| author | paulson | 
| Mon, 16 Nov 1998 10:39:30 +0100 | |
| changeset 5867 | 1c4806b4bf43 | 
| parent 5465 | cc95f12ab64f | 
| child 6153 | bff90585cce5 | 
| permissions | -rw-r--r-- | 
| 1461 | 1  | 
(* Title: ZF/Ordinal.thy  | 
| 435 | 2  | 
ID: $Id$  | 
| 1461 | 3  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
| 435 | 4  | 
Copyright 1993 University of Cambridge  | 
5  | 
||
| 5321 | 6  | 
Ordinals in Zermelo-Fraenkel Set Theory  | 
| 435 | 7  | 
*)  | 
8  | 
||
9  | 
open Ordinal;  | 
|
10  | 
||
11  | 
(*** Rules for Transset ***)  | 
|
12  | 
||
13  | 
(** Two neat characterisations of Transset **)  | 
|
14  | 
||
| 5067 | 15  | 
Goalw [Transset_def] "Transset(A) <-> A<=Pow(A)";  | 
| 2925 | 16  | 
by (Blast_tac 1);  | 
| 760 | 17  | 
qed "Transset_iff_Pow";  | 
| 435 | 18  | 
|
| 5067 | 19  | 
Goalw [Transset_def] "Transset(A) <-> Union(succ(A)) = A";  | 
| 4091 | 20  | 
by (blast_tac (claset() addSEs [equalityE]) 1);  | 
| 760 | 21  | 
qed "Transset_iff_Union_succ";  | 
| 435 | 22  | 
|
23  | 
(** Consequences of downwards closure **)  | 
|
24  | 
||
| 5067 | 25  | 
Goalw [Transset_def]  | 
| 
5147
 
825877190618
More tidying and removal of "\!\!... from Goal commands
 
paulson 
parents: 
5143 
diff
changeset
 | 
26  | 
    "[| Transset(C); {a,b}: C |] ==> a:C & b: C";
 | 
| 2925 | 27  | 
by (Blast_tac 1);  | 
| 760 | 28  | 
qed "Transset_doubleton_D";  | 
| 435 | 29  | 
|
30  | 
val [prem1,prem2] = goalw Ordinal.thy [Pair_def]  | 
|
31  | 
"[| Transset(C); <a,b>: C |] ==> a:C & b: C";  | 
|
| 1461 | 32  | 
by (cut_facts_tac [prem2] 1);  | 
| 4091 | 33  | 
by (blast_tac (claset() addSDs [prem1 RS Transset_doubleton_D]) 1);  | 
| 760 | 34  | 
qed "Transset_Pair_D";  | 
| 435 | 35  | 
|
36  | 
val prem1::prems = goal Ordinal.thy  | 
|
37  | 
"[| Transset(C); A*B <= C; b: B |] ==> A <= C";  | 
|
38  | 
by (cut_facts_tac prems 1);  | 
|
| 4091 | 39  | 
by (blast_tac (claset() addSDs [prem1 RS Transset_Pair_D]) 1);  | 
| 760 | 40  | 
qed "Transset_includes_domain";  | 
| 435 | 41  | 
|
42  | 
val prem1::prems = goal Ordinal.thy  | 
|
43  | 
"[| Transset(C); A*B <= C; a: A |] ==> B <= C";  | 
|
44  | 
by (cut_facts_tac prems 1);  | 
|
| 4091 | 45  | 
by (blast_tac (claset() addSDs [prem1 RS Transset_Pair_D]) 1);  | 
| 760 | 46  | 
qed "Transset_includes_range";  | 
| 435 | 47  | 
|
48  | 
(** Closure properties **)  | 
|
49  | 
||
| 5067 | 50  | 
Goalw [Transset_def] "Transset(0)";  | 
| 2925 | 51  | 
by (Blast_tac 1);  | 
| 760 | 52  | 
qed "Transset_0";  | 
| 435 | 53  | 
|
| 5067 | 54  | 
Goalw [Transset_def]  | 
| 
5147
 
825877190618
More tidying and removal of "\!\!... from Goal commands
 
paulson 
parents: 
5143 
diff
changeset
 | 
55  | 
"[| Transset(i); Transset(j) |] ==> Transset(i Un j)";  | 
| 2925 | 56  | 
by (Blast_tac 1);  | 
| 760 | 57  | 
qed "Transset_Un";  | 
| 435 | 58  | 
|
| 5067 | 59  | 
Goalw [Transset_def]  | 
| 
5147
 
825877190618
More tidying and removal of "\!\!... from Goal commands
 
paulson 
parents: 
5143 
diff
changeset
 | 
60  | 
"[| Transset(i); Transset(j) |] ==> Transset(i Int j)";  | 
| 2925 | 61  | 
by (Blast_tac 1);  | 
| 760 | 62  | 
qed "Transset_Int";  | 
| 435 | 63  | 
|
| 5137 | 64  | 
Goalw [Transset_def] "Transset(i) ==> Transset(succ(i))";  | 
| 2925 | 65  | 
by (Blast_tac 1);  | 
| 760 | 66  | 
qed "Transset_succ";  | 
| 435 | 67  | 
|
| 5137 | 68  | 
Goalw [Transset_def] "Transset(i) ==> Transset(Pow(i))";  | 
| 2925 | 69  | 
by (Blast_tac 1);  | 
| 760 | 70  | 
qed "Transset_Pow";  | 
| 435 | 71  | 
|
| 5137 | 72  | 
Goalw [Transset_def] "Transset(A) ==> Transset(Union(A))";  | 
| 2925 | 73  | 
by (Blast_tac 1);  | 
| 760 | 74  | 
qed "Transset_Union";  | 
| 435 | 75  | 
|
| 5321 | 76  | 
val [Transprem] = Goalw [Transset_def]  | 
| 435 | 77  | 
"[| !!i. i:A ==> Transset(i) |] ==> Transset(Union(A))";  | 
| 4091 | 78  | 
by (blast_tac (claset() addDs [Transprem RS bspec RS subsetD]) 1);  | 
| 760 | 79  | 
qed "Transset_Union_family";  | 
| 435 | 80  | 
|
| 5321 | 81  | 
val [prem,Transprem] = Goalw [Transset_def]  | 
| 435 | 82  | 
"[| j:A; !!i. i:A ==> Transset(i) |] ==> Transset(Inter(A))";  | 
83  | 
by (cut_facts_tac [prem] 1);  | 
|
| 4091 | 84  | 
by (blast_tac (claset() addDs [Transprem RS bspec RS subsetD]) 1);  | 
| 760 | 85  | 
qed "Transset_Inter_family";  | 
| 435 | 86  | 
|
87  | 
(*** Natural Deduction rules for Ord ***)  | 
|
88  | 
||
| 5321 | 89  | 
val prems = Goalw [Ord_def]  | 
| 
2717
 
b29c45ef3d86
best_tac avoids looping with change to RepFun_eqI in claset
 
paulson 
parents: 
2493 
diff
changeset
 | 
90  | 
"[| Transset(i); !!x. x:i ==> Transset(x) |] ==> Ord(i)";  | 
| 435 | 91  | 
by (REPEAT (ares_tac (prems@[ballI,conjI]) 1));  | 
| 760 | 92  | 
qed "OrdI";  | 
| 435 | 93  | 
|
| 5321 | 94  | 
Goalw [Ord_def] "Ord(i) ==> Transset(i)";  | 
95  | 
by (Blast_tac 1);  | 
|
| 760 | 96  | 
qed "Ord_is_Transset";  | 
| 435 | 97  | 
|
| 5321 | 98  | 
Goalw [Ord_def]  | 
| 435 | 99  | 
"[| Ord(i); j:i |] ==> Transset(j) ";  | 
| 5321 | 100  | 
by (Blast_tac 1);  | 
| 760 | 101  | 
qed "Ord_contains_Transset";  | 
| 435 | 102  | 
|
103  | 
(*** Lemmas for ordinals ***)  | 
|
104  | 
||
| 
5143
 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 
paulson 
parents: 
5137 
diff
changeset
 | 
105  | 
Goalw [Ord_def,Transset_def] "[| Ord(i); j:i |] ==> Ord(j)";  | 
| 2925 | 106  | 
by (Blast_tac 1);  | 
| 760 | 107  | 
qed "Ord_in_Ord";  | 
| 435 | 108  | 
|
109  | 
(* Ord(succ(j)) ==> Ord(j) *)  | 
|
110  | 
val Ord_succD = succI1 RSN (2, Ord_in_Ord);  | 
|
111  | 
||
| 3016 | 112  | 
AddSDs [Ord_succD];  | 
113  | 
||
| 5137 | 114  | 
Goal "[| Ord(i); Transset(j); j<=i |] ==> Ord(j)";  | 
| 435 | 115  | 
by (REPEAT (ares_tac [OrdI] 1  | 
116  | 
ORELSE eresolve_tac [Ord_contains_Transset, subsetD] 1));  | 
|
| 760 | 117  | 
qed "Ord_subset_Ord";  | 
| 435 | 118  | 
|
| 
5143
 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 
paulson 
parents: 
5137 
diff
changeset
 | 
119  | 
Goalw [Ord_def,Transset_def] "[| j:i; Ord(i) |] ==> j<=i";  | 
| 2925 | 120  | 
by (Blast_tac 1);  | 
| 760 | 121  | 
qed "OrdmemD";  | 
| 435 | 122  | 
|
| 5137 | 123  | 
Goal "[| i:j; j:k; Ord(k) |] ==> i:k";  | 
| 435 | 124  | 
by (REPEAT (ares_tac [OrdmemD RS subsetD] 1));  | 
| 760 | 125  | 
qed "Ord_trans";  | 
| 435 | 126  | 
|
| 5137 | 127  | 
Goal "[| i:j; Ord(j) |] ==> succ(i) <= j";  | 
| 435 | 128  | 
by (REPEAT (ares_tac [OrdmemD RSN (2,succ_subsetI)] 1));  | 
| 760 | 129  | 
qed "Ord_succ_subsetI";  | 
| 435 | 130  | 
|
131  | 
||
132  | 
(*** The construction of ordinals: 0, succ, Union ***)  | 
|
133  | 
||
| 5067 | 134  | 
Goal "Ord(0)";  | 
| 435 | 135  | 
by (REPEAT (ares_tac [OrdI,Transset_0] 1 ORELSE etac emptyE 1));  | 
| 760 | 136  | 
qed "Ord_0";  | 
| 435 | 137  | 
|
| 5137 | 138  | 
Goal "Ord(i) ==> Ord(succ(i))";  | 
| 435 | 139  | 
by (REPEAT (ares_tac [OrdI,Transset_succ] 1  | 
140  | 
ORELSE eresolve_tac [succE,ssubst,Ord_is_Transset,  | 
|
| 1461 | 141  | 
Ord_contains_Transset] 1));  | 
| 760 | 142  | 
qed "Ord_succ";  | 
| 435 | 143  | 
|
| 
851
 
f9172c4625f1
Moved theorems Ord_cases_lemma and Ord_cases here from Univ,
 
lcp 
parents: 
830 
diff
changeset
 | 
144  | 
bind_thm ("Ord_1", Ord_0 RS Ord_succ);
 | 
| 
 
f9172c4625f1
Moved theorems Ord_cases_lemma and Ord_cases here from Univ,
 
lcp 
parents: 
830 
diff
changeset
 | 
145  | 
|
| 5067 | 146  | 
Goal "Ord(succ(i)) <-> Ord(i)";  | 
| 4091 | 147  | 
by (blast_tac (claset() addIs [Ord_succ] addDs [Ord_succD]) 1);  | 
| 760 | 148  | 
qed "Ord_succ_iff";  | 
| 435 | 149  | 
|
| 2469 | 150  | 
Addsimps [Ord_0, Ord_succ_iff];  | 
151  | 
AddSIs [Ord_0, Ord_succ];  | 
|
152  | 
||
| 5137 | 153  | 
Goalw [Ord_def] "[| Ord(i); Ord(j) |] ==> Ord(i Un j)";  | 
| 4091 | 154  | 
by (blast_tac (claset() addSIs [Transset_Un]) 1);  | 
| 760 | 155  | 
qed "Ord_Un";  | 
| 435 | 156  | 
|
| 5137 | 157  | 
Goalw [Ord_def] "[| Ord(i); Ord(j) |] ==> Ord(i Int j)";  | 
| 4091 | 158  | 
by (blast_tac (claset() addSIs [Transset_Int]) 1);  | 
| 760 | 159  | 
qed "Ord_Int";  | 
| 435 | 160  | 
|
| 5321 | 161  | 
val nonempty::prems = Goal  | 
| 435 | 162  | 
"[| j:A; !!i. i:A ==> Ord(i) |] ==> Ord(Inter(A))";  | 
163  | 
by (rtac (nonempty RS Transset_Inter_family RS OrdI) 1);  | 
|
164  | 
by (rtac Ord_is_Transset 1);  | 
|
165  | 
by (REPEAT (ares_tac ([Ord_contains_Transset,nonempty]@prems) 1  | 
|
166  | 
ORELSE etac InterD 1));  | 
|
| 760 | 167  | 
qed "Ord_Inter";  | 
| 435 | 168  | 
|
| 5321 | 169  | 
val jmemA::prems = Goal  | 
| 435 | 170  | 
"[| j:A; !!x. x:A ==> Ord(B(x)) |] ==> Ord(INT x:A. B(x))";  | 
171  | 
by (rtac (jmemA RS RepFunI RS Ord_Inter) 1);  | 
|
172  | 
by (etac RepFunE 1);  | 
|
173  | 
by (etac ssubst 1);  | 
|
174  | 
by (eresolve_tac prems 1);  | 
|
| 760 | 175  | 
qed "Ord_INT";  | 
| 435 | 176  | 
|
177  | 
(*There is no set of all ordinals, for then it would contain itself*)  | 
|
| 5067 | 178  | 
Goal "~ (ALL i. i:X <-> Ord(i))";  | 
| 435 | 179  | 
by (rtac notI 1);  | 
180  | 
by (forw_inst_tac [("x", "X")] spec 1);
 | 
|
| 4091 | 181  | 
by (safe_tac (claset() addSEs [mem_irrefl]));  | 
| 435 | 182  | 
by (swap_res_tac [Ord_is_Transset RSN (2,OrdI)] 1);  | 
| 2925 | 183  | 
by (Blast_tac 2);  | 
| 437 | 184  | 
by (rewtac Transset_def);  | 
| 4152 | 185  | 
by Safe_tac;  | 
| 2469 | 186  | 
by (Asm_full_simp_tac 1);  | 
| 435 | 187  | 
by (REPEAT (eresolve_tac [asm_rl, Ord_in_Ord] 1));  | 
| 760 | 188  | 
qed "ON_class";  | 
| 435 | 189  | 
|
190  | 
(*** < is 'less than' for ordinals ***)  | 
|
191  | 
||
| 5137 | 192  | 
Goalw [lt_def] "[| i:j; Ord(j) |] ==> i<j";  | 
| 435 | 193  | 
by (REPEAT (ares_tac [conjI] 1));  | 
| 760 | 194  | 
qed "ltI";  | 
| 435 | 195  | 
|
| 5321 | 196  | 
val major::prems = Goalw [lt_def]  | 
| 435 | 197  | 
"[| i<j; [| i:j; Ord(i); Ord(j) |] ==> P |] ==> P";  | 
198  | 
by (rtac (major RS conjE) 1);  | 
|
199  | 
by (REPEAT (ares_tac (prems@[Ord_in_Ord]) 1));  | 
|
| 760 | 200  | 
qed "ltE";  | 
| 435 | 201  | 
|
| 5137 | 202  | 
Goal "i<j ==> i:j";  | 
| 435 | 203  | 
by (etac ltE 1);  | 
204  | 
by (assume_tac 1);  | 
|
| 760 | 205  | 
qed "ltD";  | 
| 435 | 206  | 
|
| 5067 | 207  | 
Goalw [lt_def] "~ i<0";  | 
| 2925 | 208  | 
by (Blast_tac 1);  | 
| 760 | 209  | 
qed "not_lt0";  | 
| 435 | 210  | 
|
| 2469 | 211  | 
Addsimps [not_lt0];  | 
212  | 
||
| 5137 | 213  | 
Goal "j<i ==> Ord(j)";  | 
| 1461 | 214  | 
by (etac ltE 1 THEN assume_tac 1);  | 
| 
830
 
18240b5d8a06
Moved Transset_includes_summands and Transset_sum_Int_subset to
 
lcp 
parents: 
782 
diff
changeset
 | 
215  | 
qed "lt_Ord";  | 
| 
 
18240b5d8a06
Moved Transset_includes_summands and Transset_sum_Int_subset to
 
lcp 
parents: 
782 
diff
changeset
 | 
216  | 
|
| 5137 | 217  | 
Goal "j<i ==> Ord(i)";  | 
| 1461 | 218  | 
by (etac ltE 1 THEN assume_tac 1);  | 
| 
851
 
f9172c4625f1
Moved theorems Ord_cases_lemma and Ord_cases here from Univ,
 
lcp 
parents: 
830 
diff
changeset
 | 
219  | 
qed "lt_Ord2";  | 
| 
 
f9172c4625f1
Moved theorems Ord_cases_lemma and Ord_cases here from Univ,
 
lcp 
parents: 
830 
diff
changeset
 | 
220  | 
|
| 1034 | 221  | 
(* "ja le j ==> Ord(j)" *)  | 
| 
851
 
f9172c4625f1
Moved theorems Ord_cases_lemma and Ord_cases here from Univ,
 
lcp 
parents: 
830 
diff
changeset
 | 
222  | 
bind_thm ("le_Ord2", lt_Ord2 RS Ord_succD);
 | 
| 
 
f9172c4625f1
Moved theorems Ord_cases_lemma and Ord_cases here from Univ,
 
lcp 
parents: 
830 
diff
changeset
 | 
223  | 
|
| 435 | 224  | 
(* i<0 ==> R *)  | 
| 
782
 
200a16083201
added bind_thm for theorems defined by "standard ..."
 
clasohm 
parents: 
772 
diff
changeset
 | 
225  | 
bind_thm ("lt0E", not_lt0 RS notE);
 | 
| 435 | 226  | 
|
| 5137 | 227  | 
Goal "[| i<j; j<k |] ==> i<k";  | 
| 4091 | 228  | 
by (blast_tac (claset() addSIs [ltI] addSEs [ltE] addIs [Ord_trans]) 1);  | 
| 760 | 229  | 
qed "lt_trans";  | 
| 435 | 230  | 
|
| 5465 | 231  | 
Goalw [lt_def] "i<j ==> ~ (j<i)";  | 
232  | 
by (blast_tac (claset() addEs [mem_asym]) 1);  | 
|
233  | 
qed "lt_not_sym";  | 
|
234  | 
||
235  | 
(* [| i<j; ~P ==> j<i |] ==> P *)  | 
|
236  | 
bind_thm ("lt_asym", lt_not_sym RS swap);
 | 
|
| 435 | 237  | 
|
| 760 | 238  | 
qed_goal "lt_irrefl" Ordinal.thy "i<i ==> P"  | 
| 437 | 239  | 
(fn [major]=> [ (rtac (major RS (major RS lt_asym)) 1) ]);  | 
| 435 | 240  | 
|
| 760 | 241  | 
qed_goal "lt_not_refl" Ordinal.thy "~ i<i"  | 
| 437 | 242  | 
(fn _=> [ (rtac notI 1), (etac lt_irrefl 1) ]);  | 
| 435 | 243  | 
|
| 2469 | 244  | 
AddSEs [lt_irrefl, lt0E];  | 
245  | 
||
| 435 | 246  | 
(** le is less than or equals; recall i le j abbrevs i<succ(j) !! **)  | 
247  | 
||
| 5067 | 248  | 
Goalw [lt_def] "i le j <-> i<j | (i=j & Ord(j))";  | 
| 4091 | 249  | 
by (blast_tac (claset() addSIs [Ord_succ] addSDs [Ord_succD]) 1);  | 
| 760 | 250  | 
qed "le_iff";  | 
| 435 | 251  | 
|
| 772 | 252  | 
(*Equivalently, i<j ==> i < succ(j)*)  | 
| 5137 | 253  | 
Goal "i<j ==> i le j";  | 
| 4091 | 254  | 
by (asm_simp_tac (simpset() addsimps [le_iff]) 1);  | 
| 760 | 255  | 
qed "leI";  | 
| 435 | 256  | 
|
| 5137 | 257  | 
Goal "[| i=j; Ord(j) |] ==> i le j";  | 
| 4091 | 258  | 
by (asm_simp_tac (simpset() addsimps [le_iff]) 1);  | 
| 760 | 259  | 
qed "le_eqI";  | 
| 435 | 260  | 
|
261  | 
val le_refl = refl RS le_eqI;  | 
|
262  | 
||
| 5321 | 263  | 
val [prem] = Goal "(~ (i=j & Ord(j)) ==> i<j) ==> i le j";  | 
| 435 | 264  | 
by (rtac (disjCI RS (le_iff RS iffD2)) 1);  | 
265  | 
by (etac prem 1);  | 
|
| 760 | 266  | 
qed "leCI";  | 
| 435 | 267  | 
|
| 5321 | 268  | 
val major::prems = Goal  | 
| 435 | 269  | 
"[| i le j; i<j ==> P; [| i=j; Ord(j) |] ==> P |] ==> P";  | 
270  | 
by (rtac (major RS (le_iff RS iffD1 RS disjE)) 1);  | 
|
271  | 
by (DEPTH_SOLVE (ares_tac prems 1 ORELSE etac conjE 1));  | 
|
| 760 | 272  | 
qed "leE";  | 
| 435 | 273  | 
|
| 5137 | 274  | 
Goal "[| i le j; j le i |] ==> i=j";  | 
| 4091 | 275  | 
by (asm_full_simp_tac (simpset() addsimps [le_iff]) 1);  | 
276  | 
by (blast_tac (claset() addEs [lt_asym]) 1);  | 
|
| 760 | 277  | 
qed "le_anti_sym";  | 
| 435 | 278  | 
|
| 5067 | 279  | 
Goal "i le 0 <-> i=0";  | 
| 4091 | 280  | 
by (blast_tac (claset() addSIs [Ord_0 RS le_refl] addSEs [leE]) 1);  | 
| 760 | 281  | 
qed "le0_iff";  | 
| 435 | 282  | 
|
| 
782
 
200a16083201
added bind_thm for theorems defined by "standard ..."
 
clasohm 
parents: 
772 
diff
changeset
 | 
283  | 
bind_thm ("le0D", le0_iff RS iffD1);
 | 
| 435 | 284  | 
|
| 2469 | 285  | 
AddIs [le_refl];  | 
286  | 
AddSDs [le0D];  | 
|
287  | 
Addsimps [le0_iff];  | 
|
288  | 
||
| 4091 | 289  | 
val le_cs = claset() addSIs [leCI] addSEs [leE] addEs [lt_asym];  | 
| 435 | 290  | 
|
291  | 
||
292  | 
(*** Natural Deduction rules for Memrel ***)  | 
|
293  | 
||
| 5067 | 294  | 
Goalw [Memrel_def] "<a,b> : Memrel(A) <-> a:b & a:A & b:A";  | 
| 2925 | 295  | 
by (Blast_tac 1);  | 
| 760 | 296  | 
qed "Memrel_iff";  | 
| 435 | 297  | 
|
| 5137 | 298  | 
Goal "[| a: b; a: A; b: A |] ==> <a,b> : Memrel(A)";  | 
| 2925 | 299  | 
by (REPEAT (ares_tac [conjI, Memrel_iff RS iffD2] 1));  | 
| 760 | 300  | 
qed "MemrelI";  | 
| 435 | 301  | 
|
| 5321 | 302  | 
val [major,minor] = Goal  | 
| 435 | 303  | 
"[| <a,b> : Memrel(A); \  | 
304  | 
\ [| a: A; b: A; a:b |] ==> P \  | 
|
305  | 
\ |] ==> P";  | 
|
306  | 
by (rtac (major RS (Memrel_iff RS iffD1) RS conjE) 1);  | 
|
307  | 
by (etac conjE 1);  | 
|
308  | 
by (rtac minor 1);  | 
|
309  | 
by (REPEAT (assume_tac 1));  | 
|
| 760 | 310  | 
qed "MemrelE";  | 
| 435 | 311  | 
|
| 2925 | 312  | 
AddSIs [MemrelI];  | 
313  | 
AddSEs [MemrelE];  | 
|
314  | 
||
| 5067 | 315  | 
Goalw [Memrel_def] "Memrel(A) <= A*A";  | 
| 2925 | 316  | 
by (Blast_tac 1);  | 
| 
830
 
18240b5d8a06
Moved Transset_includes_summands and Transset_sum_Int_subset to
 
lcp 
parents: 
782 
diff
changeset
 | 
317  | 
qed "Memrel_type";  | 
| 
 
18240b5d8a06
Moved Transset_includes_summands and Transset_sum_Int_subset to
 
lcp 
parents: 
782 
diff
changeset
 | 
318  | 
|
| 5137 | 319  | 
Goalw [Memrel_def] "A<=B ==> Memrel(A) <= Memrel(B)";  | 
| 2925 | 320  | 
by (Blast_tac 1);  | 
| 
830
 
18240b5d8a06
Moved Transset_includes_summands and Transset_sum_Int_subset to
 
lcp 
parents: 
782 
diff
changeset
 | 
321  | 
qed "Memrel_mono";  | 
| 
 
18240b5d8a06
Moved Transset_includes_summands and Transset_sum_Int_subset to
 
lcp 
parents: 
782 
diff
changeset
 | 
322  | 
|
| 5067 | 323  | 
Goalw [Memrel_def] "Memrel(0) = 0";  | 
| 2925 | 324  | 
by (Blast_tac 1);  | 
| 
851
 
f9172c4625f1
Moved theorems Ord_cases_lemma and Ord_cases here from Univ,
 
lcp 
parents: 
830 
diff
changeset
 | 
325  | 
qed "Memrel_0";  | 
| 
 
f9172c4625f1
Moved theorems Ord_cases_lemma and Ord_cases here from Univ,
 
lcp 
parents: 
830 
diff
changeset
 | 
326  | 
|
| 5067 | 327  | 
Goalw [Memrel_def] "Memrel(1) = 0";  | 
| 2925 | 328  | 
by (Blast_tac 1);  | 
| 
851
 
f9172c4625f1
Moved theorems Ord_cases_lemma and Ord_cases here from Univ,
 
lcp 
parents: 
830 
diff
changeset
 | 
329  | 
qed "Memrel_1";  | 
| 
830
 
18240b5d8a06
Moved Transset_includes_summands and Transset_sum_Int_subset to
 
lcp 
parents: 
782 
diff
changeset
 | 
330  | 
|
| 2469 | 331  | 
Addsimps [Memrel_0, Memrel_1];  | 
332  | 
||
| 435 | 333  | 
(*The membership relation (as a set) is well-founded.  | 
334  | 
Proof idea: show A<=B by applying the foundation axiom to A-B *)  | 
|
| 5067 | 335  | 
Goalw [wf_def] "wf(Memrel(A))";  | 
| 435 | 336  | 
by (EVERY1 [rtac (foundation RS disjE RS allI),  | 
| 1461 | 337  | 
etac disjI1,  | 
338  | 
etac bexE,  | 
|
339  | 
rtac (impI RS allI RS bexI RS disjI2),  | 
|
340  | 
etac MemrelE,  | 
|
341  | 
etac bspec,  | 
|
342  | 
REPEAT o assume_tac]);  | 
|
| 760 | 343  | 
qed "wf_Memrel";  | 
| 435 | 344  | 
|
345  | 
(*Transset(i) does not suffice, though ALL j:i.Transset(j) does*)  | 
|
| 5067 | 346  | 
Goalw [Ord_def, Transset_def, trans_def]  | 
| 
5147
 
825877190618
More tidying and removal of "\!\!... from Goal commands
 
paulson 
parents: 
5143 
diff
changeset
 | 
347  | 
"Ord(i) ==> trans(Memrel(i))";  | 
| 2925 | 348  | 
by (Blast_tac 1);  | 
| 760 | 349  | 
qed "trans_Memrel";  | 
| 435 | 350  | 
|
351  | 
(*If Transset(A) then Memrel(A) internalizes the membership relation below A*)  | 
|
| 5067 | 352  | 
Goalw [Transset_def]  | 
| 
5147
 
825877190618
More tidying and removal of "\!\!... from Goal commands
 
paulson 
parents: 
5143 
diff
changeset
 | 
353  | 
"Transset(A) ==> <a,b> : Memrel(A) <-> a:b & b:A";  | 
| 2925 | 354  | 
by (Blast_tac 1);  | 
| 760 | 355  | 
qed "Transset_Memrel_iff";  | 
| 435 | 356  | 
|
357  | 
||
358  | 
(*** Transfinite induction ***)  | 
|
359  | 
||
360  | 
(*Epsilon induction over a transitive set*)  | 
|
| 5321 | 361  | 
val major::prems = Goalw [Transset_def]  | 
| 435 | 362  | 
"[| i: k; Transset(k); \  | 
363  | 
\ !!x.[| x: k; ALL y:x. P(y) |] ==> P(x) \  | 
|
364  | 
\ |] ==> P(i)";  | 
|
365  | 
by (rtac (major RS (wf_Memrel RS wf_induct2)) 1);  | 
|
| 2925 | 366  | 
by (Blast_tac 1);  | 
| 435 | 367  | 
by (resolve_tac prems 1);  | 
368  | 
by (assume_tac 1);  | 
|
369  | 
by (cut_facts_tac prems 1);  | 
|
| 2925 | 370  | 
by (Blast_tac 1);  | 
| 760 | 371  | 
qed "Transset_induct";  | 
| 435 | 372  | 
|
373  | 
(*Induction over an ordinal*)  | 
|
374  | 
val Ord_induct = Ord_is_Transset RSN (2, Transset_induct);  | 
|
375  | 
||
376  | 
(*Induction over the class of ordinals -- a useful corollary of Ord_induct*)  | 
|
| 5321 | 377  | 
val [major,indhyp] = Goal  | 
| 435 | 378  | 
"[| Ord(i); \  | 
379  | 
\ !!x.[| Ord(x); ALL y:x. P(y) |] ==> P(x) \  | 
|
380  | 
\ |] ==> P(i)";  | 
|
381  | 
by (rtac (major RS Ord_succ RS (succI1 RS Ord_induct)) 1);  | 
|
382  | 
by (rtac indhyp 1);  | 
|
383  | 
by (rtac (major RS Ord_succ RS Ord_in_Ord) 1);  | 
|
384  | 
by (REPEAT (assume_tac 1));  | 
|
| 760 | 385  | 
qed "trans_induct";  | 
| 435 | 386  | 
|
387  | 
(*Perform induction on i, then prove the Ord(i) subgoal using prems. *)  | 
|
388  | 
fun trans_ind_tac a prems i =  | 
|
389  | 
    EVERY [res_inst_tac [("i",a)] trans_induct i,
 | 
|
| 1461 | 390  | 
rename_last_tac a ["1"] (i+1),  | 
391  | 
ares_tac prems i];  | 
|
| 435 | 392  | 
|
393  | 
||
394  | 
(*** Fundamental properties of the epsilon ordering (< on ordinals) ***)  | 
|
395  | 
||
396  | 
(*Finds contradictions for the following proof*)  | 
|
397  | 
val Ord_trans_tac = EVERY' [etac notE, etac Ord_trans, REPEAT o atac];  | 
|
398  | 
||
399  | 
(** Proving that < is a linear ordering on the ordinals **)  | 
|
400  | 
||
| 5321 | 401  | 
Goal "Ord(i) ==> (ALL j. Ord(j) --> i:j | i=j | j:i)";  | 
402  | 
by (etac trans_induct 1);  | 
|
| 435 | 403  | 
by (rtac (impI RS allI) 1);  | 
404  | 
by (trans_ind_tac "j" [] 1);  | 
|
| 2493 | 405  | 
by (DEPTH_SOLVE (Step_tac 1 ORELSE Ord_trans_tac 1));  | 
| 
3736
 
39ee3d31cfbc
Much tidying including step_tac -> clarify_tac or safe_tac; sometimes
 
paulson 
parents: 
3016 
diff
changeset
 | 
406  | 
qed_spec_mp "Ord_linear";  | 
| 435 | 407  | 
|
408  | 
(*The trichotomy law for ordinals!*)  | 
|
| 5321 | 409  | 
val ordi::ordj::prems = Goalw [lt_def]  | 
| 435 | 410  | 
"[| Ord(i); Ord(j); i<j ==> P; i=j ==> P; j<i ==> P |] ==> P";  | 
411  | 
by (rtac ([ordi,ordj] MRS Ord_linear RS disjE) 1);  | 
|
412  | 
by (etac disjE 2);  | 
|
413  | 
by (DEPTH_SOLVE (ares_tac ([ordi,ordj,conjI] @ prems) 1));  | 
|
| 760 | 414  | 
qed "Ord_linear_lt";  | 
| 435 | 415  | 
|
| 5321 | 416  | 
val prems = Goal  | 
| 435 | 417  | 
"[| Ord(i); Ord(j); i<j ==> P; j le i ==> P |] ==> P";  | 
418  | 
by (res_inst_tac [("i","i"),("j","j")] Ord_linear_lt 1);
 | 
|
419  | 
by (DEPTH_SOLVE (ares_tac ([leI, sym RS le_eqI] @ prems) 1));  | 
|
| 760 | 420  | 
qed "Ord_linear2";  | 
| 435 | 421  | 
|
| 5321 | 422  | 
val prems = Goal  | 
| 435 | 423  | 
"[| Ord(i); Ord(j); i le j ==> P; j le i ==> P |] ==> P";  | 
424  | 
by (res_inst_tac [("i","i"),("j","j")] Ord_linear_lt 1);
 | 
|
425  | 
by (DEPTH_SOLVE (ares_tac ([leI,le_eqI] @ prems) 1));  | 
|
| 760 | 426  | 
qed "Ord_linear_le";  | 
| 435 | 427  | 
|
| 5137 | 428  | 
Goal "j le i ==> ~ i<j";  | 
| 2925 | 429  | 
by (blast_tac le_cs 1);  | 
| 760 | 430  | 
qed "le_imp_not_lt";  | 
| 435 | 431  | 
|
| 5137 | 432  | 
Goal "[| ~ i<j; Ord(i); Ord(j) |] ==> j le i";  | 
| 435 | 433  | 
by (res_inst_tac [("i","i"),("j","j")] Ord_linear2 1);
 | 
434  | 
by (REPEAT (SOMEGOAL assume_tac));  | 
|
| 2925 | 435  | 
by (blast_tac le_cs 1);  | 
| 760 | 436  | 
qed "not_lt_imp_le";  | 
| 435 | 437  | 
|
| 
851
 
f9172c4625f1
Moved theorems Ord_cases_lemma and Ord_cases here from Univ,
 
lcp 
parents: 
830 
diff
changeset
 | 
438  | 
(** Some rewrite rules for <, le **)  | 
| 
 
f9172c4625f1
Moved theorems Ord_cases_lemma and Ord_cases here from Univ,
 
lcp 
parents: 
830 
diff
changeset
 | 
439  | 
|
| 5137 | 440  | 
Goalw [lt_def] "Ord(j) ==> i:j <-> i<j";  | 
| 2925 | 441  | 
by (Blast_tac 1);  | 
| 
851
 
f9172c4625f1
Moved theorems Ord_cases_lemma and Ord_cases here from Univ,
 
lcp 
parents: 
830 
diff
changeset
 | 
442  | 
qed "Ord_mem_iff_lt";  | 
| 
 
f9172c4625f1
Moved theorems Ord_cases_lemma and Ord_cases here from Univ,
 
lcp 
parents: 
830 
diff
changeset
 | 
443  | 
|
| 5137 | 444  | 
Goal "[| Ord(i); Ord(j) |] ==> ~ i<j <-> j le i";  | 
| 435 | 445  | 
by (REPEAT (ares_tac [iffI, le_imp_not_lt, not_lt_imp_le] 1));  | 
| 760 | 446  | 
qed "not_lt_iff_le";  | 
| 435 | 447  | 
|
| 5137 | 448  | 
Goal "[| Ord(i); Ord(j) |] ==> ~ i le j <-> j<i";  | 
| 4091 | 449  | 
by (asm_simp_tac (simpset() addsimps [not_lt_iff_le RS iff_sym]) 1);  | 
| 760 | 450  | 
qed "not_le_iff_lt";  | 
| 435 | 451  | 
|
| 1610 | 452  | 
(*This is identical to 0<succ(i) *)  | 
| 5137 | 453  | 
Goal "Ord(i) ==> 0 le i";  | 
| 435 | 454  | 
by (etac (not_lt_iff_le RS iffD1) 1);  | 
455  | 
by (REPEAT (resolve_tac [Ord_0, not_lt0] 1));  | 
|
| 760 | 456  | 
qed "Ord_0_le";  | 
| 435 | 457  | 
|
| 5137 | 458  | 
Goal "[| Ord(i); i~=0 |] ==> 0<i";  | 
| 435 | 459  | 
by (etac (not_le_iff_lt RS iffD1) 1);  | 
460  | 
by (rtac Ord_0 1);  | 
|
| 2925 | 461  | 
by (Blast_tac 1);  | 
| 760 | 462  | 
qed "Ord_0_lt";  | 
| 435 | 463  | 
|
464  | 
(*** Results about less-than or equals ***)  | 
|
465  | 
||
466  | 
(** For ordinals, j<=i (subset) implies j le i (less-than or equals) **)  | 
|
467  | 
||
| 5137 | 468  | 
Goal "[| j<=i; Ord(i); Ord(j) |] ==> j le i";  | 
| 435 | 469  | 
by (rtac (not_lt_iff_le RS iffD1) 1);  | 
470  | 
by (assume_tac 1);  | 
|
471  | 
by (assume_tac 1);  | 
|
| 4091 | 472  | 
by (blast_tac (claset() addEs [ltE, mem_irrefl]) 1);  | 
| 760 | 473  | 
qed "subset_imp_le";  | 
| 435 | 474  | 
|
| 5137 | 475  | 
Goal "i le j ==> i<=j";  | 
| 435 | 476  | 
by (etac leE 1);  | 
| 2925 | 477  | 
by (Blast_tac 2);  | 
478  | 
by (blast_tac (subset_cs addIs [OrdmemD] addEs [ltE]) 1);  | 
|
| 760 | 479  | 
qed "le_imp_subset";  | 
| 435 | 480  | 
|
| 5067 | 481  | 
Goal "j le i <-> j<=i & Ord(i) & Ord(j)";  | 
| 4091 | 482  | 
by (blast_tac (claset() addDs [Ord_succD, subset_imp_le, le_imp_subset]  | 
| 3016 | 483  | 
addEs [ltE]) 1);  | 
| 760 | 484  | 
qed "le_subset_iff";  | 
| 435 | 485  | 
|
| 5067 | 486  | 
Goal "i le succ(j) <-> i le j | i=succ(j) & Ord(i)";  | 
| 4091 | 487  | 
by (simp_tac (simpset() addsimps [le_iff]) 1);  | 
488  | 
by (blast_tac (claset() addIs [Ord_succ] addDs [Ord_succD]) 1);  | 
|
| 760 | 489  | 
qed "le_succ_iff";  | 
| 435 | 490  | 
|
491  | 
(*Just a variant of subset_imp_le*)  | 
|
| 5321 | 492  | 
val [ordi,ordj,minor] = Goal  | 
| 435 | 493  | 
"[| Ord(i); Ord(j); !!x. x<j ==> x<i |] ==> j le i";  | 
494  | 
by (REPEAT_FIRST (ares_tac [notI RS not_lt_imp_le, ordi, ordj]));  | 
|
| 437 | 495  | 
by (etac (minor RS lt_irrefl) 1);  | 
| 760 | 496  | 
qed "all_lt_imp_le";  | 
| 435 | 497  | 
|
498  | 
(** Transitive laws **)  | 
|
499  | 
||
| 5137 | 500  | 
Goal "[| i le j; j<k |] ==> i<k";  | 
| 4091 | 501  | 
by (blast_tac (claset() addSEs [leE] addIs [lt_trans]) 1);  | 
| 760 | 502  | 
qed "lt_trans1";  | 
| 435 | 503  | 
|
| 5137 | 504  | 
Goal "[| i<j; j le k |] ==> i<k";  | 
| 4091 | 505  | 
by (blast_tac (claset() addSEs [leE] addIs [lt_trans]) 1);  | 
| 760 | 506  | 
qed "lt_trans2";  | 
| 435 | 507  | 
|
| 5137 | 508  | 
Goal "[| i le j; j le k |] ==> i le k";  | 
| 435 | 509  | 
by (REPEAT (ares_tac [lt_trans1] 1));  | 
| 760 | 510  | 
qed "le_trans";  | 
| 435 | 511  | 
|
| 5137 | 512  | 
Goal "i<j ==> succ(i) le j";  | 
| 435 | 513  | 
by (rtac (not_lt_iff_le RS iffD1) 1);  | 
| 2925 | 514  | 
by (blast_tac le_cs 3);  | 
| 4091 | 515  | 
by (ALLGOALS (blast_tac (claset() addEs [ltE])));  | 
| 760 | 516  | 
qed "succ_leI";  | 
| 435 | 517  | 
|
| 
830
 
18240b5d8a06
Moved Transset_includes_summands and Transset_sum_Int_subset to
 
lcp 
parents: 
782 
diff
changeset
 | 
518  | 
(*Identical to succ(i) < succ(j) ==> i<j *)  | 
| 5137 | 519  | 
Goal "succ(i) le j ==> i<j";  | 
| 435 | 520  | 
by (rtac (not_le_iff_lt RS iffD1) 1);  | 
| 4475 | 521  | 
by (blast_tac le_cs 3);  | 
| 4091 | 522  | 
by (ALLGOALS (blast_tac (claset() addEs [ltE, make_elim Ord_succD])));  | 
| 760 | 523  | 
qed "succ_leE";  | 
| 435 | 524  | 
|
| 5067 | 525  | 
Goal "succ(i) le j <-> i<j";  | 
| 435 | 526  | 
by (REPEAT (ares_tac [iffI,succ_leI,succ_leE] 1));  | 
| 760 | 527  | 
qed "succ_le_iff";  | 
| 435 | 528  | 
|
| 2469 | 529  | 
Addsimps [succ_le_iff];  | 
530  | 
||
| 5137 | 531  | 
Goal "succ(i) le succ(j) ==> i le j";  | 
| 4091 | 532  | 
by (blast_tac (claset() addSDs [succ_leE]) 1);  | 
| 
830
 
18240b5d8a06
Moved Transset_includes_summands and Transset_sum_Int_subset to
 
lcp 
parents: 
782 
diff
changeset
 | 
533  | 
qed "succ_le_imp_le";  | 
| 
 
18240b5d8a06
Moved Transset_includes_summands and Transset_sum_Int_subset to
 
lcp 
parents: 
782 
diff
changeset
 | 
534  | 
|
| 435 | 535  | 
(** Union and Intersection **)  | 
536  | 
||
| 5137 | 537  | 
Goal "[| Ord(i); Ord(j) |] ==> i le i Un j";  | 
| 435 | 538  | 
by (rtac (Un_upper1 RS subset_imp_le) 1);  | 
539  | 
by (REPEAT (ares_tac [Ord_Un] 1));  | 
|
| 760 | 540  | 
qed "Un_upper1_le";  | 
| 435 | 541  | 
|
| 5137 | 542  | 
Goal "[| Ord(i); Ord(j) |] ==> j le i Un j";  | 
| 435 | 543  | 
by (rtac (Un_upper2 RS subset_imp_le) 1);  | 
544  | 
by (REPEAT (ares_tac [Ord_Un] 1));  | 
|
| 760 | 545  | 
qed "Un_upper2_le";  | 
| 435 | 546  | 
|
547  | 
(*Replacing k by succ(k') yields the similar rule for le!*)  | 
|
| 5137 | 548  | 
Goal "[| i<k; j<k |] ==> i Un j < k";  | 
| 435 | 549  | 
by (res_inst_tac [("i","i"),("j","j")] Ord_linear_le 1);
 | 
| 2033 | 550  | 
by (stac Un_commute 4);  | 
| 4091 | 551  | 
by (asm_full_simp_tac (simpset() addsimps [le_subset_iff, subset_Un_iff]) 4);  | 
552  | 
by (asm_full_simp_tac (simpset() addsimps [le_subset_iff, subset_Un_iff]) 3);  | 
|
| 435 | 553  | 
by (REPEAT (eresolve_tac [asm_rl, ltE] 1));  | 
| 760 | 554  | 
qed "Un_least_lt";  | 
| 435 | 555  | 
|
| 5137 | 556  | 
Goal "[| Ord(i); Ord(j) |] ==> i Un j < k <-> i<k & j<k";  | 
| 4091 | 557  | 
by (safe_tac (claset() addSIs [Un_least_lt]));  | 
| 437 | 558  | 
by (rtac (Un_upper2_le RS lt_trans1) 2);  | 
559  | 
by (rtac (Un_upper1_le RS lt_trans1) 1);  | 
|
| 435 | 560  | 
by (REPEAT_SOME assume_tac);  | 
| 760 | 561  | 
qed "Un_least_lt_iff";  | 
| 435 | 562  | 
|
563  | 
val [ordi,ordj,ordk] = goal Ordinal.thy  | 
|
564  | 
"[| Ord(i); Ord(j); Ord(k) |] ==> i Un j : k <-> i:k & j:k";  | 
|
565  | 
by (cut_facts_tac [[ordi,ordj] MRS  | 
|
| 1461 | 566  | 
                   read_instantiate [("k","k")] Un_least_lt_iff] 1);
 | 
| 4091 | 567  | 
by (asm_full_simp_tac (simpset() addsimps [lt_def,ordi,ordj,ordk]) 1);  | 
| 760 | 568  | 
qed "Un_least_mem_iff";  | 
| 435 | 569  | 
|
570  | 
(*Replacing k by succ(k') yields the similar rule for le!*)  | 
|
| 5137 | 571  | 
Goal "[| i<k; j<k |] ==> i Int j < k";  | 
| 435 | 572  | 
by (res_inst_tac [("i","i"),("j","j")] Ord_linear_le 1);
 | 
| 2033 | 573  | 
by (stac Int_commute 4);  | 
| 4091 | 574  | 
by (asm_full_simp_tac (simpset() addsimps [le_subset_iff, subset_Int_iff]) 4);  | 
575  | 
by (asm_full_simp_tac (simpset() addsimps [le_subset_iff, subset_Int_iff]) 3);  | 
|
| 435 | 576  | 
by (REPEAT (eresolve_tac [asm_rl, ltE] 1));  | 
| 760 | 577  | 
qed "Int_greatest_lt";  | 
| 435 | 578  | 
|
579  | 
(*FIXME: the Intersection duals are missing!*)  | 
|
580  | 
||
581  | 
||
582  | 
(*** Results about limits ***)  | 
|
583  | 
||
| 5321 | 584  | 
val prems = Goal "[| !!i. i:A ==> Ord(i) |] ==> Ord(Union(A))";  | 
| 435 | 585  | 
by (rtac (Ord_is_Transset RS Transset_Union_family RS OrdI) 1);  | 
586  | 
by (REPEAT (etac UnionE 1 ORELSE ares_tac ([Ord_contains_Transset]@prems) 1));  | 
|
| 760 | 587  | 
qed "Ord_Union";  | 
| 435 | 588  | 
|
| 5321 | 589  | 
val prems = Goal  | 
| 435 | 590  | 
"[| !!x. x:A ==> Ord(B(x)) |] ==> Ord(UN x:A. B(x))";  | 
591  | 
by (rtac Ord_Union 1);  | 
|
592  | 
by (etac RepFunE 1);  | 
|
593  | 
by (etac ssubst 1);  | 
|
594  | 
by (eresolve_tac prems 1);  | 
|
| 760 | 595  | 
qed "Ord_UN";  | 
| 435 | 596  | 
|
597  | 
(* No < version; consider (UN i:nat.i)=nat *)  | 
|
| 5321 | 598  | 
val [ordi,limit] = Goal  | 
| 435 | 599  | 
"[| Ord(i); !!x. x:A ==> b(x) le i |] ==> (UN x:A. b(x)) le i";  | 
600  | 
by (rtac (le_imp_subset RS UN_least RS subset_imp_le) 1);  | 
|
601  | 
by (REPEAT (ares_tac [ordi, Ord_UN, limit] 1 ORELSE etac (limit RS ltE) 1));  | 
|
| 760 | 602  | 
qed "UN_least_le";  | 
| 435 | 603  | 
|
| 5321 | 604  | 
val [jlti,limit] = Goal  | 
| 435 | 605  | 
"[| j<i; !!x. x:A ==> b(x)<j |] ==> (UN x:A. succ(b(x))) < i";  | 
606  | 
by (rtac (jlti RS ltE) 1);  | 
|
607  | 
by (rtac (UN_least_le RS lt_trans2) 1);  | 
|
608  | 
by (REPEAT (ares_tac [jlti, succ_leI, limit] 1));  | 
|
| 760 | 609  | 
qed "UN_succ_least_lt";  | 
| 435 | 610  | 
|
| 5321 | 611  | 
val prems = Goal  | 
| 435 | 612  | 
"[| a: A; i le b(a); !!x. x:A ==> Ord(b(x)) |] ==> i le (UN x:A. b(x))";  | 
613  | 
by (resolve_tac (prems RL [ltE]) 1);  | 
|
614  | 
by (rtac (le_imp_subset RS subset_trans RS subset_imp_le) 1);  | 
|
615  | 
by (REPEAT (ares_tac (prems @ [UN_upper, Ord_UN]) 1));  | 
|
| 760 | 616  | 
qed "UN_upper_le";  | 
| 435 | 617  | 
|
| 5321 | 618  | 
val [leprem] = Goal  | 
| 
851
 
f9172c4625f1
Moved theorems Ord_cases_lemma and Ord_cases here from Univ,
 
lcp 
parents: 
830 
diff
changeset
 | 
619  | 
"[| !!x. x:A ==> c(x) le d(x) |] ==> (UN x:A. c(x)) le (UN x:A. d(x))";  | 
| 1461 | 620  | 
by (rtac UN_least_le 1);  | 
621  | 
by (rtac UN_upper_le 2);  | 
|
| 
851
 
f9172c4625f1
Moved theorems Ord_cases_lemma and Ord_cases here from Univ,
 
lcp 
parents: 
830 
diff
changeset
 | 
622  | 
by (REPEAT (ares_tac [leprem] 2));  | 
| 1461 | 623  | 
by (rtac Ord_UN 1);  | 
| 
851
 
f9172c4625f1
Moved theorems Ord_cases_lemma and Ord_cases here from Univ,
 
lcp 
parents: 
830 
diff
changeset
 | 
624  | 
by (REPEAT (eresolve_tac [asm_rl, leprem RS ltE] 1  | 
| 
 
f9172c4625f1
Moved theorems Ord_cases_lemma and Ord_cases here from Univ,
 
lcp 
parents: 
830 
diff
changeset
 | 
625  | 
ORELSE dtac Ord_succD 1));  | 
| 
 
f9172c4625f1
Moved theorems Ord_cases_lemma and Ord_cases here from Univ,
 
lcp 
parents: 
830 
diff
changeset
 | 
626  | 
qed "le_implies_UN_le_UN";  | 
| 
 
f9172c4625f1
Moved theorems Ord_cases_lemma and Ord_cases here from Univ,
 
lcp 
parents: 
830 
diff
changeset
 | 
627  | 
|
| 5137 | 628  | 
Goal "Ord(i) ==> (UN y:i. succ(y)) = i";  | 
| 4091 | 629  | 
by (blast_tac (claset() addIs [Ord_trans]) 1);  | 
| 760 | 630  | 
qed "Ord_equality";  | 
| 435 | 631  | 
|
632  | 
(*Holds for all transitive sets, not just ordinals*)  | 
|
| 5137 | 633  | 
Goal "Ord(i) ==> Union(i) <= i";  | 
| 4091 | 634  | 
by (blast_tac (claset() addIs [Ord_trans]) 1);  | 
| 760 | 635  | 
qed "Ord_Union_subset";  | 
| 435 | 636  | 
|
637  | 
||
638  | 
(*** Limit ordinals -- general properties ***)  | 
|
639  | 
||
| 5137 | 640  | 
Goalw [Limit_def] "Limit(i) ==> Union(i) = i";  | 
| 4091 | 641  | 
by (fast_tac (claset() addSIs [ltI] addSEs [ltE] addEs [Ord_trans]) 1);  | 
| 760 | 642  | 
qed "Limit_Union_eq";  | 
| 435 | 643  | 
|
| 5137 | 644  | 
Goalw [Limit_def] "Limit(i) ==> Ord(i)";  | 
| 435 | 645  | 
by (etac conjunct1 1);  | 
| 760 | 646  | 
qed "Limit_is_Ord";  | 
| 435 | 647  | 
|
| 5137 | 648  | 
Goalw [Limit_def] "Limit(i) ==> 0 < i";  | 
| 435 | 649  | 
by (etac (conjunct2 RS conjunct1) 1);  | 
| 760 | 650  | 
qed "Limit_has_0";  | 
| 435 | 651  | 
|
| 5137 | 652  | 
Goalw [Limit_def] "[| Limit(i); j<i |] ==> succ(j) < i";  | 
| 2925 | 653  | 
by (Blast_tac 1);  | 
| 760 | 654  | 
qed "Limit_has_succ";  | 
| 435 | 655  | 
|
| 5067 | 656  | 
Goalw [Limit_def]  | 
| 
5147
 
825877190618
More tidying and removal of "\!\!... from Goal commands
 
paulson 
parents: 
5143 
diff
changeset
 | 
657  | 
"[| 0<i; ALL y. succ(y) ~= i |] ==> Limit(i)";  | 
| 435 | 658  | 
by (safe_tac subset_cs);  | 
659  | 
by (rtac (not_le_iff_lt RS iffD1) 2);  | 
|
| 2925 | 660  | 
by (blast_tac le_cs 4);  | 
| 435 | 661  | 
by (REPEAT (eresolve_tac [asm_rl, ltE, Ord_succ] 1));  | 
| 760 | 662  | 
qed "non_succ_LimitI";  | 
| 435 | 663  | 
|
| 5137 | 664  | 
Goal "Limit(succ(i)) ==> P";  | 
| 437 | 665  | 
by (rtac lt_irrefl 1);  | 
666  | 
by (rtac Limit_has_succ 1);  | 
|
667  | 
by (assume_tac 1);  | 
|
668  | 
by (etac (Limit_is_Ord RS Ord_succD RS le_refl) 1);  | 
|
| 760 | 669  | 
qed "succ_LimitE";  | 
| 435 | 670  | 
|
| 5137 | 671  | 
Goal "[| Limit(i); i le succ(j) |] ==> i le j";  | 
| 4091 | 672  | 
by (safe_tac (claset() addSEs [succ_LimitE, leE]));  | 
| 760 | 673  | 
qed "Limit_le_succD";  | 
| 435 | 674  | 
|
| 
851
 
f9172c4625f1
Moved theorems Ord_cases_lemma and Ord_cases here from Univ,
 
lcp 
parents: 
830 
diff
changeset
 | 
675  | 
(** Traditional 3-way case analysis on ordinals **)  | 
| 435 | 676  | 
|
| 5137 | 677  | 
Goal "Ord(i) ==> i=0 | (EX j. Ord(j) & i=succ(j)) | Limit(i)";  | 
| 4091 | 678  | 
by (blast_tac (claset() addSIs [non_succ_LimitI, Ord_0_lt]  | 
| 2493 | 679  | 
addSDs [Ord_succD]) 1);  | 
| 
851
 
f9172c4625f1
Moved theorems Ord_cases_lemma and Ord_cases here from Univ,
 
lcp 
parents: 
830 
diff
changeset
 | 
680  | 
qed "Ord_cases_disj";  | 
| 
 
f9172c4625f1
Moved theorems Ord_cases_lemma and Ord_cases here from Univ,
 
lcp 
parents: 
830 
diff
changeset
 | 
681  | 
|
| 5321 | 682  | 
val major::prems = Goal  | 
| 1461 | 683  | 
"[| Ord(i); \  | 
684  | 
\ i=0 ==> P; \  | 
|
685  | 
\ !!j. [| Ord(j); i=succ(j) |] ==> P; \  | 
|
686  | 
\ Limit(i) ==> P \  | 
|
| 
851
 
f9172c4625f1
Moved theorems Ord_cases_lemma and Ord_cases here from Univ,
 
lcp 
parents: 
830 
diff
changeset
 | 
687  | 
\ |] ==> P";  | 
| 
 
f9172c4625f1
Moved theorems Ord_cases_lemma and Ord_cases here from Univ,
 
lcp 
parents: 
830 
diff
changeset
 | 
688  | 
by (cut_facts_tac [major RS Ord_cases_disj] 1);  | 
| 
 
f9172c4625f1
Moved theorems Ord_cases_lemma and Ord_cases here from Univ,
 
lcp 
parents: 
830 
diff
changeset
 | 
689  | 
by (REPEAT (eresolve_tac (prems@[asm_rl, disjE, exE, conjE]) 1));  | 
| 
 
f9172c4625f1
Moved theorems Ord_cases_lemma and Ord_cases here from Univ,
 
lcp 
parents: 
830 
diff
changeset
 | 
690  | 
qed "Ord_cases";  | 
| 
 
f9172c4625f1
Moved theorems Ord_cases_lemma and Ord_cases here from Univ,
 
lcp 
parents: 
830 
diff
changeset
 | 
691  | 
|
| 5321 | 692  | 
val major::prems = Goal  | 
| 1461 | 693  | 
"[| Ord(i); \  | 
694  | 
\ P(0); \  | 
|
695  | 
\ !!x. [| Ord(x); P(x) |] ==> P(succ(x)); \  | 
|
696  | 
\ !!x. [| Limit(x); ALL y:x. P(y) |] ==> P(x) \  | 
|
| 
851
 
f9172c4625f1
Moved theorems Ord_cases_lemma and Ord_cases here from Univ,
 
lcp 
parents: 
830 
diff
changeset
 | 
697  | 
\ |] ==> P(i)";  | 
| 
 
f9172c4625f1
Moved theorems Ord_cases_lemma and Ord_cases here from Univ,
 
lcp 
parents: 
830 
diff
changeset
 | 
698  | 
by (resolve_tac [major RS trans_induct] 1);  | 
| 1461 | 699  | 
by (etac Ord_cases 1);  | 
| 4091 | 700  | 
by (ALLGOALS (blast_tac (claset() addIs prems)));  | 
| 
851
 
f9172c4625f1
Moved theorems Ord_cases_lemma and Ord_cases here from Univ,
 
lcp 
parents: 
830 
diff
changeset
 | 
701  | 
qed "trans_induct3";  |