||
59  | 
lemma lemma1_2:  | 
|
| 61980 | 60  | 
     "y \<in> (\<Prod>B \<in> {Y*C. C \<in> A}. B) ==> (\<lambda>B \<in> A. y`(Y*B)) \<in> (\<Prod>B \<in> A. Y*B)"
 | 
| 12787 | 61  | 
apply (fast intro!: lam_type apply_type)  | 
62  | 
done  | 
|
63  | 
||
64  | 
lemma AC7_AC6_lemma1:  | 
|
| 61980 | 65  | 
     "(\<Prod>B \<in> {(nat->\<Union>(A))*C. C \<in> A}. B) \<noteq> 0 ==> (\<Prod>B \<in> A. B) \<noteq> 0"
 | 
| 12787 | 66  | 
by (fast intro!: equals0I lemma1_1 lemma1_2)  | 
67  | 
||
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
68  | 
lemma AC7_AC6_lemma2: "0 \<notin> A ==> 0 \<notin> {(nat -> \<Union>(A)) * C. C \<in> A}"
 | 
| 12787 | 69  | 
by (blast dest: Sigma_fun_space_not0)  | 
70  | 
||
71  | 
lemma AC7_AC6: "AC7 ==> AC6"  | 
|
72  | 
apply (unfold AC6_def AC7_def)  | 
|
73  | 
apply (rule allI)  | 
|
74  | 
apply (rule impI)  | 
|
75  | 
apply (case_tac "A=0", simp)  | 
|
76  | 
apply (rule AC7_AC6_lemma1)  | 
|
77  | 
apply (erule allE)  | 
|
78  | 
apply (blast del: notI  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
27678 
diff
changeset
 | 
79  | 
intro!: AC7_AC6_lemma2 intro: eqpoll_sym eqpoll_trans  | 
| 12787 | 80  | 
Sigma_fun_space_eqpoll)  | 
81  | 
done  | 
|
82  | 
||
83  | 
||
84  | 
(* ********************************************************************** *)  | 
|
85  | 
(* AC1 ==> AC8 *)  | 
|
86  | 
(* ********************************************************************** *)  | 
|
87  | 
||
88  | 
lemma AC1_AC8_lemma1:  | 
|
89  | 
"\<forall>B \<in> A. \<exists>B1 B2. B=<B1,B2> & B1 \<approx> B2  | 
|
90  | 
        ==> 0 \<notin> { bij(fst(B),snd(B)). B \<in> A }"
 | 
|
91  | 
apply (unfold eqpoll_def, auto)  | 
|
92  | 
done  | 
|
93  | 
||
94  | 
lemma AC1_AC8_lemma2:  | 
|
| 61980 | 95  | 
"[| f \<in> (\<Prod>X \<in> RepFun(A,p). X); D \<in> A |] ==> (\<lambda>x \<in> A. f`p(x))`D \<in> p(D)"  | 
| 12787 | 96  | 
apply (simp, fast elim!: apply_type)  | 
97  | 
done  | 
|
98  | 
||
99  | 
lemma AC1_AC8: "AC1 ==> AC8"  | 
|
100  | 
apply (unfold AC1_def AC8_def)  | 
|
101  | 
apply (fast dest: AC1_AC8_lemma1 AC1_AC8_lemma2)  | 
|
102  | 
done  | 
|
103  | 
||
104  | 
||
105  | 
(* ********************************************************************** *)  | 
|
106  | 
(* AC8 ==> AC9 *)  | 
|
107  | 
(* - this proof replaces the following two from Rubin & Rubin: *)  | 
|
108  | 
(* AC8 ==> AC1 and AC1 ==> AC9 *)  | 
|
109  | 
(* ********************************************************************** *)  | 
|
110  | 
||
111  | 
lemma AC8_AC9_lemma:  | 
|
112  | 
"\<forall>B1 \<in> A. \<forall>B2 \<in> A. B1 \<approx> B2  | 
|
113  | 
==> \<forall>B \<in> A*A. \<exists>B1 B2. B=<B1,B2> & B1 \<approx> B2"  | 
|
114  | 
by fast  | 
|
115  | 
||
116  | 
lemma AC8_AC9: "AC8 ==> AC9"  | 
|
117  | 
apply (unfold AC8_def AC9_def)  | 
|
118  | 
apply (intro allI impI)  | 
|
119  | 
apply (erule allE)  | 
|
120  | 
apply (erule impE, erule AC8_AC9_lemma, force)  | 
|
121  | 
done  | 
|
122  | 
||
123  | 
||
124  | 
(* ********************************************************************** *)  | 
|
125  | 
(* AC9 ==> AC1 *)  | 
|
126  | 
(* The idea of this proof comes from "Equivalents of the Axiom of Choice" *)  | 
|
127  | 
(* by Rubin & Rubin. But (x * y) is not necessarily equipollent to *)  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
128  | 
(* (x * y) \<union> {0} when y is a set of total functions acting from nat to   *)
 | 
| 
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
129  | 
(* \<Union>(A) -- therefore we have used the set (y * nat) instead of y. *)  | 
| 12787 | 130  | 
(* ********************************************************************** *)  | 
131  | 
||
132  | 
lemma snd_lepoll_SigmaI: "b \<in> B \<Longrightarrow> X \<lesssim> B \<times> X"  | 
|
133  | 
by (blast intro: lepoll_trans prod_lepoll_self eqpoll_imp_lepoll  | 
|
134  | 
prod_commute_eqpoll)  | 
|
135  | 
||
136  | 
lemma nat_lepoll_lemma:  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
137  | 
"[|0 \<notin> A; B \<in> A|] ==> nat \<lesssim> ((nat \<rightarrow> \<Union>(A)) \<times> B) \<times> nat"  | 
| 12787 | 138  | 
by (blast dest: Sigma_fun_space_not0 intro: snd_lepoll_SigmaI)  | 
139  | 
||
140  | 
lemma AC9_AC1_lemma1:  | 
|
141  | 
"[| 0\<notin>A; A\<noteq>0;  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
142  | 
         C = {((nat->\<Union>(A))*B)*nat. B \<in> A}  \<union>  
 | 
| 
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
143  | 
             {cons(0,((nat->\<Union>(A))*B)*nat). B \<in> A};  
 | 
| 12787 | 144  | 
B1 \<in> C; B2 \<in> C |]  | 
145  | 
==> B1 \<approx> B2"  | 
|
146  | 
by (blast intro!: nat_lepoll_lemma Sigma_fun_space_eqpoll  | 
|
147  | 
nat_cons_eqpoll [THEN eqpoll_trans]  | 
|
148  | 
prod_eqpoll_cong [OF _ eqpoll_refl]  | 
|
149  | 
intro: eqpoll_trans eqpoll_sym )  | 
|
150  | 
||
151  | 
lemma AC9_AC1_lemma2:  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
152  | 
     "\<forall>B1 \<in> {(F*B)*N. B \<in> A} \<union> {cons(0,(F*B)*N). B \<in> A}.   
 | 
| 
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
153  | 
      \<forall>B2 \<in> {(F*B)*N. B \<in> A} \<union> {cons(0,(F*B)*N). B \<in> A}.   
 | 
| 12787 | 154  | 
f`<B1,B2> \<in> bij(B1, B2)  | 
| 61980 | 155  | 
==> (\<lambda>B \<in> A. snd(fst((f`<cons(0,(F*B)*N),(F*B)*N>)`0))) \<in> (\<Prod>X \<in> A. X)"  | 
| 12787 | 156  | 
apply (intro lam_type snd_type fst_type)  | 
157  | 
apply (rule apply_type [OF _ consI1])  | 
|
158  | 
apply (fast intro!: fun_weaken_type bij_is_fun)  | 
|
159  | 
done  | 
|
160  | 
||
161  | 
lemma AC9_AC1: "AC9 ==> AC1"  | 
|
162  | 
apply (unfold AC1_def AC9_def)  | 
|
163  | 
apply (intro allI impI)  | 
|
164  | 
apply (erule allE)  | 
|
| 
46822
 
95f1e700b712
 mathematical symbols for Isabelle/ZF example theories
 
paulson 
parents: 
32960 
diff
changeset
 | 
165  | 
apply (case_tac "A\<noteq>0")  | 
| 12787 | 166  | 
apply (blast dest: AC9_AC1_lemma1 AC9_AC1_lemma2, force)  | 
167  | 
done  | 
|
168  | 
||
169  | 
end  |