13134
|
1 |
(* Title: ZF/InfDatatype.ML
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1994 University of Cambridge
|
|
5 |
|
|
6 |
*)
|
|
7 |
|
13356
|
8 |
header{*Infinite-Branching Datatype Definitions*}
|
|
9 |
|
13134
|
10 |
theory InfDatatype = Datatype + Univ + Finite + Cardinal_AC:
|
|
11 |
|
|
12 |
lemmas fun_Limit_VfromE =
|
|
13 |
Limit_VfromE [OF apply_funtype InfCard_csucc [THEN InfCard_is_Limit]]
|
|
14 |
|
|
15 |
lemma fun_Vcsucc_lemma:
|
|
16 |
"[| f: D -> Vfrom(A,csucc(K)); |D| le K; InfCard(K) |]
|
|
17 |
==> EX j. f: D -> Vfrom(A,j) & j < csucc(K)"
|
|
18 |
apply (rule_tac x = "UN d:D. LEAST i. f`d : Vfrom (A,i) " in exI)
|
|
19 |
apply (rule conjI)
|
|
20 |
apply (rule_tac [2] le_UN_Ord_lt_csucc)
|
13269
|
21 |
apply (rule_tac [4] ballI, erule_tac [4] fun_Limit_VfromE, simp_all)
|
13134
|
22 |
prefer 2 apply (fast elim: Least_le [THEN lt_trans1] ltE)
|
|
23 |
apply (rule Pi_type)
|
|
24 |
apply (rename_tac [2] d)
|
|
25 |
apply (erule_tac [2] fun_Limit_VfromE, simp_all)
|
|
26 |
apply (subgoal_tac "f`d : Vfrom (A, LEAST i. f`d : Vfrom (A,i))")
|
|
27 |
apply (erule Vfrom_mono [OF subset_refl UN_upper, THEN subsetD])
|
|
28 |
apply assumption
|
|
29 |
apply (fast elim: LeastI ltE)
|
|
30 |
done
|
|
31 |
|
|
32 |
lemma subset_Vcsucc:
|
|
33 |
"[| D <= Vfrom(A,csucc(K)); |D| le K; InfCard(K) |]
|
|
34 |
==> EX j. D <= Vfrom(A,j) & j < csucc(K)"
|
|
35 |
by (simp add: subset_iff_id fun_Vcsucc_lemma)
|
|
36 |
|
|
37 |
(*Version for arbitrary index sets*)
|
|
38 |
lemma fun_Vcsucc:
|
|
39 |
"[| |D| le K; InfCard(K); D <= Vfrom(A,csucc(K)) |] ==>
|
|
40 |
D -> Vfrom(A,csucc(K)) <= Vfrom(A,csucc(K))"
|
|
41 |
apply (safe dest!: fun_Vcsucc_lemma subset_Vcsucc)
|
|
42 |
apply (rule Vfrom [THEN ssubst])
|
|
43 |
apply (drule fun_is_rel)
|
|
44 |
(*This level includes the function, and is below csucc(K)*)
|
|
45 |
apply (rule_tac a1 = "succ (succ (j Un ja))" in UN_I [THEN UnI2])
|
|
46 |
apply (blast intro: ltD InfCard_csucc InfCard_is_Limit Limit_has_succ
|
13269
|
47 |
Un_least_lt)
|
13134
|
48 |
apply (erule subset_trans [THEN PowI])
|
|
49 |
apply (fast intro: Pair_in_Vfrom Vfrom_UnI1 Vfrom_UnI2)
|
|
50 |
done
|
|
51 |
|
|
52 |
lemma fun_in_Vcsucc:
|
|
53 |
"[| f: D -> Vfrom(A, csucc(K)); |D| le K; InfCard(K);
|
|
54 |
D <= Vfrom(A,csucc(K)) |]
|
|
55 |
==> f: Vfrom(A,csucc(K))"
|
|
56 |
by (blast intro: fun_Vcsucc [THEN subsetD])
|
|
57 |
|
|
58 |
(*Remove <= from the rule above*)
|
|
59 |
lemmas fun_in_Vcsucc' = fun_in_Vcsucc [OF _ _ _ subsetI]
|
|
60 |
|
|
61 |
(** Version where K itself is the index set **)
|
|
62 |
|
|
63 |
lemma Card_fun_Vcsucc:
|
|
64 |
"InfCard(K) ==> K -> Vfrom(A,csucc(K)) <= Vfrom(A,csucc(K))"
|
|
65 |
apply (frule InfCard_is_Card [THEN Card_is_Ord])
|
|
66 |
apply (blast del: subsetI
|
|
67 |
intro: fun_Vcsucc Ord_cardinal_le i_subset_Vfrom
|
|
68 |
lt_csucc [THEN leI, THEN le_imp_subset, THEN subset_trans])
|
|
69 |
done
|
|
70 |
|
|
71 |
lemma Card_fun_in_Vcsucc:
|
|
72 |
"[| f: K -> Vfrom(A, csucc(K)); InfCard(K) |] ==> f: Vfrom(A,csucc(K))"
|
|
73 |
by (blast intro: Card_fun_Vcsucc [THEN subsetD])
|
|
74 |
|
|
75 |
lemma Limit_csucc: "InfCard(K) ==> Limit(csucc(K))"
|
|
76 |
by (erule InfCard_csucc [THEN InfCard_is_Limit])
|
|
77 |
|
|
78 |
lemmas Pair_in_Vcsucc = Pair_in_VLimit [OF _ _ Limit_csucc]
|
|
79 |
lemmas Inl_in_Vcsucc = Inl_in_VLimit [OF _ Limit_csucc]
|
|
80 |
lemmas Inr_in_Vcsucc = Inr_in_VLimit [OF _ Limit_csucc]
|
|
81 |
lemmas zero_in_Vcsucc = Limit_csucc [THEN zero_in_VLimit]
|
|
82 |
lemmas nat_into_Vcsucc = nat_into_VLimit [OF _ Limit_csucc]
|
|
83 |
|
|
84 |
(*For handling Cardinals of the form (nat Un |X|) *)
|
|
85 |
|
|
86 |
lemmas InfCard_nat_Un_cardinal = InfCard_Un [OF InfCard_nat Card_cardinal]
|
|
87 |
|
|
88 |
lemmas le_nat_Un_cardinal =
|
|
89 |
Un_upper2_le [OF Ord_nat Card_cardinal [THEN Card_is_Ord]]
|
|
90 |
|
|
91 |
lemmas UN_upper_cardinal = UN_upper [THEN subset_imp_lepoll, THEN lepoll_imp_Card_le]
|
|
92 |
|
|
93 |
(*The new version of Data_Arg.intrs, declared in Datatype.ML*)
|
|
94 |
lemmas Data_Arg_intros =
|
|
95 |
SigmaI InlI InrI
|
|
96 |
Pair_in_univ Inl_in_univ Inr_in_univ
|
|
97 |
zero_in_univ A_into_univ nat_into_univ UnCI
|
|
98 |
|
|
99 |
(*For most K-branching datatypes with domain Vfrom(A, csucc(K)) *)
|
|
100 |
lemmas inf_datatype_intros =
|
|
101 |
InfCard_nat InfCard_nat_Un_cardinal
|
|
102 |
Pair_in_Vcsucc Inl_in_Vcsucc Inr_in_Vcsucc
|
|
103 |
zero_in_Vcsucc A_into_Vfrom nat_into_Vcsucc
|
|
104 |
Card_fun_in_Vcsucc fun_in_Vcsucc' UN_I
|
|
105 |
|
|
106 |
end
|
|
107 |
|