| 61640 |      1 | (* Author: Tobias Nipkow *)
 | 
|  |      2 | 
 | 
|  |      3 | section \<open>A 2-3 Tree Implementation of Sets\<close>
 | 
|  |      4 | 
 | 
|  |      5 | theory Tree23_Set
 | 
|  |      6 | imports
 | 
|  |      7 |   Tree23
 | 
|  |      8 |   Cmp
 | 
|  |      9 |   Set_by_Ordered
 | 
|  |     10 | begin
 | 
|  |     11 | 
 | 
|  |     12 | fun isin :: "'a::cmp tree23 \<Rightarrow> 'a \<Rightarrow> bool" where
 | 
|  |     13 | "isin Leaf x = False" |
 | 
|  |     14 | "isin (Node2 l a r) x =
 | 
| 61678 |     15 |   (case cmp x a of
 | 
|  |     16 |      LT \<Rightarrow> isin l x |
 | 
|  |     17 |      EQ \<Rightarrow> True |
 | 
|  |     18 |      GT \<Rightarrow> isin r x)" |
 | 
| 61640 |     19 | "isin (Node3 l a m b r) x =
 | 
| 61678 |     20 |   (case cmp x a of
 | 
|  |     21 |      LT \<Rightarrow> isin l x |
 | 
|  |     22 |      EQ \<Rightarrow> True |
 | 
|  |     23 |      GT \<Rightarrow>
 | 
|  |     24 |        (case cmp x b of
 | 
|  |     25 |           LT \<Rightarrow> isin m x |
 | 
|  |     26 |           EQ \<Rightarrow> True |
 | 
|  |     27 |           GT \<Rightarrow> isin r x))"
 | 
| 61640 |     28 | 
 | 
|  |     29 | datatype 'a up\<^sub>i = T\<^sub>i "'a tree23" | Up\<^sub>i "'a tree23" 'a "'a tree23"
 | 
|  |     30 | 
 | 
|  |     31 | fun tree\<^sub>i :: "'a up\<^sub>i \<Rightarrow> 'a tree23" where
 | 
|  |     32 | "tree\<^sub>i (T\<^sub>i t) = t" |
 | 
| 61709 |     33 | "tree\<^sub>i (Up\<^sub>i l a r) = Node2 l a r"
 | 
| 61640 |     34 | 
 | 
|  |     35 | fun ins :: "'a::cmp \<Rightarrow> 'a tree23 \<Rightarrow> 'a up\<^sub>i" where
 | 
|  |     36 | "ins x Leaf = Up\<^sub>i Leaf x Leaf" |
 | 
|  |     37 | "ins x (Node2 l a r) =
 | 
|  |     38 |    (case cmp x a of
 | 
| 61678 |     39 |       LT \<Rightarrow>
 | 
|  |     40 |         (case ins x l of
 | 
|  |     41 |            T\<^sub>i l' => T\<^sub>i (Node2 l' a r) |
 | 
|  |     42 |            Up\<^sub>i l1 b l2 => T\<^sub>i (Node3 l1 b l2 a r)) |
 | 
| 61640 |     43 |       EQ \<Rightarrow> T\<^sub>i (Node2 l x r) |
 | 
| 61678 |     44 |       GT \<Rightarrow>
 | 
|  |     45 |         (case ins x r of
 | 
|  |     46 |            T\<^sub>i r' => T\<^sub>i (Node2 l a r') |
 | 
|  |     47 |            Up\<^sub>i r1 b r2 => T\<^sub>i (Node3 l a r1 b r2)))" |
 | 
| 61640 |     48 | "ins x (Node3 l a m b r) =
 | 
|  |     49 |    (case cmp x a of
 | 
| 61678 |     50 |       LT \<Rightarrow>
 | 
|  |     51 |         (case ins x l of
 | 
|  |     52 |            T\<^sub>i l' => T\<^sub>i (Node3 l' a m b r) |
 | 
|  |     53 |            Up\<^sub>i l1 c l2 => Up\<^sub>i (Node2 l1 c l2) a (Node2 m b r)) |
 | 
| 61640 |     54 |       EQ \<Rightarrow> T\<^sub>i (Node3 l a m b r) |
 | 
| 61678 |     55 |       GT \<Rightarrow>
 | 
|  |     56 |         (case cmp x b of
 | 
|  |     57 |            GT \<Rightarrow>
 | 
|  |     58 |              (case ins x r of
 | 
|  |     59 |                 T\<^sub>i r' => T\<^sub>i (Node3 l a m b r') |
 | 
|  |     60 |                 Up\<^sub>i r1 c r2 => Up\<^sub>i (Node2 l a m) b (Node2 r1 c r2)) |
 | 
|  |     61 |            EQ \<Rightarrow> T\<^sub>i (Node3 l a m b r) |
 | 
|  |     62 |            LT \<Rightarrow>
 | 
|  |     63 |              (case ins x m of
 | 
|  |     64 |                 T\<^sub>i m' => T\<^sub>i (Node3 l a m' b r) |
 | 
|  |     65 |                 Up\<^sub>i m1 c m2 => Up\<^sub>i (Node2 l a m1) c (Node2 m2 b r))))"
 | 
| 61640 |     66 | 
 | 
|  |     67 | hide_const insert
 | 
|  |     68 | 
 | 
|  |     69 | definition insert :: "'a::cmp \<Rightarrow> 'a tree23 \<Rightarrow> 'a tree23" where
 | 
|  |     70 | "insert x t = tree\<^sub>i(ins x t)"
 | 
|  |     71 | 
 | 
|  |     72 | datatype 'a up\<^sub>d = T\<^sub>d "'a tree23" | Up\<^sub>d "'a tree23"
 | 
|  |     73 | 
 | 
|  |     74 | fun tree\<^sub>d :: "'a up\<^sub>d \<Rightarrow> 'a tree23" where
 | 
| 61709 |     75 | "tree\<^sub>d (T\<^sub>d t) = t" |
 | 
|  |     76 | "tree\<^sub>d (Up\<^sub>d t) = t"
 | 
| 61640 |     77 | 
 | 
|  |     78 | (* Variation: return None to signal no-change *)
 | 
|  |     79 | 
 | 
|  |     80 | fun node21 :: "'a up\<^sub>d \<Rightarrow> 'a \<Rightarrow> 'a tree23 \<Rightarrow> 'a up\<^sub>d" where
 | 
|  |     81 | "node21 (T\<^sub>d t1) a t2 = T\<^sub>d(Node2 t1 a t2)" |
 | 
|  |     82 | "node21 (Up\<^sub>d t1) a (Node2 t2 b t3) = Up\<^sub>d(Node3 t1 a t2 b t3)" |
 | 
|  |     83 | "node21 (Up\<^sub>d t1) a (Node3 t2 b t3 c t4) = T\<^sub>d(Node2 (Node2 t1 a t2) b (Node2 t3 c t4))"
 | 
|  |     84 | 
 | 
|  |     85 | fun node22 :: "'a tree23 \<Rightarrow> 'a \<Rightarrow> 'a up\<^sub>d \<Rightarrow> 'a up\<^sub>d" where
 | 
|  |     86 | "node22 t1 a (T\<^sub>d t2) = T\<^sub>d(Node2 t1 a t2)" |
 | 
|  |     87 | "node22 (Node2 t1 b t2) a (Up\<^sub>d t3) = Up\<^sub>d(Node3 t1 b t2 a t3)" |
 | 
|  |     88 | "node22 (Node3 t1 b t2 c t3) a (Up\<^sub>d t4) = T\<^sub>d(Node2 (Node2 t1 b t2) c (Node2 t3 a t4))"
 | 
|  |     89 | 
 | 
|  |     90 | fun node31 :: "'a up\<^sub>d \<Rightarrow> 'a \<Rightarrow> 'a tree23 \<Rightarrow> 'a \<Rightarrow> 'a tree23 \<Rightarrow> 'a up\<^sub>d" where
 | 
|  |     91 | "node31 (T\<^sub>d t1) a t2 b t3 = T\<^sub>d(Node3 t1 a t2 b t3)" |
 | 
|  |     92 | "node31 (Up\<^sub>d t1) a (Node2 t2 b t3) c t4 = T\<^sub>d(Node2 (Node3 t1 a t2 b t3) c t4)" |
 | 
|  |     93 | "node31 (Up\<^sub>d t1) a (Node3 t2 b t3 c t4) d t5 = T\<^sub>d(Node3 (Node2 t1 a t2) b (Node2 t3 c t4) d t5)"
 | 
|  |     94 | 
 | 
|  |     95 | fun node32 :: "'a tree23 \<Rightarrow> 'a \<Rightarrow> 'a up\<^sub>d \<Rightarrow> 'a \<Rightarrow> 'a tree23 \<Rightarrow> 'a up\<^sub>d" where
 | 
|  |     96 | "node32 t1 a (T\<^sub>d t2) b t3 = T\<^sub>d(Node3 t1 a t2 b t3)" |
 | 
|  |     97 | "node32 t1 a (Up\<^sub>d t2) b (Node2 t3 c t4) = T\<^sub>d(Node2 t1 a (Node3 t2 b t3 c t4))" |
 | 
|  |     98 | "node32 t1 a (Up\<^sub>d t2) b (Node3 t3 c t4 d t5) = T\<^sub>d(Node3 t1 a (Node2 t2 b t3) c (Node2 t4 d t5))"
 | 
|  |     99 | 
 | 
|  |    100 | fun node33 :: "'a tree23 \<Rightarrow> 'a \<Rightarrow> 'a tree23 \<Rightarrow> 'a \<Rightarrow> 'a up\<^sub>d \<Rightarrow> 'a up\<^sub>d" where
 | 
|  |    101 | "node33 l a m b (T\<^sub>d r) = T\<^sub>d(Node3 l a m b r)" |
 | 
|  |    102 | "node33 t1 a (Node2 t2 b t3) c (Up\<^sub>d t4) = T\<^sub>d(Node2 t1 a (Node3 t2 b t3 c t4))" |
 | 
|  |    103 | "node33 t1 a (Node3 t2 b t3 c t4) d (Up\<^sub>d t5) = T\<^sub>d(Node3 t1 a (Node2 t2 b t3) c (Node2 t4 d t5))"
 | 
|  |    104 | 
 | 
|  |    105 | fun del_min :: "'a tree23 \<Rightarrow> 'a * 'a up\<^sub>d" where
 | 
|  |    106 | "del_min (Node2 Leaf a Leaf) = (a, Up\<^sub>d Leaf)" |
 | 
|  |    107 | "del_min (Node3 Leaf a Leaf b Leaf) = (a, T\<^sub>d(Node2 Leaf b Leaf))" |
 | 
|  |    108 | "del_min (Node2 l a r) = (let (x,l') = del_min l in (x, node21 l' a r))" |
 | 
|  |    109 | "del_min (Node3 l a m b r) = (let (x,l') = del_min l in (x, node31 l' a m b r))"
 | 
|  |    110 | 
 | 
| 61678 |    111 | fun del :: "'a::cmp \<Rightarrow> 'a tree23 \<Rightarrow> 'a up\<^sub>d" where
 | 
| 61640 |    112 | "del x Leaf = T\<^sub>d Leaf" |
 | 
| 61678 |    113 | "del x (Node2 Leaf a Leaf) =
 | 
|  |    114 |   (if x = a then Up\<^sub>d Leaf else T\<^sub>d(Node2 Leaf a Leaf))" |
 | 
|  |    115 | "del x (Node3 Leaf a Leaf b Leaf) =
 | 
|  |    116 |   T\<^sub>d(if x = a then Node2 Leaf b Leaf else
 | 
|  |    117 |      if x = b then Node2 Leaf a Leaf
 | 
|  |    118 |      else Node3 Leaf a Leaf b Leaf)" |
 | 
|  |    119 | "del x (Node2 l a r) =
 | 
|  |    120 |   (case cmp x a of
 | 
|  |    121 |      LT \<Rightarrow> node21 (del x l) a r |
 | 
|  |    122 |      GT \<Rightarrow> node22 l a (del x r) |
 | 
|  |    123 |      EQ \<Rightarrow> let (a',t) = del_min r in node22 l a' t)" |
 | 
|  |    124 | "del x (Node3 l a m b r) =
 | 
|  |    125 |   (case cmp x a of
 | 
|  |    126 |      LT \<Rightarrow> node31 (del x l) a m b r |
 | 
|  |    127 |      EQ \<Rightarrow> let (a',m') = del_min m in node32 l a' m' b r |
 | 
|  |    128 |      GT \<Rightarrow>
 | 
|  |    129 |        (case cmp x b of
 | 
| 61640 |    130 |           LT \<Rightarrow> node32 l a (del x m) b r |
 | 
|  |    131 |           EQ \<Rightarrow> let (b',r') = del_min r in node33 l a m b' r' |
 | 
|  |    132 |           GT \<Rightarrow> node33 l a m b (del x r)))"
 | 
|  |    133 | 
 | 
|  |    134 | definition delete :: "'a::cmp \<Rightarrow> 'a tree23 \<Rightarrow> 'a tree23" where
 | 
|  |    135 | "delete x t = tree\<^sub>d(del x t)"
 | 
|  |    136 | 
 | 
|  |    137 | 
 | 
|  |    138 | subsection "Functional Correctness"
 | 
|  |    139 | 
 | 
|  |    140 | subsubsection "Proofs for isin"
 | 
|  |    141 | 
 | 
|  |    142 | lemma "sorted(inorder t) \<Longrightarrow> isin t x = (x \<in> elems (inorder t))"
 | 
|  |    143 | by (induction t) (auto simp: elems_simps1 ball_Un)
 | 
|  |    144 | 
 | 
|  |    145 | lemma isin_set: "sorted(inorder t) \<Longrightarrow> isin t x = (x \<in> elems (inorder t))"
 | 
|  |    146 | by (induction t) (auto simp: elems_simps2)
 | 
|  |    147 | 
 | 
|  |    148 | 
 | 
|  |    149 | subsubsection "Proofs for insert"
 | 
|  |    150 | 
 | 
|  |    151 | lemma inorder_ins:
 | 
|  |    152 |   "sorted(inorder t) \<Longrightarrow> inorder(tree\<^sub>i(ins x t)) = ins_list x (inorder t)"
 | 
|  |    153 | by(induction t) (auto simp: ins_list_simps split: up\<^sub>i.splits)
 | 
|  |    154 | 
 | 
|  |    155 | lemma inorder_insert:
 | 
|  |    156 |   "sorted(inorder t) \<Longrightarrow> inorder(insert a t) = ins_list a (inorder t)"
 | 
|  |    157 | by(simp add: insert_def inorder_ins)
 | 
|  |    158 | 
 | 
|  |    159 | 
 | 
|  |    160 | subsubsection "Proofs for delete"
 | 
|  |    161 | 
 | 
|  |    162 | lemma inorder_node21: "height r > 0 \<Longrightarrow>
 | 
|  |    163 |   inorder (tree\<^sub>d (node21 l' a r)) = inorder (tree\<^sub>d l') @ a # inorder r"
 | 
|  |    164 | by(induct l' a r rule: node21.induct) auto
 | 
|  |    165 | 
 | 
|  |    166 | lemma inorder_node22: "height l > 0 \<Longrightarrow>
 | 
|  |    167 |   inorder (tree\<^sub>d (node22 l a r')) = inorder l @ a # inorder (tree\<^sub>d r')"
 | 
|  |    168 | by(induct l a r' rule: node22.induct) auto
 | 
|  |    169 | 
 | 
|  |    170 | lemma inorder_node31: "height m > 0 \<Longrightarrow>
 | 
|  |    171 |   inorder (tree\<^sub>d (node31 l' a m b r)) = inorder (tree\<^sub>d l') @ a # inorder m @ b # inorder r"
 | 
|  |    172 | by(induct l' a m b r rule: node31.induct) auto
 | 
|  |    173 | 
 | 
|  |    174 | lemma inorder_node32: "height r > 0 \<Longrightarrow>
 | 
|  |    175 |   inorder (tree\<^sub>d (node32 l a m' b r)) = inorder l @ a # inorder (tree\<^sub>d m') @ b # inorder r"
 | 
|  |    176 | by(induct l a m' b r rule: node32.induct) auto
 | 
|  |    177 | 
 | 
|  |    178 | lemma inorder_node33: "height m > 0 \<Longrightarrow>
 | 
|  |    179 |   inorder (tree\<^sub>d (node33 l a m b r')) = inorder l @ a # inorder m @ b # inorder (tree\<^sub>d r')"
 | 
|  |    180 | by(induct l a m b r' rule: node33.induct) auto
 | 
|  |    181 | 
 | 
|  |    182 | lemmas inorder_nodes = inorder_node21 inorder_node22
 | 
|  |    183 |   inorder_node31 inorder_node32 inorder_node33
 | 
|  |    184 | 
 | 
|  |    185 | lemma del_minD:
 | 
|  |    186 |   "del_min t = (x,t') \<Longrightarrow> bal t \<Longrightarrow> height t > 0 \<Longrightarrow>
 | 
|  |    187 |   x # inorder(tree\<^sub>d t') = inorder t"
 | 
|  |    188 | by(induction t arbitrary: t' rule: del_min.induct)
 | 
|  |    189 |   (auto simp: inorder_nodes split: prod.splits)
 | 
|  |    190 | 
 | 
|  |    191 | lemma inorder_del: "\<lbrakk> bal t ; sorted(inorder t) \<rbrakk> \<Longrightarrow>
 | 
|  |    192 |   inorder(tree\<^sub>d (del x t)) = del_list x (inorder t)"
 | 
|  |    193 | by(induction t rule: del.induct)
 | 
|  |    194 |   (auto simp: del_list_simps inorder_nodes del_minD split: prod.splits)
 | 
|  |    195 | 
 | 
|  |    196 | lemma inorder_delete: "\<lbrakk> bal t ; sorted(inorder t) \<rbrakk> \<Longrightarrow>
 | 
|  |    197 |   inorder(delete x t) = del_list x (inorder t)"
 | 
|  |    198 | by(simp add: delete_def inorder_del)
 | 
|  |    199 | 
 | 
|  |    200 | 
 | 
|  |    201 | subsection \<open>Balancedness\<close>
 | 
|  |    202 | 
 | 
|  |    203 | 
 | 
|  |    204 | subsubsection "Proofs for insert"
 | 
|  |    205 | 
 | 
|  |    206 | text{* First a standard proof that @{const ins} preserves @{const bal}. *}
 | 
|  |    207 | 
 | 
|  |    208 | instantiation up\<^sub>i :: (type)height
 | 
|  |    209 | begin
 | 
|  |    210 | 
 | 
|  |    211 | fun height_up\<^sub>i :: "'a up\<^sub>i \<Rightarrow> nat" where
 | 
|  |    212 | "height (T\<^sub>i t) = height t" |
 | 
|  |    213 | "height (Up\<^sub>i l a r) = height l"
 | 
|  |    214 | 
 | 
|  |    215 | instance ..
 | 
|  |    216 | 
 | 
|  |    217 | end
 | 
|  |    218 | 
 | 
|  |    219 | lemma bal_ins: "bal t \<Longrightarrow> bal (tree\<^sub>i(ins a t)) \<and> height(ins a t) = height t"
 | 
|  |    220 | by (induct t) (auto split: up\<^sub>i.split) (* 15 secs in 2015 *)
 | 
|  |    221 | 
 | 
|  |    222 | text{* Now an alternative proof (by Brian Huffman) that runs faster because
 | 
|  |    223 | two properties (balance and height) are combined in one predicate. *}
 | 
|  |    224 | 
 | 
|  |    225 | inductive full :: "nat \<Rightarrow> 'a tree23 \<Rightarrow> bool" where
 | 
|  |    226 | "full 0 Leaf" |
 | 
|  |    227 | "\<lbrakk>full n l; full n r\<rbrakk> \<Longrightarrow> full (Suc n) (Node2 l p r)" |
 | 
|  |    228 | "\<lbrakk>full n l; full n m; full n r\<rbrakk> \<Longrightarrow> full (Suc n) (Node3 l p m q r)"
 | 
|  |    229 | 
 | 
|  |    230 | inductive_cases full_elims:
 | 
|  |    231 |   "full n Leaf"
 | 
|  |    232 |   "full n (Node2 l p r)"
 | 
|  |    233 |   "full n (Node3 l p m q r)"
 | 
|  |    234 | 
 | 
|  |    235 | inductive_cases full_0_elim: "full 0 t"
 | 
|  |    236 | inductive_cases full_Suc_elim: "full (Suc n) t"
 | 
|  |    237 | 
 | 
|  |    238 | lemma full_0_iff [simp]: "full 0 t \<longleftrightarrow> t = Leaf"
 | 
|  |    239 |   by (auto elim: full_0_elim intro: full.intros)
 | 
|  |    240 | 
 | 
|  |    241 | lemma full_Leaf_iff [simp]: "full n Leaf \<longleftrightarrow> n = 0"
 | 
|  |    242 |   by (auto elim: full_elims intro: full.intros)
 | 
|  |    243 | 
 | 
|  |    244 | lemma full_Suc_Node2_iff [simp]:
 | 
|  |    245 |   "full (Suc n) (Node2 l p r) \<longleftrightarrow> full n l \<and> full n r"
 | 
|  |    246 |   by (auto elim: full_elims intro: full.intros)
 | 
|  |    247 | 
 | 
|  |    248 | lemma full_Suc_Node3_iff [simp]:
 | 
|  |    249 |   "full (Suc n) (Node3 l p m q r) \<longleftrightarrow> full n l \<and> full n m \<and> full n r"
 | 
|  |    250 |   by (auto elim: full_elims intro: full.intros)
 | 
|  |    251 | 
 | 
|  |    252 | lemma full_imp_height: "full n t \<Longrightarrow> height t = n"
 | 
|  |    253 |   by (induct set: full, simp_all)
 | 
|  |    254 | 
 | 
|  |    255 | lemma full_imp_bal: "full n t \<Longrightarrow> bal t"
 | 
|  |    256 |   by (induct set: full, auto dest: full_imp_height)
 | 
|  |    257 | 
 | 
|  |    258 | lemma bal_imp_full: "bal t \<Longrightarrow> full (height t) t"
 | 
|  |    259 |   by (induct t, simp_all)
 | 
|  |    260 | 
 | 
|  |    261 | lemma bal_iff_full: "bal t \<longleftrightarrow> (\<exists>n. full n t)"
 | 
|  |    262 |   by (auto elim!: bal_imp_full full_imp_bal)
 | 
|  |    263 | 
 | 
|  |    264 | text {* The @{const "insert"} function either preserves the height of the
 | 
|  |    265 | tree, or increases it by one. The constructor returned by the @{term
 | 
|  |    266 | "insert"} function determines which: A return value of the form @{term
 | 
|  |    267 | "T\<^sub>i t"} indicates that the height will be the same. A value of the
 | 
|  |    268 | form @{term "Up\<^sub>i l p r"} indicates an increase in height. *}
 | 
|  |    269 | 
 | 
|  |    270 | fun full\<^sub>i :: "nat \<Rightarrow> 'a up\<^sub>i \<Rightarrow> bool" where
 | 
|  |    271 | "full\<^sub>i n (T\<^sub>i t) \<longleftrightarrow> full n t" |
 | 
|  |    272 | "full\<^sub>i n (Up\<^sub>i l p r) \<longleftrightarrow> full n l \<and> full n r"
 | 
|  |    273 | 
 | 
|  |    274 | lemma full\<^sub>i_ins: "full n t \<Longrightarrow> full\<^sub>i n (ins a t)"
 | 
|  |    275 | by (induct rule: full.induct) (auto split: up\<^sub>i.split)
 | 
|  |    276 | 
 | 
|  |    277 | text {* The @{const insert} operation preserves balance. *}
 | 
|  |    278 | 
 | 
|  |    279 | lemma bal_insert: "bal t \<Longrightarrow> bal (insert a t)"
 | 
|  |    280 | unfolding bal_iff_full insert_def
 | 
|  |    281 | apply (erule exE)
 | 
|  |    282 | apply (drule full\<^sub>i_ins [of _ _ a])
 | 
|  |    283 | apply (cases "ins a t")
 | 
|  |    284 | apply (auto intro: full.intros)
 | 
|  |    285 | done
 | 
|  |    286 | 
 | 
|  |    287 | 
 | 
|  |    288 | subsection "Proofs for delete"
 | 
|  |    289 | 
 | 
|  |    290 | instantiation up\<^sub>d :: (type)height
 | 
|  |    291 | begin
 | 
|  |    292 | 
 | 
|  |    293 | fun height_up\<^sub>d :: "'a up\<^sub>d \<Rightarrow> nat" where
 | 
|  |    294 | "height (T\<^sub>d t) = height t" |
 | 
|  |    295 | "height (Up\<^sub>d t) = height t + 1"
 | 
|  |    296 | 
 | 
|  |    297 | instance ..
 | 
|  |    298 | 
 | 
|  |    299 | end
 | 
|  |    300 | 
 | 
|  |    301 | lemma bal_tree\<^sub>d_node21:
 | 
|  |    302 |   "\<lbrakk>bal r; bal (tree\<^sub>d l'); height r = height l' \<rbrakk> \<Longrightarrow> bal (tree\<^sub>d (node21 l' a r))"
 | 
|  |    303 | by(induct l' a r rule: node21.induct) auto
 | 
|  |    304 | 
 | 
|  |    305 | lemma bal_tree\<^sub>d_node22:
 | 
|  |    306 |   "\<lbrakk>bal(tree\<^sub>d r'); bal l; height r' = height l \<rbrakk> \<Longrightarrow> bal (tree\<^sub>d (node22 l a r'))"
 | 
|  |    307 | by(induct l a r' rule: node22.induct) auto
 | 
|  |    308 | 
 | 
|  |    309 | lemma bal_tree\<^sub>d_node31:
 | 
|  |    310 |   "\<lbrakk> bal (tree\<^sub>d l'); bal m; bal r; height l' = height r; height m = height r \<rbrakk>
 | 
|  |    311 |   \<Longrightarrow> bal (tree\<^sub>d (node31 l' a m b r))"
 | 
|  |    312 | by(induct l' a m b r rule: node31.induct) auto
 | 
|  |    313 | 
 | 
|  |    314 | lemma bal_tree\<^sub>d_node32:
 | 
|  |    315 |   "\<lbrakk> bal l; bal (tree\<^sub>d m'); bal r; height l = height r; height m' = height r \<rbrakk>
 | 
|  |    316 |   \<Longrightarrow> bal (tree\<^sub>d (node32 l a m' b r))"
 | 
|  |    317 | by(induct l a m' b r rule: node32.induct) auto
 | 
|  |    318 | 
 | 
|  |    319 | lemma bal_tree\<^sub>d_node33:
 | 
|  |    320 |   "\<lbrakk> bal l; bal m; bal(tree\<^sub>d r'); height l = height r'; height m = height r' \<rbrakk>
 | 
|  |    321 |   \<Longrightarrow> bal (tree\<^sub>d (node33 l a m b r'))"
 | 
|  |    322 | by(induct l a m b r' rule: node33.induct) auto
 | 
|  |    323 | 
 | 
|  |    324 | lemmas bals = bal_tree\<^sub>d_node21 bal_tree\<^sub>d_node22
 | 
|  |    325 |   bal_tree\<^sub>d_node31 bal_tree\<^sub>d_node32 bal_tree\<^sub>d_node33
 | 
|  |    326 | 
 | 
|  |    327 | lemma height'_node21:
 | 
|  |    328 |    "height r > 0 \<Longrightarrow> height(node21 l' a r) = max (height l') (height r) + 1"
 | 
|  |    329 | by(induct l' a r rule: node21.induct)(simp_all)
 | 
|  |    330 | 
 | 
|  |    331 | lemma height'_node22:
 | 
|  |    332 |    "height l > 0 \<Longrightarrow> height(node22 l a r') = max (height l) (height r') + 1"
 | 
|  |    333 | by(induct l a r' rule: node22.induct)(simp_all)
 | 
|  |    334 | 
 | 
|  |    335 | lemma height'_node31:
 | 
|  |    336 |   "height m > 0 \<Longrightarrow> height(node31 l a m b r) =
 | 
|  |    337 |    max (height l) (max (height m) (height r)) + 1"
 | 
|  |    338 | by(induct l a m b r rule: node31.induct)(simp_all add: max_def)
 | 
|  |    339 | 
 | 
|  |    340 | lemma height'_node32:
 | 
|  |    341 |   "height r > 0 \<Longrightarrow> height(node32 l a m b r) =
 | 
|  |    342 |    max (height l) (max (height m) (height r)) + 1"
 | 
|  |    343 | by(induct l a m b r rule: node32.induct)(simp_all add: max_def)
 | 
|  |    344 | 
 | 
|  |    345 | lemma height'_node33:
 | 
|  |    346 |   "height m > 0 \<Longrightarrow> height(node33 l a m b r) =
 | 
|  |    347 |    max (height l) (max (height m) (height r)) + 1"
 | 
|  |    348 | by(induct l a m b r rule: node33.induct)(simp_all add: max_def)
 | 
|  |    349 | 
 | 
|  |    350 | lemmas heights = height'_node21 height'_node22
 | 
|  |    351 |   height'_node31 height'_node32 height'_node33
 | 
|  |    352 | 
 | 
|  |    353 | lemma height_del_min:
 | 
|  |    354 |   "del_min t = (x, t') \<Longrightarrow> height t > 0 \<Longrightarrow> bal t \<Longrightarrow> height t' = height t"
 | 
|  |    355 | by(induct t arbitrary: x t' rule: del_min.induct)
 | 
|  |    356 |   (auto simp: heights split: prod.splits)
 | 
|  |    357 | 
 | 
|  |    358 | lemma height_del: "bal t \<Longrightarrow> height(del x t) = height t"
 | 
|  |    359 | by(induction x t rule: del.induct)
 | 
|  |    360 |   (auto simp: heights max_def height_del_min split: prod.splits)
 | 
|  |    361 | 
 | 
|  |    362 | lemma bal_del_min:
 | 
|  |    363 |   "\<lbrakk> del_min t = (x, t'); bal t; height t > 0 \<rbrakk> \<Longrightarrow> bal (tree\<^sub>d t')"
 | 
|  |    364 | by(induct t arbitrary: x t' rule: del_min.induct)
 | 
|  |    365 |   (auto simp: heights height_del_min bals split: prod.splits)
 | 
|  |    366 | 
 | 
|  |    367 | lemma bal_tree\<^sub>d_del: "bal t \<Longrightarrow> bal(tree\<^sub>d(del x t))"
 | 
|  |    368 | by(induction x t rule: del.induct)
 | 
|  |    369 |   (auto simp: bals bal_del_min height_del height_del_min split: prod.splits)
 | 
|  |    370 | 
 | 
|  |    371 | corollary bal_delete: "bal t \<Longrightarrow> bal(delete x t)"
 | 
|  |    372 | by(simp add: delete_def bal_tree\<^sub>d_del)
 | 
|  |    373 | 
 | 
|  |    374 | 
 | 
|  |    375 | subsection \<open>Overall Correctness\<close>
 | 
|  |    376 | 
 | 
|  |    377 | interpretation Set_by_Ordered
 | 
|  |    378 | where empty = Leaf and isin = isin and insert = insert and delete = delete
 | 
|  |    379 | and inorder = inorder and inv = bal
 | 
|  |    380 | proof (standard, goal_cases)
 | 
|  |    381 |   case 2 thus ?case by(simp add: isin_set)
 | 
|  |    382 | next
 | 
|  |    383 |   case 3 thus ?case by(simp add: inorder_insert)
 | 
|  |    384 | next
 | 
|  |    385 |   case 4 thus ?case by(simp add: inorder_delete)
 | 
|  |    386 | next
 | 
|  |    387 |   case 6 thus ?case by(simp add: bal_insert)
 | 
|  |    388 | next
 | 
|  |    389 |   case 7 thus ?case by(simp add: bal_delete)
 | 
|  |    390 | qed simp+
 | 
|  |    391 | 
 | 
|  |    392 | end
 |