| 
11375
 | 
     1  | 
(*  Title:      HOL/ex/Lagrange.thy
  | 
| 
5078
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author:     Tobias Nipkow
  | 
| 
 | 
     4  | 
    Copyright   1996 TU Muenchen
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
  | 
| 
11375
 | 
     7  | 
This theory only contains a single theorem, which is a lemma in Lagrange's
  | 
| 
 | 
     8  | 
proof that every natural number is the sum of 4 squares.  Its sole purpose is
  | 
| 
 | 
     9  | 
to demonstrate ordered rewriting for commutative rings.
  | 
| 
5078
 | 
    10  | 
  | 
| 
11375
 | 
    11  | 
The enterprising reader might consider proving all of Lagrange's theorem.
  | 
| 
5078
 | 
    12  | 
*)
  | 
| 
 | 
    13  | 
  | 
| 
16417
 | 
    14  | 
theory Lagrange imports Main begin
  | 
| 
14603
 | 
    15  | 
  | 
| 
 | 
    16  | 
constdefs sq :: "'a::times => 'a"
  | 
| 
5078
 | 
    17  | 
         "sq x == x*x"
  | 
| 
 | 
    18  | 
  | 
| 
14603
 | 
    19  | 
(* The following lemma essentially shows that every natural number is the sum
  | 
| 
 | 
    20  | 
of four squares, provided all prime numbers are.  However, this is an
  | 
| 
 | 
    21  | 
abstract theorem about commutative rings.  It has, a priori, nothing to do
  | 
| 
 | 
    22  | 
with nat.*)
  | 
| 
 | 
    23  | 
  | 
| 
16568
 | 
    24  | 
ML"Delsimprocs[ab_group_add_cancel.sum_conv, ab_group_add_cancel.rel_conv]"
  | 
| 
 | 
    25  | 
  | 
| 
14603
 | 
    26  | 
(*once a slow step, but now (2001) just three seconds!*)
  | 
| 
 | 
    27  | 
lemma Lagrange_lemma:
  | 
| 
15069
 | 
    28  | 
 "!!x1::'a::comm_ring.
  | 
| 
14603
 | 
    29  | 
  (sq x1 + sq x2 + sq x3 + sq x4) * (sq y1 + sq y2 + sq y3 + sq y4) =
  | 
| 
 | 
    30  | 
  sq(x1*y1 - x2*y2 - x3*y3 - x4*y4)  +
  | 
| 
 | 
    31  | 
  sq(x1*y2 + x2*y1 + x3*y4 - x4*y3)  +
  | 
| 
 | 
    32  | 
  sq(x1*y3 - x2*y4 + x3*y1 + x4*y2)  +
  | 
| 
 | 
    33  | 
  sq(x1*y4 + x2*y3 - x3*y2 + x4*y1)"
  | 
| 
 | 
    34  | 
by(simp add: sq_def ring_eq_simps)
  | 
| 
 | 
    35  | 
  | 
| 
 | 
    36  | 
  | 
| 
 | 
    37  | 
(* A challenge by John Harrison. Takes about 4 mins on a 3GHz machine.
  | 
| 
 | 
    38  | 
  | 
| 
15069
 | 
    39  | 
lemma "!!p1::'a::comm_ring.
  | 
| 
14603
 | 
    40  | 
 (sq p1 + sq q1 + sq r1 + sq s1 + sq t1 + sq u1 + sq v1 + sq w1) * 
  | 
| 
 | 
    41  | 
 (sq p2 + sq q2 + sq r2 + sq s2 + sq t2 + sq u2 + sq v2 + sq w2) 
  | 
| 
 | 
    42  | 
  = sq (p1*p2 - q1*q2 - r1*r2 - s1*s2 - t1*t2 - u1*u2 - v1*v2 - w1*w2) + 
  | 
| 
 | 
    43  | 
    sq (p1*q2 + q1*p2 + r1*s2 - s1*r2 + t1*u2 - u1*t2 - v1*w2 + w1*v2) +
  | 
| 
 | 
    44  | 
    sq (p1*r2 - q1*s2 + r1*p2 + s1*q2 + t1*v2 + u1*w2 - v1*t2 - w1*u2) +
  | 
| 
 | 
    45  | 
    sq (p1*s2 + q1*r2 - r1*q2 + s1*p2 + t1*w2 - u1*v2 + v1*u2 - w1*t2) +
  | 
| 
 | 
    46  | 
    sq (p1*t2 - q1*u2 - r1*v2 - s1*w2 + t1*p2 + u1*q2 + v1*r2 + w1*s2) +
  | 
| 
 | 
    47  | 
    sq (p1*u2 + q1*t2 - r1*w2 + s1*v2 - t1*q2 + u1*p2 - v1*s2 + w1*r2) +
  | 
| 
 | 
    48  | 
    sq (p1*v2 + q1*w2 + r1*t2 - s1*u2 - t1*r2 + u1*s2 + v1*p2 - w1*q2) +
  | 
| 
 | 
    49  | 
    sq (p1*w2 - q1*v2 + r1*u2 + s1*t2 - t1*s2 - u1*r2 + v1*q2 + w1*p2)"
  | 
| 
 | 
    50  | 
by(simp add: sq_def ring_eq_simps)
  | 
| 
 | 
    51  | 
*)
  | 
| 
 | 
    52  | 
  | 
| 
5078
 | 
    53  | 
end
  |