| 
435
 | 
     1  | 
(*  Title: 	ZF/ex/Fin.ML
  | 
| 
363
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
484
 | 
     4  | 
    Copyright   1994  University of Cambridge
  | 
| 
363
 | 
     5  | 
  | 
| 
 | 
     6  | 
Finite powerset operator
  | 
| 
 | 
     7  | 
  | 
| 
484
 | 
     8  | 
prove X:Fin(A) ==> |X| < nat
  | 
| 
363
 | 
     9  | 
  | 
| 
484
 | 
    10  | 
prove:  b: Fin(A) ==> inj(b,b)<=surj(b,b)
  | 
| 
363
 | 
    11  | 
*)
  | 
| 
 | 
    12  | 
  | 
| 
 | 
    13  | 
structure Fin = Inductive_Fun
  | 
| 
444
 | 
    14  | 
 (val thy        = Arith.thy |> add_consts [("Fin", "i=>i", NoSyn)]
 | 
| 
477
 | 
    15  | 
  val thy_name   = "Fin"
  | 
| 
363
 | 
    16  | 
  val rec_doms   = [("Fin","Pow(A)")]
 | 
| 
 | 
    17  | 
  val sintrs     = ["0 : Fin(A)",
  | 
| 
 | 
    18  | 
                    "[| a: A;  b: Fin(A) |] ==> cons(a,b) : Fin(A)"]
  | 
| 
 | 
    19  | 
  val monos      = []
  | 
| 
 | 
    20  | 
  val con_defs   = []
  | 
| 
 | 
    21  | 
  val type_intrs = [empty_subsetI, cons_subsetI, PowI]
  | 
| 
 | 
    22  | 
  val type_elims = [make_elim PowD]);
  | 
| 
 | 
    23  | 
  | 
| 
 | 
    24  | 
val [Fin_0I, Fin_consI] = Fin.intrs;
  | 
| 
 | 
    25  | 
  | 
| 
 | 
    26  | 
  | 
| 
 | 
    27  | 
goalw Fin.thy Fin.defs "!!A B. A<=B ==> Fin(A) <= Fin(B)";
  | 
| 
 | 
    28  | 
by (rtac lfp_mono 1);
  | 
| 
 | 
    29  | 
by (REPEAT (rtac Fin.bnd_mono 1));
  | 
| 
 | 
    30  | 
by (REPEAT (ares_tac (Pow_mono::basic_monos) 1));
  | 
| 
 | 
    31  | 
val Fin_mono = result();
  | 
| 
 | 
    32  | 
  | 
| 
 | 
    33  | 
(* A : Fin(B) ==> A <= B *)
  | 
| 
 | 
    34  | 
val FinD = Fin.dom_subset RS subsetD RS PowD;
  | 
| 
 | 
    35  | 
  | 
| 
 | 
    36  | 
(** Induction on finite sets **)
  | 
| 
 | 
    37  | 
  | 
| 
 | 
    38  | 
(*Discharging x~:y entails extra work*)
  | 
| 
 | 
    39  | 
val major::prems = goal Fin.thy 
  | 
| 
 | 
    40  | 
    "[| b: Fin(A);  \
  | 
| 
 | 
    41  | 
\       P(0);        \
  | 
| 
 | 
    42  | 
\       !!x y. [| x: A;  y: Fin(A);  x~:y;  P(y) |] ==> P(cons(x,y)) \
  | 
| 
 | 
    43  | 
\    |] ==> P(b)";
  | 
| 
 | 
    44  | 
by (rtac (major RS Fin.induct) 1);
  | 
| 
437
 | 
    45  | 
by (excluded_middle_tac "a:b" 2);
  | 
| 
363
 | 
    46  | 
by (etac (cons_absorb RS ssubst) 3 THEN assume_tac 3);	    (*backtracking!*)
  | 
| 
 | 
    47  | 
by (REPEAT (ares_tac prems 1));
  | 
| 
 | 
    48  | 
val Fin_induct = result();
  | 
| 
 | 
    49  | 
  | 
| 
 | 
    50  | 
(** Simplification for Fin **)
  | 
| 
 | 
    51  | 
val Fin_ss = arith_ss addsimps Fin.intrs;
  | 
| 
 | 
    52  | 
  | 
| 
 | 
    53  | 
(*The union of two finite sets is finite.*)
  | 
| 
 | 
    54  | 
val major::prems = goal Fin.thy
  | 
| 
 | 
    55  | 
    "[| b: Fin(A);  c: Fin(A) |] ==> b Un c : Fin(A)";
  | 
| 
 | 
    56  | 
by (rtac (major RS Fin_induct) 1);
  | 
| 
 | 
    57  | 
by (ALLGOALS (asm_simp_tac (Fin_ss addsimps (prems@[Un_0, Un_cons]))));
  | 
| 
 | 
    58  | 
val Fin_UnI = result();
  | 
| 
 | 
    59  | 
  | 
| 
 | 
    60  | 
(*The union of a set of finite sets is finite.*)
  | 
| 
 | 
    61  | 
val [major] = goal Fin.thy "C : Fin(Fin(A)) ==> Union(C) : Fin(A)";
  | 
| 
 | 
    62  | 
by (rtac (major RS Fin_induct) 1);
  | 
| 
 | 
    63  | 
by (ALLGOALS (asm_simp_tac (Fin_ss addsimps [Union_0, Union_cons, Fin_UnI])));
  | 
| 
 | 
    64  | 
val Fin_UnionI = result();
  | 
| 
 | 
    65  | 
  | 
| 
 | 
    66  | 
(*Every subset of a finite set is finite.*)
  | 
| 
 | 
    67  | 
goal Fin.thy "!!b A. b: Fin(A) ==> ALL z. z<=b --> z: Fin(A)";
  | 
| 
 | 
    68  | 
by (etac Fin_induct 1);
  | 
| 
 | 
    69  | 
by (simp_tac (Fin_ss addsimps [subset_empty_iff]) 1);
  | 
| 
 | 
    70  | 
by (safe_tac (ZF_cs addSDs [subset_cons_iff RS iffD1]));
  | 
| 
 | 
    71  | 
by (eres_inst_tac [("b","z")] (cons_Diff RS subst) 2);
 | 
| 
 | 
    72  | 
by (ALLGOALS (asm_simp_tac Fin_ss));
  | 
| 
 | 
    73  | 
val Fin_subset_lemma = result();
  | 
| 
 | 
    74  | 
  | 
| 
 | 
    75  | 
goal Fin.thy "!!c b A. [| c<=b;  b: Fin(A) |] ==> c: Fin(A)";
  | 
| 
 | 
    76  | 
by (REPEAT (ares_tac [Fin_subset_lemma RS spec RS mp] 1));
  | 
| 
 | 
    77  | 
val Fin_subset = result();
  | 
| 
 | 
    78  | 
  | 
| 
 | 
    79  | 
val major::prems = goal Fin.thy 
  | 
| 
 | 
    80  | 
    "[| c: Fin(A);  b: Fin(A);  				\
  | 
| 
 | 
    81  | 
\       P(b);       						\
  | 
| 
 | 
    82  | 
\       !!x y. [| x: A;  y: Fin(A);  x:y;  P(y) |] ==> P(y-{x}) \
 | 
| 
 | 
    83  | 
\    |] ==> c<=b --> P(b-c)";
  | 
| 
 | 
    84  | 
by (rtac (major RS Fin_induct) 1);
  | 
| 
 | 
    85  | 
by (rtac (Diff_cons RS ssubst) 2);
  | 
| 
 | 
    86  | 
by (ALLGOALS (asm_simp_tac (Fin_ss addsimps (prems@[Diff_0, cons_subset_iff, 
  | 
| 
 | 
    87  | 
				Diff_subset RS Fin_subset]))));
  | 
| 
 | 
    88  | 
val Fin_0_induct_lemma = result();
  | 
| 
 | 
    89  | 
  | 
| 
 | 
    90  | 
val prems = goal Fin.thy 
  | 
| 
 | 
    91  | 
    "[| b: Fin(A);  						\
  | 
| 
 | 
    92  | 
\       P(b);        						\
  | 
| 
 | 
    93  | 
\       !!x y. [| x: A;  y: Fin(A);  x:y;  P(y) |] ==> P(y-{x}) \
 | 
| 
 | 
    94  | 
\    |] ==> P(0)";
  | 
| 
 | 
    95  | 
by (rtac (Diff_cancel RS subst) 1);
  | 
| 
 | 
    96  | 
by (rtac (Fin_0_induct_lemma RS mp) 1);
  | 
| 
 | 
    97  | 
by (REPEAT (ares_tac (subset_refl::prems) 1));
  | 
| 
 | 
    98  | 
val Fin_0_induct = result();
  | 
| 
484
 | 
    99  | 
  | 
| 
 | 
   100  | 
(*Functions from a finite ordinal*)
  | 
| 
 | 
   101  | 
val prems = goal Fin.thy "n: nat ==> n->A <= Fin(nat*A)";
  | 
| 
 | 
   102  | 
by (nat_ind_tac "n" prems 1);
  | 
| 
 | 
   103  | 
by (simp_tac (ZF_ss addsimps [Pi_empty1, Fin_0I, subset_iff, cons_iff]) 1);
  | 
| 
 | 
   104  | 
by (asm_simp_tac (ZF_ss addsimps [succ_def, mem_not_refl RS cons_fun_eq]) 1);
  | 
| 
 | 
   105  | 
by (fast_tac (ZF_cs addSIs [Fin_consI]) 1);
  | 
| 
 | 
   106  | 
val nat_fun_subset_Fin = result();
  |