1496
|
1 |
(* Title: HOL/RelPow.ML
|
|
2 |
ID: $Id$
|
|
3 |
Author: Tobias Nipkow
|
|
4 |
Copyright 1996 TU Muenchen
|
|
5 |
*)
|
|
6 |
|
|
7 |
open RelPow;
|
|
8 |
|
3371
|
9 |
goal RelPow.thy "!!R:: ('a*'a)set. R^1 = R";
|
2741
|
10 |
by (Simp_tac 1);
|
1693
|
11 |
qed "rel_pow_1";
|
|
12 |
Addsimps [rel_pow_1];
|
|
13 |
|
1496
|
14 |
goal RelPow.thy "(x,x) : R^0";
|
1552
|
15 |
by (Simp_tac 1);
|
1496
|
16 |
qed "rel_pow_0_I";
|
|
17 |
|
|
18 |
goal RelPow.thy "!!R. [| (x,y) : R^n; (y,z):R |] ==> (x,z):R^(Suc n)";
|
2741
|
19 |
by (Simp_tac 1);
|
2922
|
20 |
by (Blast_tac 1);
|
1496
|
21 |
qed "rel_pow_Suc_I";
|
|
22 |
|
|
23 |
goal RelPow.thy "!z. (x,y) : R --> (y,z):R^n --> (x,z):R^(Suc n)";
|
1552
|
24 |
by (nat_ind_tac "n" 1);
|
2741
|
25 |
by (Simp_tac 1);
|
|
26 |
by (Asm_full_simp_tac 1);
|
2922
|
27 |
by (Blast_tac 1);
|
1496
|
28 |
qed_spec_mp "rel_pow_Suc_I2";
|
|
29 |
|
1515
|
30 |
goal RelPow.thy "!!R. [| (x,y) : R^0; x=y ==> P |] ==> P";
|
1552
|
31 |
by (Asm_full_simp_tac 1);
|
1515
|
32 |
qed "rel_pow_0_E";
|
|
33 |
|
|
34 |
val [major,minor] = goal RelPow.thy
|
|
35 |
"[| (x,z) : R^(Suc n); !!y. [| (x,y) : R^n; (y,z) : R |] ==> P |] ==> P";
|
1552
|
36 |
by (cut_facts_tac [major] 1);
|
2741
|
37 |
by (Asm_full_simp_tac 1);
|
4089
|
38 |
by (blast_tac (claset() addIs [minor]) 1);
|
1515
|
39 |
qed "rel_pow_Suc_E";
|
|
40 |
|
|
41 |
val [p1,p2,p3] = goal RelPow.thy
|
|
42 |
"[| (x,z) : R^n; [| n=0; x = z |] ==> P; \
|
|
43 |
\ !!y m. [| n = Suc m; (x,y) : R^m; (y,z) : R |] ==> P \
|
|
44 |
\ |] ==> P";
|
1552
|
45 |
by (res_inst_tac [("n","n")] natE 1);
|
|
46 |
by (cut_facts_tac [p1] 1);
|
4089
|
47 |
by (asm_full_simp_tac (simpset() addsimps [p2]) 1);
|
1552
|
48 |
by (cut_facts_tac [p1] 1);
|
|
49 |
by (Asm_full_simp_tac 1);
|
2741
|
50 |
by (etac compEpair 1);
|
1552
|
51 |
by (REPEAT(ares_tac [p3] 1));
|
1515
|
52 |
qed "rel_pow_E";
|
|
53 |
|
1496
|
54 |
goal RelPow.thy "!x z. (x,z):R^(Suc n) --> (? y. (x,y):R & (y,z):R^n)";
|
1552
|
55 |
by (nat_ind_tac "n" 1);
|
4089
|
56 |
by (blast_tac (claset() addIs [rel_pow_0_I] addEs [rel_pow_0_E,rel_pow_Suc_E]) 1);
|
|
57 |
by (blast_tac (claset() addIs [rel_pow_Suc_I] addEs[rel_pow_0_E,rel_pow_Suc_E]) 1);
|
1515
|
58 |
qed_spec_mp "rel_pow_Suc_D2";
|
1496
|
59 |
|
2741
|
60 |
|
|
61 |
goal RelPow.thy
|
|
62 |
"!x y z. (x,y) : R^n & (y,z) : R --> (? w. (x,w) : R & (w,z) : R^n)";
|
|
63 |
by (nat_ind_tac "n" 1);
|
4089
|
64 |
by (fast_tac (claset() addss (simpset())) 1);
|
|
65 |
by (fast_tac (claset() addss (simpset())) 1);
|
2741
|
66 |
qed_spec_mp "rel_pow_Suc_D2'";
|
|
67 |
|
1496
|
68 |
val [p1,p2,p3] = goal RelPow.thy
|
|
69 |
"[| (x,z) : R^n; [| n=0; x = z |] ==> P; \
|
|
70 |
\ !!y m. [| n = Suc m; (x,y) : R; (y,z) : R^m |] ==> P \
|
|
71 |
\ |] ==> P";
|
1552
|
72 |
by (res_inst_tac [("n","n")] natE 1);
|
|
73 |
by (cut_facts_tac [p1] 1);
|
4089
|
74 |
by (asm_full_simp_tac (simpset() addsimps [p2]) 1);
|
1552
|
75 |
by (cut_facts_tac [p1] 1);
|
|
76 |
by (Asm_full_simp_tac 1);
|
3023
|
77 |
by (etac compEpair 1);
|
2741
|
78 |
by (dtac (conjI RS rel_pow_Suc_D2') 1);
|
3023
|
79 |
by (assume_tac 1);
|
1552
|
80 |
by (etac exE 1);
|
|
81 |
by (etac p3 1);
|
|
82 |
by (etac conjunct1 1);
|
|
83 |
by (etac conjunct2 1);
|
1515
|
84 |
qed "rel_pow_E2";
|
1496
|
85 |
|
|
86 |
goal RelPow.thy "!!p. p:R^* ==> p : (UN n. R^n)";
|
1552
|
87 |
by (split_all_tac 1);
|
|
88 |
by (etac rtrancl_induct 1);
|
4089
|
89 |
by (ALLGOALS (blast_tac (claset() addIs [rel_pow_0_I,rel_pow_Suc_I])));
|
1496
|
90 |
qed "rtrancl_imp_UN_rel_pow";
|
|
91 |
|
|
92 |
goal RelPow.thy "!y. (x,y):R^n --> (x,y):R^*";
|
1552
|
93 |
by (nat_ind_tac "n" 1);
|
4089
|
94 |
by (blast_tac (claset() addIs [rtrancl_refl] addEs [rel_pow_0_E]) 1);
|
|
95 |
by (blast_tac (claset() addEs [rel_pow_Suc_E]
|
3023
|
96 |
addIs [rtrancl_into_rtrancl]) 1);
|
1496
|
97 |
val lemma = result() RS spec RS mp;
|
|
98 |
|
|
99 |
goal RelPow.thy "!!p. p:R^n ==> p:R^*";
|
1552
|
100 |
by (split_all_tac 1);
|
|
101 |
by (etac lemma 1);
|
1515
|
102 |
qed "rel_pow_imp_rtrancl";
|
1496
|
103 |
|
|
104 |
goal RelPow.thy "R^* = (UN n. R^n)";
|
4089
|
105 |
by (blast_tac (claset() addIs [rtrancl_imp_UN_rel_pow, rel_pow_imp_rtrancl]) 1);
|
1496
|
106 |
qed "rtrancl_is_UN_rel_pow";
|
2741
|
107 |
|
|
108 |
|
4759
|
109 |
goal RelPow.thy "!!r::('a * 'a)set. Univalent r ==> Univalent (r^n)";
|
|
110 |
by (rtac UnivalentI 1);
|
|
111 |
by (induct_tac "n" 1);
|
|
112 |
by (Simp_tac 1);
|
|
113 |
by (fast_tac (claset() addDs [UnivalentD] addEs [rel_pow_Suc_E]) 1);
|
|
114 |
qed_spec_mp "Univalent_rel_pow";
|
2741
|
115 |
|
4759
|
116 |
|
|
117 |
|
|
118 |
|