| author | huffman |
| Sun, 24 Sep 2006 07:18:16 +0200 | |
| changeset 20695 | 1cc6fefbff1a |
| parent 20552 | 2c31dd358c21 |
| child 20730 | da903f59e9ba |
| permissions | -rw-r--r-- |
| 10751 | 1 |
(* Title : HyperNat.thy |
2 |
Author : Jacques D. Fleuriot |
|
3 |
Copyright : 1998 University of Cambridge |
|
| 14415 | 4 |
|
5 |
Converted to Isar and polished by lcp |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
6 |
*) |
| 10751 | 7 |
|
| 17433 | 8 |
header{*Hypernatural numbers*}
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
9 |
|
| 15131 | 10 |
theory HyperNat |
| 15140 | 11 |
imports Star |
| 15131 | 12 |
begin |
| 10751 | 13 |
|
| 17299 | 14 |
types hypnat = "nat star" |
| 10751 | 15 |
|
| 19380 | 16 |
abbreviation |
17 |
hypnat_of_nat :: "nat => nat star" |
|
18 |
"hypnat_of_nat == star_of" |
|
| 10751 | 19 |
|
| 17433 | 20 |
subsection{*Properties Transferred from Naturals*}
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
21 |
|
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17299
diff
changeset
|
22 |
lemma hypnat_minus_zero [simp]: "!!z. z - z = (0::hypnat)" |
| 17299 | 23 |
by transfer (rule diff_self_eq_0) |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
24 |
|
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17299
diff
changeset
|
25 |
lemma hypnat_diff_0_eq_0 [simp]: "!!n. (0::hypnat) - n = 0" |
| 17299 | 26 |
by transfer (rule diff_0_eq_0) |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
27 |
|
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17299
diff
changeset
|
28 |
lemma hypnat_add_is_0 [iff]: "!!m n. (m+n = (0::hypnat)) = (m=0 & n=0)" |
| 17299 | 29 |
by transfer (rule add_is_0) |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
30 |
|
| 17299 | 31 |
lemma hypnat_diff_diff_left: "!!i j k. (i::hypnat) - j - k = i - (j+k)" |
32 |
by transfer (rule diff_diff_left) |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
33 |
|
| 17299 | 34 |
lemma hypnat_diff_commute: "!!i j k. (i::hypnat) - j - k = i-k-j" |
35 |
by transfer (rule diff_commute) |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
36 |
|
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17299
diff
changeset
|
37 |
lemma hypnat_diff_add_inverse [simp]: "!!m n. ((n::hypnat) + m) - n = m" |
| 17299 | 38 |
by transfer (rule diff_add_inverse) |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
39 |
|
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17299
diff
changeset
|
40 |
lemma hypnat_diff_add_inverse2 [simp]: "!!m n. ((m::hypnat) + n) - n = m" |
| 17299 | 41 |
by transfer (rule diff_add_inverse2) |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
42 |
|
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17299
diff
changeset
|
43 |
lemma hypnat_diff_cancel [simp]: "!!k m n. ((k::hypnat) + m) - (k+n) = m - n" |
| 17299 | 44 |
by transfer (rule diff_cancel) |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
45 |
|
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17299
diff
changeset
|
46 |
lemma hypnat_diff_cancel2 [simp]: "!!k m n. ((m::hypnat) + k) - (n+k) = m - n" |
| 17299 | 47 |
by transfer (rule diff_cancel2) |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
48 |
|
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17299
diff
changeset
|
49 |
lemma hypnat_diff_add_0 [simp]: "!!m n. (n::hypnat) - (n+m) = (0::hypnat)" |
| 17299 | 50 |
by transfer (rule diff_add_0) |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
51 |
|
| 17299 | 52 |
lemma hypnat_diff_mult_distrib: "!!k m n. ((m::hypnat) - n) * k = (m * k) - (n * k)" |
53 |
by transfer (rule diff_mult_distrib) |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
54 |
|
| 17299 | 55 |
lemma hypnat_diff_mult_distrib2: "!!k m n. (k::hypnat) * (m - n) = (k * m) - (k * n)" |
56 |
by transfer (rule diff_mult_distrib2) |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
57 |
|
| 17299 | 58 |
lemma hypnat_le_zero_cancel [iff]: "!!n. (n \<le> (0::hypnat)) = (n = 0)" |
59 |
by transfer (rule le_0_eq) |
|
|
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14415
diff
changeset
|
60 |
|
| 17299 | 61 |
lemma hypnat_mult_is_0 [simp]: "!!m n. (m*n = (0::hypnat)) = (m=0 | n=0)" |
62 |
by transfer (rule mult_is_0) |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
63 |
|
| 17299 | 64 |
lemma hypnat_diff_is_0_eq [simp]: "!!m n. ((m::hypnat) - n = 0) = (m \<le> n)" |
65 |
by transfer (rule diff_is_0_eq) |
|
|
14378
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
66 |
|
| 17299 | 67 |
lemma hypnat_not_less0 [iff]: "!!n. ~ n < (0::hypnat)" |
68 |
by transfer (rule not_less0) |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
69 |
|
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
70 |
lemma hypnat_less_one [iff]: |
| 17299 | 71 |
"!!n. (n < (1::hypnat)) = (n=0)" |
72 |
by transfer (rule less_one) |
|
73 |
||
74 |
lemma hypnat_add_diff_inverse: "!!m n. ~ m<n ==> n+(m-n) = (m::hypnat)" |
|
75 |
by transfer (rule add_diff_inverse) |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
76 |
|
| 17299 | 77 |
lemma hypnat_le_add_diff_inverse [simp]: "!!m n. n \<le> m ==> n+(m-n) = (m::hypnat)" |
78 |
by transfer (rule le_add_diff_inverse) |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
79 |
|
| 17299 | 80 |
lemma hypnat_le_add_diff_inverse2 [simp]: "!!m n. n\<le>m ==> (m-n)+n = (m::hypnat)" |
81 |
by transfer (rule le_add_diff_inverse2) |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
82 |
|
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
83 |
declare hypnat_le_add_diff_inverse2 [OF order_less_imp_le] |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
84 |
|
| 17299 | 85 |
lemma hypnat_le0 [iff]: "!!n. (0::hypnat) \<le> n" |
86 |
by transfer (rule le0) |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
87 |
|
| 17299 | 88 |
lemma hypnat_add_self_le [simp]: "!!x n. (x::hypnat) \<le> n + x" |
89 |
by transfer (rule le_add2) |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
90 |
|
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
91 |
lemma hypnat_add_one_self_less [simp]: "(x::hypnat) < x + (1::hypnat)" |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
92 |
by (insert add_strict_left_mono [OF zero_less_one], auto) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
93 |
|
| 17433 | 94 |
lemma hypnat_neq0_conv [iff]: "!!n. (n \<noteq> 0) = (0 < (n::hypnat))" |
95 |
by transfer (rule neq0_conv) |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
96 |
|
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
97 |
lemma hypnat_gt_zero_iff: "((0::hypnat) < n) = ((1::hypnat) \<le> n)" |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
98 |
by (auto simp add: linorder_not_less [symmetric]) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
99 |
|
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
100 |
lemma hypnat_gt_zero_iff2: "(0 < n) = (\<exists>m. n = m + (1::hypnat))" |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
101 |
apply safe |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
102 |
apply (rule_tac x = "n - (1::hypnat) " in exI) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
103 |
apply (simp add: hypnat_gt_zero_iff) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
104 |
apply (insert add_le_less_mono [OF _ zero_less_one, of 0], auto) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
105 |
done |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
106 |
|
|
14378
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
107 |
lemma hypnat_add_self_not_less: "~ (x + y < (x::hypnat))" |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
108 |
by (simp add: linorder_not_le [symmetric] add_commute [of x]) |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
109 |
|
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
110 |
lemma hypnat_diff_split: |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
111 |
"P(a - b::hypnat) = ((a<b --> P 0) & (ALL d. a = b + d --> P d))" |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
112 |
-- {* elimination of @{text -} on @{text hypnat} *}
|
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
113 |
proof (cases "a<b" rule: case_split) |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
114 |
case True |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
115 |
thus ?thesis |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
116 |
by (auto simp add: hypnat_add_self_not_less order_less_imp_le |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
117 |
hypnat_diff_is_0_eq [THEN iffD2]) |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
118 |
next |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
119 |
case False |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
120 |
thus ?thesis |
| 14468 | 121 |
by (auto simp add: linorder_not_less dest: order_le_less_trans) |
|
14378
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
122 |
qed |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
123 |
|
| 17433 | 124 |
subsection{*Properties of the set of embedded natural numbers*}
|
|
14378
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
125 |
|
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17299
diff
changeset
|
126 |
lemma hypnat_of_nat_def: "hypnat_of_nat m == of_nat m" |
|
17429
e8d6ed3aacfe
merged Transfer.thy and StarType.thy into StarDef.thy; renamed Ifun2_of to starfun2; cleaned up
huffman
parents:
17332
diff
changeset
|
127 |
by (transfer, simp) |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
128 |
|
|
14378
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
129 |
lemma hypnat_of_nat_one [simp]: "hypnat_of_nat (Suc 0) = (1::hypnat)" |
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17299
diff
changeset
|
130 |
by simp |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
131 |
|
|
14378
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
132 |
lemma hypnat_of_nat_Suc [simp]: |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
133 |
"hypnat_of_nat (Suc n) = hypnat_of_nat n + (1::hypnat)" |
|
14378
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
134 |
by (simp add: hypnat_of_nat_def) |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
135 |
|
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
136 |
lemma of_nat_eq_add [rule_format]: |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
137 |
"\<forall>d::hypnat. of_nat m = of_nat n + d --> d \<in> range of_nat" |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
138 |
apply (induct n) |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
139 |
apply (auto simp add: add_assoc) |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
140 |
apply (case_tac x) |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
141 |
apply (auto simp add: add_commute [of 1]) |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
142 |
done |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
143 |
|
|
14378
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
144 |
lemma Nats_diff [simp]: "[|a \<in> Nats; b \<in> Nats|] ==> (a-b :: hypnat) \<in> Nats" |
| 14468 | 145 |
by (auto simp add: of_nat_eq_add Nats_def split: hypnat_diff_split) |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
146 |
|
| 17433 | 147 |
|
148 |
||
149 |
subsection{*Existence of an infinite hypernatural number*}
|
|
150 |
||
| 19765 | 151 |
definition |
| 17433 | 152 |
(* omega is in fact an infinite hypernatural number = [<1,2,3,...>] *) |
| 19765 | 153 |
whn :: hypnat |
154 |
hypnat_omega_def: "whn = star_n (%n::nat. n)" |
|
| 17433 | 155 |
|
156 |
text{*Existence of infinite number not corresponding to any natural number
|
|
157 |
follows because member @{term FreeUltrafilterNat} is not finite.
|
|
158 |
See @{text HyperDef.thy} for similar argument.*}
|
|
159 |
||
| 20695 | 160 |
text{* Example of an hypersequence (i.e. an extended standard sequence)
|
161 |
whose term with an hypernatural suffix is an infinitesimal i.e. |
|
162 |
the whn'nth term of the hypersequence is a member of Infinitesimal*} |
|
163 |
||
164 |
lemma SEQ_Infinitesimal: |
|
165 |
"( *f* (%n::nat. inverse(real(Suc n)))) whn : Infinitesimal" |
|
166 |
apply (simp add: hypnat_omega_def starfun star_n_inverse) |
|
167 |
apply (simp add: Infinitesimal_FreeUltrafilterNat_iff) |
|
168 |
apply (simp add: real_of_nat_Suc_gt_zero FreeUltrafilterNat_inverse_real_of_posnat) |
|
169 |
done |
|
| 17433 | 170 |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
171 |
lemma lemma_unbounded_set [simp]: "{n::nat. m < n} \<in> FreeUltrafilterNat"
|
|
14378
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
172 |
apply (insert finite_atMost [of m]) |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
173 |
apply (simp add: atMost_def) |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
174 |
apply (drule FreeUltrafilterNat_finite) |
| 14468 | 175 |
apply (drule FreeUltrafilterNat_Compl_mem, ultra) |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
176 |
done |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
177 |
|
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
178 |
lemma Compl_Collect_le: "- {n::nat. N \<le> n} = {n. n < N}"
|
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
179 |
by (simp add: Collect_neg_eq [symmetric] linorder_not_le) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
180 |
|
|
14378
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
181 |
lemma hypnat_of_nat_eq: |
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17299
diff
changeset
|
182 |
"hypnat_of_nat m = star_n (%n::nat. m)" |
|
17429
e8d6ed3aacfe
merged Transfer.thy and StarType.thy into StarDef.thy; renamed Ifun2_of to starfun2; cleaned up
huffman
parents:
17332
diff
changeset
|
183 |
by (simp add: star_of_def) |
|
14378
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
184 |
|
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
185 |
lemma SHNat_eq: "Nats = {n. \<exists>N. n = hypnat_of_nat N}"
|
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
186 |
by (force simp add: hypnat_of_nat_def Nats_def) |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
187 |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
188 |
lemma hypnat_omega_gt_SHNat: |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
189 |
"n \<in> Nats ==> n < whn" |
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17299
diff
changeset
|
190 |
by (auto simp add: hypnat_of_nat_eq star_n_less hypnat_omega_def SHNat_eq) |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
191 |
|
|
14378
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
192 |
(* Infinite hypernatural not in embedded Nats *) |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
193 |
lemma SHNAT_omega_not_mem [simp]: "whn \<notin> Nats" |
| 14468 | 194 |
by (blast dest: hypnat_omega_gt_SHNat) |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
195 |
|
|
14378
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
196 |
lemma hypnat_of_nat_less_whn [simp]: "hypnat_of_nat n < whn" |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
197 |
apply (insert hypnat_omega_gt_SHNat [of "hypnat_of_nat n"]) |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
198 |
apply (simp add: hypnat_of_nat_def) |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
199 |
done |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
200 |
|
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
201 |
lemma hypnat_of_nat_le_whn [simp]: "hypnat_of_nat n \<le> whn" |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
202 |
by (rule hypnat_of_nat_less_whn [THEN order_less_imp_le]) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
203 |
|
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
204 |
lemma hypnat_zero_less_hypnat_omega [simp]: "0 < whn" |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
205 |
by (simp add: hypnat_omega_gt_SHNat) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
206 |
|
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
207 |
lemma hypnat_one_less_hypnat_omega [simp]: "(1::hypnat) < whn" |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
208 |
by (simp add: hypnat_omega_gt_SHNat) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
209 |
|
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
210 |
|
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
211 |
subsection{*Infinite Hypernatural Numbers -- @{term HNatInfinite}*}
|
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
212 |
|
| 19765 | 213 |
definition |
| 17433 | 214 |
(* the set of infinite hypernatural numbers *) |
215 |
HNatInfinite :: "hypnat set" |
|
| 19765 | 216 |
"HNatInfinite = {n. n \<notin> Nats}"
|
| 17433 | 217 |
|
|
14378
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
218 |
lemma HNatInfinite_whn [simp]: "whn \<in> HNatInfinite" |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
219 |
by (simp add: HNatInfinite_def) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
220 |
|
|
14378
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
221 |
lemma Nats_not_HNatInfinite_iff: "(x \<in> Nats) = (x \<notin> HNatInfinite)" |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
222 |
by (simp add: HNatInfinite_def) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
223 |
|
|
14378
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
224 |
lemma HNatInfinite_not_Nats_iff: "(x \<in> HNatInfinite) = (x \<notin> Nats)" |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
225 |
by (simp add: HNatInfinite_def) |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
226 |
|
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
227 |
|
| 17433 | 228 |
subsubsection{*Alternative characterization of the set of infinite hypernaturals*}
|
| 15070 | 229 |
|
230 |
text{* @{term "HNatInfinite = {N. \<forall>n \<in> Nats. n < N}"}*}
|
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
231 |
|
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
232 |
(*??delete? similar reasoning in hypnat_omega_gt_SHNat above*) |
|
14378
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
233 |
lemma HNatInfinite_FreeUltrafilterNat_lemma: |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
234 |
"\<forall>N::nat. {n. f n \<noteq> N} \<in> FreeUltrafilterNat
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
235 |
==> {n. N < f n} \<in> FreeUltrafilterNat"
|
| 15251 | 236 |
apply (induct_tac N) |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
237 |
apply (drule_tac x = 0 in spec) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
238 |
apply (rule ccontr, drule FreeUltrafilterNat_Compl_mem, drule FreeUltrafilterNat_Int, assumption, simp) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
239 |
apply (drule_tac x = "Suc n" in spec, ultra) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
240 |
done |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
241 |
|
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
242 |
lemma HNatInfinite_iff: "HNatInfinite = {N. \<forall>n \<in> Nats. n < N}"
|
|
14378
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
243 |
apply (auto simp add: HNatInfinite_def SHNat_eq hypnat_of_nat_eq) |
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17299
diff
changeset
|
244 |
apply (rule_tac x = x in star_cases) |
|
14378
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
245 |
apply (auto elim: HNatInfinite_FreeUltrafilterNat_lemma |
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17299
diff
changeset
|
246 |
simp add: star_n_less FreeUltrafilterNat_Compl_iff1 |
|
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17299
diff
changeset
|
247 |
star_n_eq_iff Collect_neg_eq [symmetric]) |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
248 |
done |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
249 |
|
|
14378
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
250 |
|
| 17433 | 251 |
subsubsection{*Alternative Characterization of @{term HNatInfinite} using
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
252 |
Free Ultrafilter*} |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
253 |
|
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
254 |
lemma HNatInfinite_FreeUltrafilterNat: |
|
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
19765
diff
changeset
|
255 |
"star_n X \<in> HNatInfinite ==> \<forall>u. {n. u < X n}: FreeUltrafilterNat"
|
|
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
19765
diff
changeset
|
256 |
apply (auto simp add: HNatInfinite_iff SHNat_eq) |
|
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
19765
diff
changeset
|
257 |
apply (drule_tac x="star_of u" in spec, simp) |
|
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
19765
diff
changeset
|
258 |
apply (simp add: star_of_def star_n_less) |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
259 |
done |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
260 |
|
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
261 |
lemma FreeUltrafilterNat_HNatInfinite: |
|
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
19765
diff
changeset
|
262 |
"\<forall>u. {n. u < X n}: FreeUltrafilterNat ==> star_n X \<in> HNatInfinite"
|
|
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
19765
diff
changeset
|
263 |
by (auto simp add: star_n_less HNatInfinite_iff SHNat_eq hypnat_of_nat_eq) |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
264 |
|
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
265 |
lemma HNatInfinite_FreeUltrafilterNat_iff: |
|
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
19765
diff
changeset
|
266 |
"(star_n X \<in> HNatInfinite) = (\<forall>u. {n. u < X n}: FreeUltrafilterNat)"
|
|
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
19765
diff
changeset
|
267 |
by (rule iffI [OF HNatInfinite_FreeUltrafilterNat |
|
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
19765
diff
changeset
|
268 |
FreeUltrafilterNat_HNatInfinite]) |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
269 |
|
|
14378
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
270 |
lemma HNatInfinite_gt_one [simp]: "x \<in> HNatInfinite ==> (1::hypnat) < x" |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
271 |
by (auto simp add: HNatInfinite_iff) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
272 |
|
|
14378
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
273 |
lemma zero_not_mem_HNatInfinite [simp]: "0 \<notin> HNatInfinite" |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
274 |
apply (auto simp add: HNatInfinite_iff) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
275 |
apply (drule_tac a = " (1::hypnat) " in equals0D) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
276 |
apply simp |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
277 |
done |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
278 |
|
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
279 |
lemma HNatInfinite_not_eq_zero: "x \<in> HNatInfinite ==> 0 < x" |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
280 |
apply (drule HNatInfinite_gt_one) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
281 |
apply (auto simp add: order_less_trans [OF zero_less_one]) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
282 |
done |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
283 |
|
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
284 |
lemma HNatInfinite_ge_one [simp]: "x \<in> HNatInfinite ==> (1::hypnat) \<le> x" |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
285 |
by (blast intro: order_less_imp_le HNatInfinite_gt_one) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
286 |
|
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
287 |
|
| 17433 | 288 |
subsubsection{*Closure Rules*}
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
289 |
|
|
14378
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
290 |
lemma HNatInfinite_add: |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
291 |
"[| x \<in> HNatInfinite; y \<in> HNatInfinite |] ==> x + y \<in> HNatInfinite" |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
292 |
apply (auto simp add: HNatInfinite_iff) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
293 |
apply (drule bspec, assumption) |
|
14378
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
294 |
apply (drule bspec [OF _ Nats_0]) |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
295 |
apply (drule add_strict_mono, assumption, simp) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
296 |
done |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
297 |
|
|
14378
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
298 |
lemma HNatInfinite_SHNat_add: |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
299 |
"[| x \<in> HNatInfinite; y \<in> Nats |] ==> x + y \<in> HNatInfinite" |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
300 |
apply (auto simp add: HNatInfinite_not_Nats_iff) |
| 14468 | 301 |
apply (drule_tac a = "x + y" in Nats_diff, auto) |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
302 |
done |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
303 |
|
|
14378
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
304 |
lemma HNatInfinite_Nats_imp_less: "[| x \<in> HNatInfinite; y \<in> Nats |] ==> y < x" |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
305 |
by (simp add: HNatInfinite_iff) |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
306 |
|
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
307 |
lemma HNatInfinite_SHNat_diff: |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
308 |
assumes x: "x \<in> HNatInfinite" and y: "y \<in> Nats" |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
309 |
shows "x - y \<in> HNatInfinite" |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
310 |
proof - |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
311 |
have "y < x" by (simp add: HNatInfinite_Nats_imp_less prems) |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
312 |
hence "x - y + y = x" by (simp add: order_less_imp_le) |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
313 |
with x show ?thesis |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
314 |
by (force simp add: HNatInfinite_not_Nats_iff |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
315 |
dest: Nats_add [of "x-y", OF _ y]) |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
316 |
qed |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
317 |
|
| 14415 | 318 |
lemma HNatInfinite_add_one: |
319 |
"x \<in> HNatInfinite ==> x + (1::hypnat) \<in> HNatInfinite" |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
320 |
by (auto intro: HNatInfinite_SHNat_add) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
321 |
|
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
322 |
lemma HNatInfinite_is_Suc: "x \<in> HNatInfinite ==> \<exists>y. x = y + (1::hypnat)" |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
323 |
apply (rule_tac x = "x - (1::hypnat) " in exI) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
324 |
apply auto |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
325 |
done |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
326 |
|
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
327 |
|
|
14378
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
328 |
subsection{*Embedding of the Hypernaturals into the Hyperreals*}
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
329 |
text{*Obtained using the nonstandard extension of the naturals*}
|
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
330 |
|
| 19765 | 331 |
definition |
|
14378
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
332 |
hypreal_of_hypnat :: "hypnat => hypreal" |
| 19765 | 333 |
"hypreal_of_hypnat = *f* real" |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
334 |
|
|
17332
4910cf8c0cd2
added theorem attributes transfer_intro, transfer_unfold, transfer_refold; simplified some proofs; some rearranging
huffman
parents:
17318
diff
changeset
|
335 |
declare hypreal_of_hypnat_def [transfer_unfold] |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
336 |
|
|
14378
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
337 |
lemma HNat_hypreal_of_nat [simp]: "hypreal_of_nat N \<in> Nats" |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
338 |
by (simp add: hypreal_of_nat_def) |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
339 |
|
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
340 |
lemma hypreal_of_hypnat: |
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17299
diff
changeset
|
341 |
"hypreal_of_hypnat (star_n X) = star_n (%n. real (X n))" |
|
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17299
diff
changeset
|
342 |
by (simp add: hypreal_of_hypnat_def starfun) |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
343 |
|
|
14378
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
344 |
lemma hypreal_of_hypnat_inject [simp]: |
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17299
diff
changeset
|
345 |
"!!m n. (hypreal_of_hypnat m = hypreal_of_hypnat n) = (m=n)" |
|
17332
4910cf8c0cd2
added theorem attributes transfer_intro, transfer_unfold, transfer_refold; simplified some proofs; some rearranging
huffman
parents:
17318
diff
changeset
|
346 |
by (transfer, simp) |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
347 |
|
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
348 |
lemma hypreal_of_hypnat_zero: "hypreal_of_hypnat 0 = 0" |
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17299
diff
changeset
|
349 |
by (simp add: star_n_zero_num hypreal_of_hypnat) |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
350 |
|
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
351 |
lemma hypreal_of_hypnat_one: "hypreal_of_hypnat (1::hypnat) = 1" |
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17299
diff
changeset
|
352 |
by (simp add: star_n_one_num hypreal_of_hypnat) |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
353 |
|
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
354 |
lemma hypreal_of_hypnat_add [simp]: |
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17299
diff
changeset
|
355 |
"!!m n. hypreal_of_hypnat (m + n) = hypreal_of_hypnat m + hypreal_of_hypnat n" |
|
17332
4910cf8c0cd2
added theorem attributes transfer_intro, transfer_unfold, transfer_refold; simplified some proofs; some rearranging
huffman
parents:
17318
diff
changeset
|
356 |
by (transfer, rule real_of_nat_add) |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
357 |
|
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
358 |
lemma hypreal_of_hypnat_mult [simp]: |
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17299
diff
changeset
|
359 |
"!!m n. hypreal_of_hypnat (m * n) = hypreal_of_hypnat m * hypreal_of_hypnat n" |
|
17332
4910cf8c0cd2
added theorem attributes transfer_intro, transfer_unfold, transfer_refold; simplified some proofs; some rearranging
huffman
parents:
17318
diff
changeset
|
360 |
by (transfer, rule real_of_nat_mult) |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
361 |
|
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
362 |
lemma hypreal_of_hypnat_less_iff [simp]: |
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17299
diff
changeset
|
363 |
"!!m n. (hypreal_of_hypnat n < hypreal_of_hypnat m) = (n < m)" |
|
17332
4910cf8c0cd2
added theorem attributes transfer_intro, transfer_unfold, transfer_refold; simplified some proofs; some rearranging
huffman
parents:
17318
diff
changeset
|
364 |
by (transfer, simp) |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
365 |
|
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
366 |
lemma hypreal_of_hypnat_eq_zero_iff: "(hypreal_of_hypnat N = 0) = (N = 0)" |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
367 |
by (simp add: hypreal_of_hypnat_zero [symmetric]) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
368 |
declare hypreal_of_hypnat_eq_zero_iff [simp] |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
369 |
|
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17299
diff
changeset
|
370 |
lemma hypreal_of_hypnat_ge_zero [simp]: "!!n. 0 \<le> hypreal_of_hypnat n" |
|
17332
4910cf8c0cd2
added theorem attributes transfer_intro, transfer_unfold, transfer_refold; simplified some proofs; some rearranging
huffman
parents:
17318
diff
changeset
|
371 |
by (transfer, simp) |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
372 |
|
|
14378
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
373 |
lemma HNatInfinite_inverse_Infinitesimal [simp]: |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
374 |
"n \<in> HNatInfinite ==> inverse (hypreal_of_hypnat n) \<in> Infinitesimal" |
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17299
diff
changeset
|
375 |
apply (cases n) |
|
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
19765
diff
changeset
|
376 |
apply (auto simp add: hypreal_of_hypnat star_n_inverse real_norm_def |
|
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
19765
diff
changeset
|
377 |
HNatInfinite_FreeUltrafilterNat_iff |
|
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
19765
diff
changeset
|
378 |
Infinitesimal_FreeUltrafilterNat_iff2) |
|
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
19765
diff
changeset
|
379 |
apply (drule_tac x="Suc m" in spec) |
|
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
19765
diff
changeset
|
380 |
apply (erule ultra, simp) |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
381 |
done |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
382 |
|
|
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14415
diff
changeset
|
383 |
lemma HNatInfinite_hypreal_of_hypnat_gt_zero: |
|
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14415
diff
changeset
|
384 |
"N \<in> HNatInfinite ==> 0 < hypreal_of_hypnat N" |
|
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14415
diff
changeset
|
385 |
apply (rule ccontr) |
|
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14415
diff
changeset
|
386 |
apply (simp add: hypreal_of_hypnat_zero [symmetric] linorder_not_less) |
|
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14415
diff
changeset
|
387 |
done |
|
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14415
diff
changeset
|
388 |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
13487
diff
changeset
|
389 |
end |