| author | wenzelm | 
| Sun, 18 Dec 2016 13:46:57 +0100 | |
| changeset 64597 | 1c252d8b6ca6 | 
| parent 63411 | e051eea34990 | 
| permissions | -rw-r--r-- | 
| 61525 | 1 | (* Author: Tobias Nipkow *) | 
| 2 | ||
| 3 | section "Splay Tree Implementation of Maps" | |
| 4 | ||
| 5 | theory Splay_Map | |
| 6 | imports | |
| 7 | Splay_Set | |
| 8 | Map_by_Ordered | |
| 9 | begin | |
| 10 | ||
| 11 | function splay :: "'a::linorder \<Rightarrow> ('a*'b) tree \<Rightarrow> ('a*'b) tree" where
 | |
| 12 | "splay x Leaf = Leaf" | | |
| 13 | "x = fst a \<Longrightarrow> splay x (Node t1 a t2) = Node t1 a t2" | | |
| 14 | "x = fst a \<Longrightarrow> x < fst b \<Longrightarrow> splay x (Node (Node t1 a t2) b t3) = Node t1 a (Node t2 b t3)" | | |
| 15 | "x < fst a \<Longrightarrow> splay x (Node Leaf a t) = Node Leaf a t" | | |
| 16 | "x < fst a \<Longrightarrow> x < fst b \<Longrightarrow> splay x (Node (Node Leaf a t1) b t2) = Node Leaf a (Node t1 b t2)" | | |
| 17 | "x < fst a \<Longrightarrow> x < fst b \<Longrightarrow> t1 \<noteq> Leaf \<Longrightarrow> | |
| 18 | splay x (Node (Node t1 a t2) b t3) = | |
| 19 | (case splay x t1 of Node t11 y t12 \<Rightarrow> Node t11 y (Node t12 a (Node t2 b t3)))" | | |
| 20 | "fst a < x \<Longrightarrow> x < fst b \<Longrightarrow> splay x (Node (Node t1 a Leaf) b t2) = Node t1 a (Node Leaf b t2)" | | |
| 21 | "fst a < x \<Longrightarrow> x < fst b \<Longrightarrow> t2 \<noteq> Leaf \<Longrightarrow> | |
| 22 | splay x (Node (Node t1 a t2) b t3) = | |
| 23 | (case splay x t2 of Node t21 y t22 \<Rightarrow> Node (Node t1 a t21) y (Node t22 b t3))" | | |
| 24 | "fst a < x \<Longrightarrow> x = fst b \<Longrightarrow> splay x (Node t1 a (Node t2 b t3)) = Node (Node t1 a t2) b t3" | | |
| 25 | "fst a < x \<Longrightarrow> splay x (Node t a Leaf) = Node t a Leaf" | | |
| 26 | "fst a < x \<Longrightarrow> x < fst b \<Longrightarrow> t2 \<noteq> Leaf \<Longrightarrow> | |
| 27 | splay x (Node t1 a (Node t2 b t3)) = | |
| 28 | (case splay x t2 of Node t21 y t22 \<Rightarrow> Node (Node t1 a t21) y (Node t22 b t3))" | | |
| 29 | "fst a < x \<Longrightarrow> x < fst b \<Longrightarrow> splay x (Node t1 a (Node Leaf b t2)) = Node (Node t1 a Leaf) b t2" | | |
| 30 | "fst a < x \<Longrightarrow> fst b < x \<Longrightarrow> splay x (Node t1 a (Node t2 b Leaf)) = Node (Node t1 a t2) b Leaf" | | |
| 31 | "fst a < x \<Longrightarrow> fst b < x \<Longrightarrow> t3 \<noteq> Leaf \<Longrightarrow> | |
| 32 | splay x (Node t1 a (Node t2 b t3)) = | |
| 33 | (case splay x t3 of Node t31 y t32 \<Rightarrow> Node (Node (Node t1 a t2) b t31) y t32)" | |
| 34 | apply(atomize_elim) | |
| 35 | apply(auto) | |
| 36 | (* 1 subgoal *) | |
| 37 | apply (subst (asm) neq_Leaf_iff) | |
| 38 | apply(auto) | |
| 39 | apply (metis tree.exhaust surj_pair less_linear)+ | |
| 40 | done | |
| 41 | ||
| 42 | termination splay | |
| 43 | by lexicographic_order | |
| 44 | ||
| 63411 
e051eea34990
got rid of class cmp; added height-size proofs by Daniel Stuewe
 nipkow parents: 
61696diff
changeset | 45 | lemma splay_code: "splay (x::_::linorder) t = (case t of Leaf \<Rightarrow> Leaf | | 
| 61581 | 46 | Node al a ar \<Rightarrow> (case cmp x (fst a) of | 
| 47 | EQ \<Rightarrow> t | | |
| 48 | LT \<Rightarrow> (case al of | |
| 49 | Leaf \<Rightarrow> t | | |
| 50 | Node bl b br \<Rightarrow> (case cmp x (fst b) of | |
| 51 | EQ \<Rightarrow> Node bl b (Node br a ar) | | |
| 52 | LT \<Rightarrow> if bl = Leaf then Node bl b (Node br a ar) | |
| 53 | else case splay x bl of | |
| 54 | Node bll y blr \<Rightarrow> Node bll y (Node blr b (Node br a ar)) | | |
| 55 | GT \<Rightarrow> if br = Leaf then Node bl b (Node br a ar) | |
| 56 | else case splay x br of | |
| 57 | Node brl y brr \<Rightarrow> Node (Node bl b brl) y (Node brr a ar))) | | |
| 58 | GT \<Rightarrow> (case ar of | |
| 59 | Leaf \<Rightarrow> t | | |
| 60 | Node bl b br \<Rightarrow> (case cmp x (fst b) of | |
| 61 | EQ \<Rightarrow> Node (Node al a bl) b br | | |
| 62 | LT \<Rightarrow> if bl = Leaf then Node (Node al a bl) b br | |
| 63 | else case splay x bl of | |
| 64 | Node bll y blr \<Rightarrow> Node (Node al a bll) y (Node blr b br) | | |
| 65 | GT \<Rightarrow> if br=Leaf then Node (Node al a bl) b br | |
| 66 | else case splay x br of | |
| 67 | Node bll y blr \<Rightarrow> Node (Node (Node al a bl) b bll) y blr))))" | |
| 68 | by(auto cong: case_tree_cong split: tree.split) | |
| 61525 | 69 | |
| 70 | definition lookup :: "('a*'b)tree \<Rightarrow> 'a::linorder \<Rightarrow> 'b option" where "lookup t x =
 | |
| 71 | (case splay x t of Leaf \<Rightarrow> None | Node _ (a,b) _ \<Rightarrow> if x=a then Some b else None)" | |
| 72 | ||
| 73 | hide_const (open) insert | |
| 74 | ||
| 75 | fun update :: "'a::linorder \<Rightarrow> 'b \<Rightarrow> ('a*'b) tree \<Rightarrow> ('a*'b) tree" where
 | |
| 76 | "update x y t = (if t = Leaf then Node Leaf (x,y) Leaf | |
| 77 | else case splay x t of | |
| 78 | Node l a r \<Rightarrow> if x = fst a then Node l (x,y) r | |
| 79 | else if x < fst a then Node l (x,y) (Node Leaf a r) else Node (Node l a Leaf) (x,y) r)" | |
| 80 | ||
| 81 | definition delete :: "'a::linorder \<Rightarrow> ('a*'b) tree \<Rightarrow> ('a*'b) tree" where
 | |
| 82 | "delete x t = (if t = Leaf then Leaf | |
| 83 | else case splay x t of Node l a r \<Rightarrow> | |
| 84 | if x = fst a | |
| 85 | then if l = Leaf then r else case splay_max l of Node l' m r' \<Rightarrow> Node l' m r | |
| 86 | else Node l a r)" | |
| 87 | ||
| 88 | ||
| 89 | subsection "Functional Correctness Proofs" | |
| 90 | ||
| 91 | lemma splay_Leaf_iff: "(splay x t = Leaf) = (t = Leaf)" | |
| 92 | by(induction x t rule: splay.induct) (auto split: tree.splits) | |
| 93 | ||
| 94 | ||
| 95 | subsubsection "Proofs for lookup" | |
| 96 | ||
| 97 | lemma splay_map_of_inorder: | |
| 98 | "splay x t = Node l a r \<Longrightarrow> sorted1(inorder t) \<Longrightarrow> | |
| 99 | map_of (inorder t) x = (if x = fst a then Some(snd a) else None)" | |
| 100 | by(induction x t arbitrary: l a r rule: splay.induct) | |
| 101 | (auto simp: map_of_simps splay_Leaf_iff split: tree.splits) | |
| 102 | ||
| 103 | lemma lookup_eq: | |
| 104 | "sorted1(inorder t) \<Longrightarrow> lookup t x = map_of (inorder t) x" | |
| 105 | by(auto simp: lookup_def splay_Leaf_iff splay_map_of_inorder split: tree.split) | |
| 106 | ||
| 107 | ||
| 108 | subsubsection "Proofs for update" | |
| 109 | ||
| 110 | lemma inorder_splay: "inorder(splay x t) = inorder t" | |
| 111 | by(induction x t rule: splay.induct) | |
| 112 | (auto simp: neq_Leaf_iff split: tree.split) | |
| 113 | ||
| 114 | lemma sorted_splay: | |
| 115 | "sorted1(inorder t) \<Longrightarrow> splay x t = Node l a r \<Longrightarrow> | |
| 116 | sorted(map fst (inorder l) @ x # map fst (inorder r))" | |
| 117 | unfolding inorder_splay[of x t, symmetric] | |
| 118 | by(induction x t arbitrary: l a r rule: splay.induct) | |
| 119 | (auto simp: sorted_lems sorted_Cons_le sorted_snoc_le splay_Leaf_iff split: tree.splits) | |
| 120 | ||
| 121 | lemma inorder_update: | |
| 122 | "sorted1(inorder t) \<Longrightarrow> inorder(update x y t) = upd_list x y (inorder t)" | |
| 123 | using inorder_splay[of x t, symmetric] sorted_splay[of t x] | |
| 124 | by(auto simp: upd_list_simps upd_list_Cons upd_list_snoc neq_Leaf_iff split: tree.split) | |
| 125 | ||
| 126 | ||
| 127 | subsubsection "Proofs for delete" | |
| 128 | ||
| 129 | lemma inorder_splay_maxD: | |
| 130 | "splay_max t = Node l a r \<Longrightarrow> sorted1(inorder t) \<Longrightarrow> | |
| 131 | inorder l @ [a] = inorder t \<and> r = Leaf" | |
| 132 | by(induction t arbitrary: l a r rule: splay_max.induct) | |
| 133 | (auto simp: sorted_lems splay_max_Leaf_iff split: tree.splits if_splits) | |
| 134 | ||
| 135 | lemma inorder_delete: | |
| 136 | "sorted1(inorder t) \<Longrightarrow> inorder(delete x t) = del_list x (inorder t)" | |
| 137 | using inorder_splay[of x t, symmetric] sorted_splay[of t x] | |
| 138 | by (auto simp: del_list_simps del_list_sorted_app delete_def | |
| 139 | del_list_notin_Cons inorder_splay_maxD splay_Leaf_iff splay_max_Leaf_iff | |
| 140 | split: tree.splits) | |
| 141 | ||
| 142 | ||
| 143 | subsubsection "Overall Correctness" | |
| 144 | ||
| 145 | interpretation Map_by_Ordered | |
| 146 | where empty = Leaf and lookup = lookup and update = update | |
| 61686 | 147 | and delete = delete and inorder = inorder and inv = "\<lambda>_. True" | 
| 61525 | 148 | proof (standard, goal_cases) | 
| 149 | case 2 thus ?case by(simp add: lookup_eq) | |
| 150 | next | |
| 151 | case 3 thus ?case by(simp add: inorder_update del: update.simps) | |
| 152 | next | |
| 153 | case 4 thus ?case by(simp add: inorder_delete) | |
| 154 | qed auto | |
| 155 | ||
| 156 | end |