| author | hoelzl | 
| Wed, 06 Feb 2013 17:18:01 +0100 | |
| changeset 51021 | 1cf4faed8b22 | 
| parent 48733 | 18e76e2db6d4 | 
| child 55380 | 4de48353034e | 
| permissions | -rw-r--r-- | 
| 615 | 1  | 
(* Title: ZF/ZF.thy  | 
| 0 | 2  | 
Author: Lawrence C Paulson and Martin D Coen, CU Computer Laboratory  | 
3  | 
Copyright 1993 University of Cambridge  | 
|
| 14076 | 4  | 
*)  | 
| 0 | 5  | 
|
| 14076 | 6  | 
header{*Zermelo-Fraenkel Set Theory*}
 | 
| 0 | 7  | 
|
| 
37781
 
2fbbf0a48cef
moved misc legacy stuff from OldGoals to Misc_Legacy;
 
wenzelm 
parents: 
37405 
diff
changeset
 | 
8  | 
theory ZF  | 
| 
48462
 
424fd5364f15
clarified "this_name" vs. former "reset" feature -- imitate the latter by loading other session sources directly;
 
wenzelm 
parents: 
46972 
diff
changeset
 | 
9  | 
imports "~~/src/FOL/FOL"  | 
| 
37781
 
2fbbf0a48cef
moved misc legacy stuff from OldGoals to Misc_Legacy;
 
wenzelm 
parents: 
37405 
diff
changeset
 | 
10  | 
begin  | 
| 0 | 11  | 
|
| 
39128
 
93a7365fb4ee
turned eta_contract into proper configuration option;
 
wenzelm 
parents: 
38798 
diff
changeset
 | 
12  | 
declare [[eta_contract = false]]  | 
| 23168 | 13  | 
|
| 14076 | 14  | 
typedecl i  | 
15  | 
arities i :: "term"  | 
|
| 0 | 16  | 
|
| 46972 | 17  | 
axiomatization  | 
18  | 
  zero :: "i"  ("0")   --{*the empty set*}  and
 | 
|
19  | 
  Pow :: "i => i"  --{*power sets*}  and
 | 
|
20  | 
  Inf :: "i"  --{*infinite set*}
 | 
|
| 0 | 21  | 
|
| 14076 | 22  | 
text {*Bounded Quantifiers *}
 | 
23  | 
consts  | 
|
| 13780 | 24  | 
Ball :: "[i, i => o] => o"  | 
25  | 
Bex :: "[i, i => o] => o"  | 
|
| 0 | 26  | 
|
| 14076 | 27  | 
text {*General Union and Intersection *}
 | 
| 46972 | 28  | 
axiomatization Union :: "i => i"  | 
29  | 
consts Inter :: "i => i"  | 
|
| 0 | 30  | 
|
| 14076 | 31  | 
text {*Variations on Replacement *}
 | 
| 46972 | 32  | 
axiomatization PrimReplace :: "[i, [i, i] => o] => i"  | 
| 14076 | 33  | 
consts  | 
| 13144 | 34  | 
Replace :: "[i, [i, i] => o] => i"  | 
35  | 
RepFun :: "[i, i => i] => i"  | 
|
36  | 
Collect :: "[i, i => o] => i"  | 
|
| 0 | 37  | 
|
| 14883 | 38  | 
text{*Definite descriptions -- via Replace over the set "1"*}
 | 
| 14076 | 39  | 
consts  | 
| 13780 | 40  | 
The :: "(i => o) => i" (binder "THE " 10)  | 
| 13144 | 41  | 
  If          :: "[o, i, i] => i"     ("(if (_)/ then (_)/ else (_))" [10] 10)
 | 
| 6068 | 42  | 
|
| 24826 | 43  | 
abbreviation (input)  | 
44  | 
  old_if      :: "[o, i, i] => i"   ("if '(_,_,_')") where
 | 
|
45  | 
"if(P,a,b) == If(P,a,b)"  | 
|
| 6068 | 46  | 
|
47  | 
||
| 14076 | 48  | 
text {*Finite Sets *}
 | 
| 6068 | 49  | 
consts  | 
| 13780 | 50  | 
Upair :: "[i, i] => i"  | 
51  | 
cons :: "[i, i] => i"  | 
|
52  | 
succ :: "i => i"  | 
|
| 0 | 53  | 
|
| 14076 | 54  | 
text {*Ordered Pairing *}
 | 
55  | 
consts  | 
|
| 13780 | 56  | 
Pair :: "[i, i] => i"  | 
57  | 
fst :: "i => i"  | 
|
58  | 
snd :: "i => i"  | 
|
| 14854 | 59  | 
  split :: "[[i, i] => 'a, i] => 'a::{}"  --{*for pattern-matching*}
 | 
| 0 | 60  | 
|
| 14076 | 61  | 
text {*Sigma and Pi Operators *}
 | 
62  | 
consts  | 
|
| 13780 | 63  | 
Sigma :: "[i, i => i] => i"  | 
64  | 
Pi :: "[i, i => i] => i"  | 
|
| 0 | 65  | 
|
| 14076 | 66  | 
text {*Relations and Functions *}
 | 
67  | 
consts  | 
|
68  | 
"domain" :: "i => i"  | 
|
| 13144 | 69  | 
range :: "i => i"  | 
70  | 
field :: "i => i"  | 
|
71  | 
converse :: "i => i"  | 
|
| 14076 | 72  | 
  relation    :: "i => o"        --{*recognizes sets of pairs*}
 | 
| 24826 | 73  | 
  "function"  :: "i => o"        --{*recognizes functions; can have non-pairs*}
 | 
| 13144 | 74  | 
Lambda :: "[i, i => i] => i"  | 
75  | 
restrict :: "[i, i] => i"  | 
|
| 0 | 76  | 
|
| 14076 | 77  | 
text {*Infixes in order of decreasing precedence *}
 | 
78  | 
consts  | 
|
| 0 | 79  | 
|
| 24826 | 80  | 
  Image       :: "[i, i] => i"    (infixl "``" 90) --{*image*}
 | 
81  | 
  vimage      :: "[i, i] => i"    (infixl "-``" 90) --{*inverse image*}
 | 
|
82  | 
  "apply"     :: "[i, i] => i"    (infixl "`" 90) --{*function application*}
 | 
|
83  | 
  "Int"       :: "[i, i] => i"    (infixl "Int" 70) --{*binary intersection*}
 | 
|
84  | 
  "Un"        :: "[i, i] => i"    (infixl "Un" 65) --{*binary union*}
 | 
|
85  | 
  Diff        :: "[i, i] => i"    (infixl "-" 65) --{*set difference*}
 | 
|
86  | 
  Subset      :: "[i, i] => o"    (infixl "<=" 50) --{*subset relation*}
 | 
|
| 
48733
 
18e76e2db6d4
proper axiomatization of "mem" -- do not leave it formally unspecified;
 
wenzelm 
parents: 
48462 
diff
changeset
 | 
87  | 
|
| 
 
18e76e2db6d4
proper axiomatization of "mem" -- do not leave it formally unspecified;
 
wenzelm 
parents: 
48462 
diff
changeset
 | 
88  | 
axiomatization  | 
| 24826 | 89  | 
  mem         :: "[i, i] => o"    (infixl ":" 50) --{*membership relation*}
 | 
90  | 
||
91  | 
abbreviation  | 
|
92  | 
  not_mem :: "[i, i] => o"  (infixl "~:" 50)  --{*negated membership relation*}
 | 
|
93  | 
where "x ~: y == ~ (x : y)"  | 
|
94  | 
||
95  | 
abbreviation  | 
|
96  | 
  cart_prod :: "[i, i] => i"    (infixr "*" 80) --{*Cartesian product*}
 | 
|
97  | 
where "A * B == Sigma(A, %_. B)"  | 
|
98  | 
||
99  | 
abbreviation  | 
|
100  | 
  function_space :: "[i, i] => i"  (infixr "->" 60) --{*function space*}
 | 
|
101  | 
where "A -> B == Pi(A, %_. B)"  | 
|
| 0 | 102  | 
|
103  | 
||
| 
41229
 
d797baa3d57c
replaced command 'nonterminals' by slightly modernized version 'nonterminal';
 
wenzelm 
parents: 
40714 
diff
changeset
 | 
104  | 
nonterminal "is" and patterns  | 
| 615 | 105  | 
|
106  | 
syntax  | 
|
| 13144 | 107  | 
  ""          :: "i => is"                   ("_")
 | 
| 
35112
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
108  | 
  "_Enum"     :: "[i, is] => is"             ("_,/ _")
 | 
| 24826 | 109  | 
|
| 
35112
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
110  | 
  "_Finset"   :: "is => i"                   ("{(_)}")
 | 
| 
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
111  | 
  "_Tuple"    :: "[i, is] => i"              ("<(_,/ _)>")
 | 
| 
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
112  | 
  "_Collect"  :: "[pttrn, i, o] => i"        ("(1{_: _ ./ _})")
 | 
| 
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
113  | 
  "_Replace"  :: "[pttrn, pttrn, i, o] => i" ("(1{_ ./ _: _, _})")
 | 
| 
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
114  | 
  "_RepFun"   :: "[i, pttrn, i] => i"        ("(1{_ ./ _: _})" [51,0,51])
 | 
| 
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
115  | 
  "_INTER"    :: "[pttrn, i, i] => i"        ("(3INT _:_./ _)" 10)
 | 
| 
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
116  | 
  "_UNION"    :: "[pttrn, i, i] => i"        ("(3UN _:_./ _)" 10)
 | 
| 
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
117  | 
  "_PROD"     :: "[pttrn, i, i] => i"        ("(3PROD _:_./ _)" 10)
 | 
| 
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
118  | 
  "_SUM"      :: "[pttrn, i, i] => i"        ("(3SUM _:_./ _)" 10)
 | 
| 
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
119  | 
  "_lam"      :: "[pttrn, i, i] => i"        ("(3lam _:_./ _)" 10)
 | 
| 
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
120  | 
  "_Ball"     :: "[pttrn, i, o] => o"        ("(3ALL _:_./ _)" 10)
 | 
| 
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
121  | 
  "_Bex"      :: "[pttrn, i, o] => o"        ("(3EX _:_./ _)" 10)
 | 
| 
1106
 
62bdb9e5722b
Added pattern-matching code from CHOL/Prod.thy.  Changed
 
lcp 
parents: 
690 
diff
changeset
 | 
122  | 
|
| 
 
62bdb9e5722b
Added pattern-matching code from CHOL/Prod.thy.  Changed
 
lcp 
parents: 
690 
diff
changeset
 | 
123  | 
(** Patterns -- extends pre-defined type "pttrn" used in abstractions **)  | 
| 
 
62bdb9e5722b
Added pattern-matching code from CHOL/Prod.thy.  Changed
 
lcp 
parents: 
690 
diff
changeset
 | 
124  | 
|
| 
35112
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
125  | 
  "_pattern"  :: "patterns => pttrn"         ("<_>")
 | 
| 13144 | 126  | 
  ""          :: "pttrn => patterns"         ("_")
 | 
| 
35112
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
127  | 
  "_patterns" :: "[pttrn, patterns] => patterns"  ("_,/_")
 | 
| 615 | 128  | 
|
| 0 | 129  | 
translations  | 
| 35068 | 130  | 
  "{x, xs}"     == "CONST cons(x, {xs})"
 | 
131  | 
  "{x}"         == "CONST cons(x, 0)"
 | 
|
132  | 
  "{x:A. P}"    == "CONST Collect(A, %x. P)"
 | 
|
133  | 
  "{y. x:A, Q}" == "CONST Replace(A, %x y. Q)"
 | 
|
134  | 
  "{b. x:A}"    == "CONST RepFun(A, %x. b)"
 | 
|
135  | 
  "INT x:A. B"  == "CONST Inter({B. x:A})"
 | 
|
136  | 
  "UN x:A. B"   == "CONST Union({B. x:A})"
 | 
|
137  | 
"PROD x:A. B" == "CONST Pi(A, %x. B)"  | 
|
138  | 
"SUM x:A. B" == "CONST Sigma(A, %x. B)"  | 
|
139  | 
"lam x:A. f" == "CONST Lambda(A, %x. f)"  | 
|
140  | 
"ALL x:A. P" == "CONST Ball(A, %x. P)"  | 
|
141  | 
"EX x:A. P" == "CONST Bex(A, %x. P)"  | 
|
| 37 | 142  | 
|
| 
1106
 
62bdb9e5722b
Added pattern-matching code from CHOL/Prod.thy.  Changed
 
lcp 
parents: 
690 
diff
changeset
 | 
143  | 
"<x, y, z>" == "<x, <y, z>>"  | 
| 35068 | 144  | 
"<x, y>" == "CONST Pair(x, y)"  | 
145  | 
"%<x,y,zs>.b" == "CONST split(%x <y,zs>.b)"  | 
|
146  | 
"%<x,y>.b" == "CONST split(%x y. b)"  | 
|
| 2286 | 147  | 
|
| 0 | 148  | 
|
| 24826 | 149  | 
notation (xsymbols)  | 
150  | 
cart_prod (infixr "\<times>" 80) and  | 
|
151  | 
Int (infixl "\<inter>" 70) and  | 
|
152  | 
Un (infixl "\<union>" 65) and  | 
|
153  | 
function_space (infixr "\<rightarrow>" 60) and  | 
|
154  | 
Subset (infixl "\<subseteq>" 50) and  | 
|
155  | 
mem (infixl "\<in>" 50) and  | 
|
156  | 
not_mem (infixl "\<notin>" 50) and  | 
|
157  | 
  Union           ("\<Union>_" [90] 90) and
 | 
|
158  | 
  Inter           ("\<Inter>_" [90] 90)
 | 
|
159  | 
||
| 
12114
 
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
 
wenzelm 
parents: 
11322 
diff
changeset
 | 
160  | 
syntax (xsymbols)  | 
| 
35112
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
161  | 
  "_Collect"  :: "[pttrn, i, o] => i"        ("(1{_ \<in> _ ./ _})")
 | 
| 
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
162  | 
  "_Replace"  :: "[pttrn, pttrn, i, o] => i" ("(1{_ ./ _ \<in> _, _})")
 | 
| 
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
163  | 
  "_RepFun"   :: "[i, pttrn, i] => i"        ("(1{_ ./ _ \<in> _})" [51,0,51])
 | 
| 
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
164  | 
  "_UNION"    :: "[pttrn, i, i] => i"        ("(3\<Union>_\<in>_./ _)" 10)
 | 
| 
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
165  | 
  "_INTER"    :: "[pttrn, i, i] => i"        ("(3\<Inter>_\<in>_./ _)" 10)
 | 
| 
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
166  | 
  "_PROD"     :: "[pttrn, i, i] => i"        ("(3\<Pi>_\<in>_./ _)" 10)
 | 
| 
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
167  | 
  "_SUM"      :: "[pttrn, i, i] => i"        ("(3\<Sigma>_\<in>_./ _)" 10)
 | 
| 
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
168  | 
  "_lam"      :: "[pttrn, i, i] => i"        ("(3\<lambda>_\<in>_./ _)" 10)
 | 
| 
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
169  | 
  "_Ball"     :: "[pttrn, i, o] => o"        ("(3\<forall>_\<in>_./ _)" 10)
 | 
| 
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
170  | 
  "_Bex"      :: "[pttrn, i, o] => o"        ("(3\<exists>_\<in>_./ _)" 10)
 | 
| 
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
171  | 
  "_Tuple"    :: "[i, is] => i"              ("\<langle>(_,/ _)\<rangle>")
 | 
| 
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
172  | 
  "_pattern"  :: "patterns => pttrn"         ("\<langle>_\<rangle>")
 | 
| 2540 | 173  | 
|
| 24826 | 174  | 
notation (HTML output)  | 
175  | 
cart_prod (infixr "\<times>" 80) and  | 
|
176  | 
Int (infixl "\<inter>" 70) and  | 
|
177  | 
Un (infixl "\<union>" 65) and  | 
|
178  | 
Subset (infixl "\<subseteq>" 50) and  | 
|
179  | 
mem (infixl "\<in>" 50) and  | 
|
180  | 
not_mem (infixl "\<notin>" 50) and  | 
|
181  | 
  Union           ("\<Union>_" [90] 90) and
 | 
|
182  | 
  Inter           ("\<Inter>_" [90] 90)
 | 
|
183  | 
||
| 6340 | 184  | 
syntax (HTML output)  | 
| 
35112
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
185  | 
  "_Collect"  :: "[pttrn, i, o] => i"        ("(1{_ \<in> _ ./ _})")
 | 
| 
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
186  | 
  "_Replace"  :: "[pttrn, pttrn, i, o] => i" ("(1{_ ./ _ \<in> _, _})")
 | 
| 
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
187  | 
  "_RepFun"   :: "[i, pttrn, i] => i"        ("(1{_ ./ _ \<in> _})" [51,0,51])
 | 
| 
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
188  | 
  "_UNION"    :: "[pttrn, i, i] => i"        ("(3\<Union>_\<in>_./ _)" 10)
 | 
| 
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
189  | 
  "_INTER"    :: "[pttrn, i, i] => i"        ("(3\<Inter>_\<in>_./ _)" 10)
 | 
| 
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
190  | 
  "_PROD"     :: "[pttrn, i, i] => i"        ("(3\<Pi>_\<in>_./ _)" 10)
 | 
| 
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
191  | 
  "_SUM"      :: "[pttrn, i, i] => i"        ("(3\<Sigma>_\<in>_./ _)" 10)
 | 
| 
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
192  | 
  "_lam"      :: "[pttrn, i, i] => i"        ("(3\<lambda>_\<in>_./ _)" 10)
 | 
| 
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
193  | 
  "_Ball"     :: "[pttrn, i, o] => o"        ("(3\<forall>_\<in>_./ _)" 10)
 | 
| 
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
194  | 
  "_Bex"      :: "[pttrn, i, o] => o"        ("(3\<exists>_\<in>_./ _)" 10)
 | 
| 
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
195  | 
  "_Tuple"    :: "[i, is] => i"              ("\<langle>(_,/ _)\<rangle>")
 | 
| 
 
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
 
wenzelm 
parents: 
35068 
diff
changeset
 | 
196  | 
  "_pattern"  :: "patterns => pttrn"         ("\<langle>_\<rangle>")
 | 
| 6340 | 197  | 
|
| 2540 | 198  | 
|
| 37405 | 199  | 
defs (* Bounded Quantifiers *)  | 
| 46820 | 200  | 
Ball_def: "Ball(A, P) == \<forall>x. x\<in>A \<longrightarrow> P(x)"  | 
| 14227 | 201  | 
Bex_def: "Bex(A, P) == \<exists>x. x\<in>A & P(x)"  | 
| 690 | 202  | 
|
| 46820 | 203  | 
subset_def: "A \<subseteq> B == \<forall>x\<in>A. x\<in>B"  | 
| 690 | 204  | 
|
| 3906 | 205  | 
|
| 41779 | 206  | 
axiomatization where  | 
| 0 | 207  | 
|
| 615 | 208  | 
(* ZF axioms -- see Suppes p.238  | 
209  | 
Axioms for Union, Pow and Replace state existence only,  | 
|
210  | 
uniqueness is derivable using extensionality. *)  | 
|
| 0 | 211  | 
|
| 46820 | 212  | 
extension: "A = B <-> A \<subseteq> B & B \<subseteq> A" and  | 
213  | 
Union_iff: "A \<in> \<Union>(C) <-> (\<exists>B\<in>C. A\<in>B)" and  | 
|
214  | 
Pow_iff: "A \<in> Pow(B) <-> A \<subseteq> B" and  | 
|
| 0 | 215  | 
|
| 615 | 216  | 
(*We may name this set, though it is not uniquely defined.*)  | 
| 41779 | 217  | 
infinity: "0\<in>Inf & (\<forall>y\<in>Inf. succ(y): Inf)" and  | 
| 0 | 218  | 
|
| 615 | 219  | 
(*This formulation facilitates case analysis on A.*)  | 
| 46820 | 220  | 
foundation: "A=0 | (\<exists>x\<in>A. \<forall>y\<in>x. y\<notin>A)" and  | 
| 0 | 221  | 
|
| 615 | 222  | 
(*Schema axiom since predicate P is a higher-order variable*)  | 
| 46820 | 223  | 
replacement: "(\<forall>x\<in>A. \<forall>y z. P(x,y) & P(x,z) \<longrightarrow> y=z) ==>  | 
| 14227 | 224  | 
b \<in> PrimReplace(A,P) <-> (\<exists>x\<in>A. P(x,b))"  | 
| 615 | 225  | 
|
| 14883 | 226  | 
|
| 690 | 227  | 
defs  | 
228  | 
||
| 615 | 229  | 
(* Derived form of replacement, restricting P to its functional part.  | 
230  | 
The resulting set (for functional P) is the same as with  | 
|
231  | 
PrimReplace, but the rules are simpler. *)  | 
|
| 0 | 232  | 
|
| 13780 | 233  | 
Replace_def: "Replace(A,P) == PrimReplace(A, %x y. (EX!z. P(x,z)) & P(x,y))"  | 
| 615 | 234  | 
|
235  | 
(* Functional form of replacement -- analgous to ML's map functional *)  | 
|
| 0 | 236  | 
|
| 14227 | 237  | 
  RepFun_def:   "RepFun(A,f) == {y . x\<in>A, y=f(x)}"
 | 
| 0 | 238  | 
|
| 615 | 239  | 
(* Separation and Pairing can be derived from the Replacement  | 
240  | 
and Powerset Axioms using the following definitions. *)  | 
|
| 0 | 241  | 
|
| 14227 | 242  | 
  Collect_def:  "Collect(A,P) == {y . x\<in>A, x=y & P(x)}"
 | 
| 0 | 243  | 
|
| 615 | 244  | 
(*Unordered pairs (Upair) express binary union/intersection and cons;  | 
245  | 
    set enumerations translate as {a,...,z} = cons(a,...,cons(z,0)...)*)
 | 
|
| 0 | 246  | 
|
| 14227 | 247  | 
  Upair_def: "Upair(a,b) == {y. x\<in>Pow(Pow(0)), (x=0 & y=a) | (x=Pow(0) & y=b)}"
 | 
| 46820 | 248  | 
cons_def: "cons(a,A) == Upair(a,a) \<union> A"  | 
| 13780 | 249  | 
succ_def: "succ(i) == cons(i, i)"  | 
| 615 | 250  | 
|
| 
2872
 
ac81a17f86f8
Moved definitions (binary intersection, etc.) from upair.thy back to ZF.thy
 
paulson 
parents: 
2540 
diff
changeset
 | 
251  | 
(* Difference, general intersection, binary union and small intersection *)  | 
| 
 
ac81a17f86f8
Moved definitions (binary intersection, etc.) from upair.thy back to ZF.thy
 
paulson 
parents: 
2540 
diff
changeset
 | 
252  | 
|
| 14227 | 253  | 
  Diff_def:      "A - B    == { x\<in>A . ~(x\<in>B) }"
 | 
| 46820 | 254  | 
  Inter_def:     "\<Inter>(A) == { x\<in>\<Union>(A) . \<forall>y\<in>A. x\<in>y}"
 | 
255  | 
Un_def: "A \<union> B == \<Union>(Upair(A,B))"  | 
|
256  | 
Int_def: "A \<inter> B == \<Inter>(Upair(A,B))"  | 
|
| 
2872
 
ac81a17f86f8
Moved definitions (binary intersection, etc.) from upair.thy back to ZF.thy
 
paulson 
parents: 
2540 
diff
changeset
 | 
257  | 
|
| 14883 | 258  | 
(* definite descriptions *)  | 
| 46820 | 259  | 
  the_def:      "The(P)    == \<Union>({y . x \<in> {0}, P(y)})"
 | 
| 13780 | 260  | 
if_def: "if(P,a,b) == THE z. P & z=a | ~P & z=b"  | 
| 0 | 261  | 
|
| 615 | 262  | 
  (* this "symmetric" definition works better than {{a}, {a,b}} *)
 | 
| 13780 | 263  | 
  Pair_def:     "<a,b>  == {{a,a}, {a,b}}"
 | 
| 14227 | 264  | 
fst_def: "fst(p) == THE a. \<exists>b. p=<a,b>"  | 
265  | 
snd_def: "snd(p) == THE b. \<exists>a. p=<a,b>"  | 
|
| 13780 | 266  | 
split_def: "split(c) == %p. c(fst(p), snd(p))"  | 
| 14227 | 267  | 
  Sigma_def:    "Sigma(A,B) == \<Union>x\<in>A. \<Union>y\<in>B(x). {<x,y>}"
 | 
| 0 | 268  | 
|
| 615 | 269  | 
(* Operations on relations *)  | 
| 0 | 270  | 
|
| 615 | 271  | 
(*converse of relation r, inverse of function*)  | 
| 14227 | 272  | 
  converse_def: "converse(r) == {z. w\<in>r, \<exists>x y. w=<x,y> & z=<y,x>}"
 | 
| 0 | 273  | 
|
| 14227 | 274  | 
  domain_def:   "domain(r) == {x. w\<in>r, \<exists>y. w=<x,y>}"
 | 
| 13780 | 275  | 
range_def: "range(r) == domain(converse(r))"  | 
| 46820 | 276  | 
field_def: "field(r) == domain(r) \<union> range(r)"  | 
| 14227 | 277  | 
relation_def: "relation(r) == \<forall>z\<in>r. \<exists>x y. z = <x,y>"  | 
| 13780 | 278  | 
function_def: "function(r) ==  | 
| 46820 | 279  | 
\<forall>x y. <x,y>:r \<longrightarrow> (\<forall>y'. <x,y'>:r \<longrightarrow> y=y')"  | 
280  | 
  image_def:    "r `` A  == {y \<in> range(r) . \<exists>x\<in>A. <x,y> \<in> r}"
 | 
|
| 13780 | 281  | 
vimage_def: "r -`` A == converse(r)``A"  | 
| 0 | 282  | 
|
| 615 | 283  | 
(* Abstraction, application and Cartesian product of a family of sets *)  | 
| 0 | 284  | 
|
| 14227 | 285  | 
  lam_def:      "Lambda(A,b) == {<x,b(x)> . x\<in>A}"
 | 
| 46820 | 286  | 
  apply_def:    "f`a == \<Union>(f``{a})"
 | 
| 14227 | 287  | 
  Pi_def:       "Pi(A,B)  == {f\<in>Pow(Sigma(A,B)). A<=domain(f) & function(f)}"
 | 
| 0 | 288  | 
|
| 12891 | 289  | 
(* Restrict the relation r to the domain A *)  | 
| 46820 | 290  | 
  restrict_def: "restrict(r,A) == {z \<in> r. \<exists>x\<in>A. \<exists>y. z = <x,y>}"
 | 
| 13780 | 291  | 
|
292  | 
||
293  | 
subsection {* Substitution*}
 | 
|
294  | 
||
295  | 
(*Useful examples: singletonI RS subst_elem, subst_elem RSN (2,IntI) *)  | 
|
| 14227 | 296  | 
lemma subst_elem: "[| b\<in>A; a=b |] ==> a\<in>A"  | 
| 13780 | 297  | 
by (erule ssubst, assumption)  | 
298  | 
||
299  | 
||
300  | 
subsection{*Bounded universal quantifier*}
 | 
|
301  | 
||
| 14227 | 302  | 
lemma ballI [intro!]: "[| !!x. x\<in>A ==> P(x) |] ==> \<forall>x\<in>A. P(x)"  | 
| 13780 | 303  | 
by (simp add: Ball_def)  | 
304  | 
||
| 15481 | 305  | 
lemmas strip = impI allI ballI  | 
306  | 
||
| 14227 | 307  | 
lemma bspec [dest?]: "[| \<forall>x\<in>A. P(x); x: A |] ==> P(x)"  | 
| 13780 | 308  | 
by (simp add: Ball_def)  | 
309  | 
||
310  | 
(*Instantiates x first: better for automatic theorem proving?*)  | 
|
| 46820 | 311  | 
lemma rev_ballE [elim]:  | 
312  | 
"[| \<forall>x\<in>A. P(x); x\<notin>A ==> Q; P(x) ==> Q |] ==> Q"  | 
|
313  | 
by (simp add: Ball_def, blast)  | 
|
| 13780 | 314  | 
|
| 46820 | 315  | 
lemma ballE: "[| \<forall>x\<in>A. P(x); P(x) ==> Q; x\<notin>A ==> Q |] ==> Q"  | 
| 13780 | 316  | 
by blast  | 
317  | 
||
318  | 
(*Used in the datatype package*)  | 
|
| 14227 | 319  | 
lemma rev_bspec: "[| x: A; \<forall>x\<in>A. P(x) |] ==> P(x)"  | 
| 13780 | 320  | 
by (simp add: Ball_def)  | 
321  | 
||
| 46820 | 322  | 
(*Trival rewrite rule;   @{term"(\<forall>x\<in>A.P)<->P"} holds only if A is nonempty!*)
 | 
323  | 
lemma ball_triv [simp]: "(\<forall>x\<in>A. P) <-> ((\<exists>x. x\<in>A) \<longrightarrow> P)"  | 
|
| 13780 | 324  | 
by (simp add: Ball_def)  | 
325  | 
||
326  | 
(*Congruence rule for rewriting*)  | 
|
327  | 
lemma ball_cong [cong]:  | 
|
| 14227 | 328  | 
"[| A=A'; !!x. x\<in>A' ==> P(x) <-> P'(x) |] ==> (\<forall>x\<in>A. P(x)) <-> (\<forall>x\<in>A'. P'(x))"  | 
| 13780 | 329  | 
by (simp add: Ball_def)  | 
330  | 
||
| 18845 | 331  | 
lemma atomize_ball:  | 
332  | 
"(!!x. x \<in> A ==> P(x)) == Trueprop (\<forall>x\<in>A. P(x))"  | 
|
333  | 
by (simp only: Ball_def atomize_all atomize_imp)  | 
|
334  | 
||
335  | 
lemmas [symmetric, rulify] = atomize_ball  | 
|
336  | 
and [symmetric, defn] = atomize_ball  | 
|
337  | 
||
| 13780 | 338  | 
|
339  | 
subsection{*Bounded existential quantifier*}
 | 
|
340  | 
||
| 14227 | 341  | 
lemma bexI [intro]: "[| P(x); x: A |] ==> \<exists>x\<in>A. P(x)"  | 
| 13780 | 342  | 
by (simp add: Bex_def, blast)  | 
343  | 
||
| 46820 | 344  | 
(*The best argument order when there is only one @{term"x\<in>A"}*)
 | 
| 14227 | 345  | 
lemma rev_bexI: "[| x\<in>A; P(x) |] ==> \<exists>x\<in>A. P(x)"  | 
| 13780 | 346  | 
by blast  | 
347  | 
||
| 46820 | 348  | 
(*Not of the general form for such rules. The existential quanitifer becomes universal. *)  | 
| 14227 | 349  | 
lemma bexCI: "[| \<forall>x\<in>A. ~P(x) ==> P(a); a: A |] ==> \<exists>x\<in>A. P(x)"  | 
| 13780 | 350  | 
by blast  | 
351  | 
||
| 14227 | 352  | 
lemma bexE [elim!]: "[| \<exists>x\<in>A. P(x); !!x. [| x\<in>A; P(x) |] ==> Q |] ==> Q"  | 
| 13780 | 353  | 
by (simp add: Bex_def, blast)  | 
354  | 
||
| 46820 | 355  | 
(*We do not even have @{term"(\<exists>x\<in>A. True) <-> True"} unless @{term"A" is nonempty!!*)
 | 
| 14227 | 356  | 
lemma bex_triv [simp]: "(\<exists>x\<in>A. P) <-> ((\<exists>x. x\<in>A) & P)"  | 
| 13780 | 357  | 
by (simp add: Bex_def)  | 
358  | 
||
359  | 
lemma bex_cong [cong]:  | 
|
| 46820 | 360  | 
"[| A=A'; !!x. x\<in>A' ==> P(x) <-> P'(x) |]  | 
| 14227 | 361  | 
==> (\<exists>x\<in>A. P(x)) <-> (\<exists>x\<in>A'. P'(x))"  | 
| 13780 | 362  | 
by (simp add: Bex_def cong: conj_cong)  | 
363  | 
||
364  | 
||
365  | 
||
366  | 
subsection{*Rules for subsets*}
 | 
|
367  | 
||
368  | 
lemma subsetI [intro!]:  | 
|
| 46820 | 369  | 
"(!!x. x\<in>A ==> x\<in>B) ==> A \<subseteq> B"  | 
370  | 
by (simp add: subset_def)  | 
|
| 13780 | 371  | 
|
372  | 
(*Rule in Modus Ponens style [was called subsetE] *)  | 
|
| 46820 | 373  | 
lemma subsetD [elim]: "[| A \<subseteq> B; c\<in>A |] ==> c\<in>B"  | 
| 13780 | 374  | 
apply (unfold subset_def)  | 
375  | 
apply (erule bspec, assumption)  | 
|
376  | 
done  | 
|
377  | 
||
378  | 
(*Classical elimination rule*)  | 
|
379  | 
lemma subsetCE [elim]:  | 
|
| 46820 | 380  | 
"[| A \<subseteq> B; c\<notin>A ==> P; c\<in>B ==> P |] ==> P"  | 
381  | 
by (simp add: subset_def, blast)  | 
|
| 13780 | 382  | 
|
383  | 
(*Sometimes useful with premises in this order*)  | 
|
| 14227 | 384  | 
lemma rev_subsetD: "[| c\<in>A; A<=B |] ==> c\<in>B"  | 
| 13780 | 385  | 
by blast  | 
386  | 
||
| 46820 | 387  | 
lemma contra_subsetD: "[| A \<subseteq> B; c \<notin> B |] ==> c \<notin> A"  | 
| 13780 | 388  | 
by blast  | 
389  | 
||
| 46820 | 390  | 
lemma rev_contra_subsetD: "[| c \<notin> B; A \<subseteq> B |] ==> c \<notin> A"  | 
| 13780 | 391  | 
by blast  | 
392  | 
||
| 46820 | 393  | 
lemma subset_refl [simp]: "A \<subseteq> A"  | 
| 13780 | 394  | 
by blast  | 
395  | 
||
396  | 
lemma subset_trans: "[| A<=B; B<=C |] ==> A<=C"  | 
|
397  | 
by blast  | 
|
398  | 
||
399  | 
(*Useful for proving A<=B by rewriting in some cases*)  | 
|
| 46820 | 400  | 
lemma subset_iff:  | 
401  | 
"A<=B <-> (\<forall>x. x\<in>A \<longrightarrow> x\<in>B)"  | 
|
| 13780 | 402  | 
apply (unfold subset_def Ball_def)  | 
403  | 
apply (rule iff_refl)  | 
|
404  | 
done  | 
|
405  | 
||
| 
46907
 
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
 
paulson 
parents: 
46820 
diff
changeset
 | 
406  | 
text{*For calculations*}
 | 
| 
 
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
 
paulson 
parents: 
46820 
diff
changeset
 | 
407  | 
declare subsetD [trans] rev_subsetD [trans] subset_trans [trans]  | 
| 
 
eea3eb057fea
Structured proofs concerning the square of an infinite cardinal
 
paulson 
parents: 
46820 
diff
changeset
 | 
408  | 
|
| 13780 | 409  | 
|
410  | 
subsection{*Rules for equality*}
 | 
|
411  | 
||
412  | 
(*Anti-symmetry of the subset relation*)  | 
|
| 46820 | 413  | 
lemma equalityI [intro]: "[| A \<subseteq> B; B \<subseteq> A |] ==> A = B"  | 
414  | 
by (rule extension [THEN iffD2], rule conjI)  | 
|
| 13780 | 415  | 
|
416  | 
||
| 14227 | 417  | 
lemma equality_iffI: "(!!x. x\<in>A <-> x\<in>B) ==> A = B"  | 
| 13780 | 418  | 
by (rule equalityI, blast+)  | 
419  | 
||
| 45602 | 420  | 
lemmas equalityD1 = extension [THEN iffD1, THEN conjunct1]  | 
421  | 
lemmas equalityD2 = extension [THEN iffD1, THEN conjunct2]  | 
|
| 13780 | 422  | 
|
423  | 
lemma equalityE: "[| A = B; [| A<=B; B<=A |] ==> P |] ==> P"  | 
|
| 46820 | 424  | 
by (blast dest: equalityD1 equalityD2)  | 
| 13780 | 425  | 
|
426  | 
lemma equalityCE:  | 
|
| 46820 | 427  | 
"[| A = B; [| c\<in>A; c\<in>B |] ==> P; [| c\<notin>A; c\<notin>B |] ==> P |] ==> P"  | 
428  | 
by (erule equalityE, blast)  | 
|
| 13780 | 429  | 
|
| 27702 | 430  | 
lemma equality_iffD:  | 
| 46820 | 431  | 
"A = B ==> (!!x. x \<in> A <-> x \<in> B)"  | 
| 27702 | 432  | 
by auto  | 
433  | 
||
| 13780 | 434  | 
|
435  | 
subsection{*Rules for Replace -- the derived form of replacement*}
 | 
|
436  | 
||
| 46820 | 437  | 
lemma Replace_iff:  | 
438  | 
    "b \<in> {y. x\<in>A, P(x,y)}  <->  (\<exists>x\<in>A. P(x,b) & (\<forall>y. P(x,y) \<longrightarrow> y=b))"
 | 
|
| 13780 | 439  | 
apply (unfold Replace_def)  | 
440  | 
apply (rule replacement [THEN iff_trans], blast+)  | 
|
441  | 
done  | 
|
442  | 
||
443  | 
(*Introduction; there must be a unique y such that P(x,y), namely y=b. *)  | 
|
| 46820 | 444  | 
lemma ReplaceI [intro]:  | 
445  | 
"[| P(x,b); x: A; !!y. P(x,y) ==> y=b |] ==>  | 
|
446  | 
     b \<in> {y. x\<in>A, P(x,y)}"
 | 
|
447  | 
by (rule Replace_iff [THEN iffD2], blast)  | 
|
| 13780 | 448  | 
|
449  | 
(*Elimination; may asssume there is a unique y such that P(x,y), namely y=b. *)  | 
|
| 46820 | 450  | 
lemma ReplaceE:  | 
451  | 
    "[| b \<in> {y. x\<in>A, P(x,y)};
 | 
|
452  | 
!!x. [| x: A; P(x,b); \<forall>y. P(x,y)\<longrightarrow>y=b |] ==> R  | 
|
| 13780 | 453  | 
|] ==> R"  | 
454  | 
by (rule Replace_iff [THEN iffD1, THEN bexE], simp+)  | 
|
455  | 
||
456  | 
(*As above but without the (generally useless) 3rd assumption*)  | 
|
| 46820 | 457  | 
lemma ReplaceE2 [elim!]:  | 
458  | 
    "[| b \<in> {y. x\<in>A, P(x,y)};
 | 
|
459  | 
!!x. [| x: A; P(x,b) |] ==> R  | 
|
| 13780 | 460  | 
|] ==> R"  | 
| 46820 | 461  | 
by (erule ReplaceE, blast)  | 
| 13780 | 462  | 
|
463  | 
lemma Replace_cong [cong]:  | 
|
| 46820 | 464  | 
"[| A=B; !!x y. x\<in>B ==> P(x,y) <-> Q(x,y) |] ==>  | 
| 13780 | 465  | 
Replace(A,P) = Replace(B,Q)"  | 
| 46820 | 466  | 
apply (rule equality_iffI)  | 
467  | 
apply (simp add: Replace_iff)  | 
|
| 13780 | 468  | 
done  | 
469  | 
||
470  | 
||
471  | 
subsection{*Rules for RepFun*}
 | 
|
472  | 
||
| 46820 | 473  | 
lemma RepFunI: "a \<in> A ==> f(a) \<in> {f(x). x\<in>A}"
 | 
| 13780 | 474  | 
by (simp add: RepFun_def Replace_iff, blast)  | 
475  | 
||
476  | 
(*Useful for coinduction proofs*)  | 
|
| 46820 | 477  | 
lemma RepFun_eqI [intro]: "[| b=f(a);  a \<in> A |] ==> b \<in> {f(x). x\<in>A}"
 | 
| 13780 | 478  | 
apply (erule ssubst)  | 
479  | 
apply (erule RepFunI)  | 
|
480  | 
done  | 
|
481  | 
||
482  | 
lemma RepFunE [elim!]:  | 
|
| 46820 | 483  | 
    "[| b \<in> {f(x). x\<in>A};
 | 
484  | 
!!x.[| x\<in>A; b=f(x) |] ==> P |] ==>  | 
|
| 13780 | 485  | 
P"  | 
| 46820 | 486  | 
by (simp add: RepFun_def Replace_iff, blast)  | 
| 13780 | 487  | 
|
| 46820 | 488  | 
lemma RepFun_cong [cong]:  | 
| 14227 | 489  | 
"[| A=B; !!x. x\<in>B ==> f(x)=g(x) |] ==> RepFun(A,f) = RepFun(B,g)"  | 
| 13780 | 490  | 
by (simp add: RepFun_def)  | 
491  | 
||
| 46820 | 492  | 
lemma RepFun_iff [simp]: "b \<in> {f(x). x\<in>A} <-> (\<exists>x\<in>A. b=f(x))"
 | 
| 13780 | 493  | 
by (unfold Bex_def, blast)  | 
494  | 
||
| 14227 | 495  | 
lemma triv_RepFun [simp]: "{x. x\<in>A} = A"
 | 
| 13780 | 496  | 
by blast  | 
497  | 
||
498  | 
||
499  | 
subsection{*Rules for Collect -- forming a subset by separation*}
 | 
|
500  | 
||
501  | 
(*Separation is derivable from Replacement*)  | 
|
| 46820 | 502  | 
lemma separation [simp]: "a \<in> {x\<in>A. P(x)} <-> a\<in>A & P(a)"
 | 
| 13780 | 503  | 
by (unfold Collect_def, blast)  | 
504  | 
||
| 46820 | 505  | 
lemma CollectI [intro!]: "[| a\<in>A;  P(a) |] ==> a \<in> {x\<in>A. P(x)}"
 | 
| 13780 | 506  | 
by simp  | 
507  | 
||
| 46820 | 508  | 
lemma CollectE [elim!]: "[| a \<in> {x\<in>A. P(x)};  [| a\<in>A; P(a) |] ==> R |] ==> R"
 | 
| 13780 | 509  | 
by simp  | 
510  | 
||
| 46820 | 511  | 
lemma CollectD1: "a \<in> {x\<in>A. P(x)} ==> a\<in>A"
 | 
| 13780 | 512  | 
by (erule CollectE, assumption)  | 
513  | 
||
| 46820 | 514  | 
lemma CollectD2: "a \<in> {x\<in>A. P(x)} ==> P(a)"
 | 
| 13780 | 515  | 
by (erule CollectE, assumption)  | 
516  | 
||
517  | 
lemma Collect_cong [cong]:  | 
|
| 46820 | 518  | 
"[| A=B; !!x. x\<in>B ==> P(x) <-> Q(x) |]  | 
| 13780 | 519  | 
==> Collect(A, %x. P(x)) = Collect(B, %x. Q(x))"  | 
520  | 
by (simp add: Collect_def)  | 
|
521  | 
||
522  | 
||
523  | 
subsection{*Rules for Unions*}
 | 
|
524  | 
||
525  | 
declare Union_iff [simp]  | 
|
526  | 
||
527  | 
(*The order of the premises presupposes that C is rigid; A may be flexible*)  | 
|
| 46820 | 528  | 
lemma UnionI [intro]: "[| B: C; A: B |] ==> A: \<Union>(C)"  | 
| 13780 | 529  | 
by (simp, blast)  | 
530  | 
||
| 46820 | 531  | 
lemma UnionE [elim!]: "[| A \<in> \<Union>(C); !!B.[| A: B; B: C |] ==> R |] ==> R"  | 
| 13780 | 532  | 
by (simp, blast)  | 
533  | 
||
534  | 
||
535  | 
subsection{*Rules for Unions of families*}
 | 
|
| 46820 | 536  | 
(* @{term"\<Union>x\<in>A. B(x)"} abbreviates @{term"\<Union>({B(x). x\<in>A})"} *)
 | 
| 13780 | 537  | 
|
| 46820 | 538  | 
lemma UN_iff [simp]: "b \<in> (\<Union>x\<in>A. B(x)) <-> (\<exists>x\<in>A. b \<in> B(x))"  | 
| 13780 | 539  | 
by (simp add: Bex_def, blast)  | 
540  | 
||
541  | 
(*The order of the premises presupposes that A is rigid; b may be flexible*)  | 
|
| 14227 | 542  | 
lemma UN_I: "[| a: A; b: B(a) |] ==> b: (\<Union>x\<in>A. B(x))"  | 
| 13780 | 543  | 
by (simp, blast)  | 
544  | 
||
545  | 
||
| 46820 | 546  | 
lemma UN_E [elim!]:  | 
547  | 
"[| b \<in> (\<Union>x\<in>A. B(x)); !!x.[| x: A; b: B(x) |] ==> R |] ==> R"  | 
|
548  | 
by blast  | 
|
| 13780 | 549  | 
|
| 46820 | 550  | 
lemma UN_cong:  | 
| 14227 | 551  | 
"[| A=B; !!x. x\<in>B ==> C(x)=D(x) |] ==> (\<Union>x\<in>A. C(x)) = (\<Union>x\<in>B. D(x))"  | 
| 46820 | 552  | 
by simp  | 
| 13780 | 553  | 
|
554  | 
||
| 46820 | 555  | 
(*No "Addcongs [UN_cong]" because @{term\<Union>} is a combination of constants*)
 | 
| 13780 | 556  | 
|
557  | 
(* UN_E appears before UnionE so that it is tried first, to avoid expensive  | 
|
558  | 
calls to hyp_subst_tac. Cannot include UN_I as it is unsafe: would enlarge  | 
|
559  | 
the search space.*)  | 
|
560  | 
||
561  | 
||
562  | 
subsection{*Rules for the empty set*}
 | 
|
563  | 
||
| 46820 | 564  | 
(*The set @{term"{x\<in>0. False}"} is empty; by foundation it equals 0
 | 
| 13780 | 565  | 
See Suppes, page 21.*)  | 
| 46820 | 566  | 
lemma not_mem_empty [simp]: "a \<notin> 0"  | 
| 13780 | 567  | 
apply (cut_tac foundation)  | 
568  | 
apply (best dest: equalityD2)  | 
|
569  | 
done  | 
|
570  | 
||
| 45602 | 571  | 
lemmas emptyE [elim!] = not_mem_empty [THEN notE]  | 
| 13780 | 572  | 
|
573  | 
||
| 46820 | 574  | 
lemma empty_subsetI [simp]: "0 \<subseteq> A"  | 
575  | 
by blast  | 
|
| 13780 | 576  | 
|
| 14227 | 577  | 
lemma equals0I: "[| !!y. y\<in>A ==> False |] ==> A=0"  | 
| 13780 | 578  | 
by blast  | 
579  | 
||
| 46820 | 580  | 
lemma equals0D [dest]: "A=0 ==> a \<notin> A"  | 
| 13780 | 581  | 
by blast  | 
582  | 
||
583  | 
declare sym [THEN equals0D, dest]  | 
|
584  | 
||
| 46820 | 585  | 
lemma not_emptyI: "a\<in>A ==> A \<noteq> 0"  | 
| 13780 | 586  | 
by blast  | 
587  | 
||
| 46820 | 588  | 
lemma not_emptyE: "[| A \<noteq> 0; !!x. x\<in>A ==> R |] ==> R"  | 
| 13780 | 589  | 
by blast  | 
590  | 
||
591  | 
||
| 
14095
 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 
paulson 
parents: 
14076 
diff
changeset
 | 
592  | 
subsection{*Rules for Inter*}
 | 
| 
 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 
paulson 
parents: 
14076 
diff
changeset
 | 
593  | 
|
| 
 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 
paulson 
parents: 
14076 
diff
changeset
 | 
594  | 
(*Not obviously useful for proving InterI, InterD, InterE*)  | 
| 46820 | 595  | 
lemma Inter_iff: "A \<in> \<Inter>(C) <-> (\<forall>x\<in>C. A: x) & C\<noteq>0"  | 
| 
14095
 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 
paulson 
parents: 
14076 
diff
changeset
 | 
596  | 
by (simp add: Inter_def Ball_def, blast)  | 
| 
 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 
paulson 
parents: 
14076 
diff
changeset
 | 
597  | 
|
| 
 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 
paulson 
parents: 
14076 
diff
changeset
 | 
598  | 
(* Intersection is well-behaved only if the family is non-empty! *)  | 
| 46820 | 599  | 
lemma InterI [intro!]:  | 
600  | 
"[| !!x. x: C ==> A: x; C\<noteq>0 |] ==> A \<in> \<Inter>(C)"  | 
|
| 
14095
 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 
paulson 
parents: 
14076 
diff
changeset
 | 
601  | 
by (simp add: Inter_iff)  | 
| 
 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 
paulson 
parents: 
14076 
diff
changeset
 | 
602  | 
|
| 
 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 
paulson 
parents: 
14076 
diff
changeset
 | 
603  | 
(*A "destruct" rule -- every B in C contains A as an element, but  | 
| 14227 | 604  | 
A\<in>B can hold when B\<in>C does not! This rule is analogous to "spec". *)  | 
| 46820 | 605  | 
lemma InterD [elim, Pure.elim]: "[| A \<in> \<Inter>(C); B \<in> C |] ==> A \<in> B"  | 
| 
14095
 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 
paulson 
parents: 
14076 
diff
changeset
 | 
606  | 
by (unfold Inter_def, blast)  | 
| 
 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 
paulson 
parents: 
14076 
diff
changeset
 | 
607  | 
|
| 46820 | 608  | 
(*"Classical" elimination rule -- does not require exhibiting @{term"B\<in>C"} *)
 | 
609  | 
lemma InterE [elim]:  | 
|
610  | 
"[| A \<in> \<Inter>(C); B\<notin>C ==> R; A\<in>B ==> R |] ==> R"  | 
|
611  | 
by (simp add: Inter_def, blast)  | 
|
612  | 
||
| 
14095
 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 
paulson 
parents: 
14076 
diff
changeset
 | 
613  | 
|
| 
 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 
paulson 
parents: 
14076 
diff
changeset
 | 
614  | 
subsection{*Rules for Intersections of families*}
 | 
| 
 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 
paulson 
parents: 
14076 
diff
changeset
 | 
615  | 
|
| 46820 | 616  | 
(* @{term"\<Inter>x\<in>A. B(x)"} abbreviates @{term"\<Inter>({B(x). x\<in>A})"} *)
 | 
| 
14095
 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 
paulson 
parents: 
14076 
diff
changeset
 | 
617  | 
|
| 46820 | 618  | 
lemma INT_iff: "b \<in> (\<Inter>x\<in>A. B(x)) <-> (\<forall>x\<in>A. b \<in> B(x)) & A\<noteq>0"  | 
| 
14095
 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 
paulson 
parents: 
14076 
diff
changeset
 | 
619  | 
by (force simp add: Inter_def)  | 
| 
 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 
paulson 
parents: 
14076 
diff
changeset
 | 
620  | 
|
| 14227 | 621  | 
lemma INT_I: "[| !!x. x: A ==> b: B(x); A\<noteq>0 |] ==> b: (\<Inter>x\<in>A. B(x))"  | 
| 
14095
 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 
paulson 
parents: 
14076 
diff
changeset
 | 
622  | 
by blast  | 
| 
 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 
paulson 
parents: 
14076 
diff
changeset
 | 
623  | 
|
| 46820 | 624  | 
lemma INT_E: "[| b \<in> (\<Inter>x\<in>A. B(x)); a: A |] ==> b \<in> B(a)"  | 
| 
14095
 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 
paulson 
parents: 
14076 
diff
changeset
 | 
625  | 
by blast  | 
| 
 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 
paulson 
parents: 
14076 
diff
changeset
 | 
626  | 
|
| 
 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 
paulson 
parents: 
14076 
diff
changeset
 | 
627  | 
lemma INT_cong:  | 
| 14227 | 628  | 
"[| A=B; !!x. x\<in>B ==> C(x)=D(x) |] ==> (\<Inter>x\<in>A. C(x)) = (\<Inter>x\<in>B. D(x))"  | 
| 
14095
 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 
paulson 
parents: 
14076 
diff
changeset
 | 
629  | 
by simp  | 
| 
 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 
paulson 
parents: 
14076 
diff
changeset
 | 
630  | 
|
| 46820 | 631  | 
(*No "Addcongs [INT_cong]" because @{term\<Inter>} is a combination of constants*)
 | 
| 
14095
 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 
paulson 
parents: 
14076 
diff
changeset
 | 
632  | 
|
| 
 
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
 
paulson 
parents: 
14076 
diff
changeset
 | 
633  | 
|
| 13780 | 634  | 
subsection{*Rules for Powersets*}
 | 
635  | 
||
| 46820 | 636  | 
lemma PowI: "A \<subseteq> B ==> A \<in> Pow(B)"  | 
| 13780 | 637  | 
by (erule Pow_iff [THEN iffD2])  | 
638  | 
||
| 14227 | 639  | 
lemma PowD: "A \<in> Pow(B) ==> A<=B"  | 
| 13780 | 640  | 
by (erule Pow_iff [THEN iffD1])  | 
641  | 
||
642  | 
declare Pow_iff [iff]  | 
|
643  | 
||
| 46820 | 644  | 
lemmas Pow_bottom = empty_subsetI [THEN PowI]    --{* @{term"0 \<in> Pow(B)"} *}
 | 
645  | 
lemmas Pow_top = subset_refl [THEN PowI]         --{* @{term"A \<in> Pow(A)"} *}
 | 
|
| 13780 | 646  | 
|
647  | 
||
648  | 
subsection{*Cantor's Theorem: There is no surjection from a set to its powerset.*}
 | 
|
649  | 
||
| 46820 | 650  | 
(*The search is undirected. Allowing redundant introduction rules may  | 
| 13780 | 651  | 
make it diverge. Variable b represents ANY map, such as  | 
| 14227 | 652  | 
(lam x\<in>A.b(x)): A->Pow(A). *)  | 
| 46820 | 653  | 
lemma cantor: "\<exists>S \<in> Pow(A). \<forall>x\<in>A. b(x) \<noteq> S"  | 
| 13780 | 654  | 
by (best elim!: equalityCE del: ReplaceI RepFun_eqI)  | 
655  | 
||
| 0 | 656  | 
end  | 
657  |