author | wenzelm |
Sun, 01 Oct 2006 18:29:35 +0200 (2006-10-01) | |
changeset 20816 | 1cf97e0bba57 |
parent 20713 | 823967ef47f1 |
child 21368 | bffb2240d03f |
permissions | -rw-r--r-- |
19087 | 1 |
(* |
2 |
ID: $Id$ |
|
3 |
Author: Makarius |
|
4 |
*) |
|
5 |
||
6 |
header {* Abstract Natural Numbers with polymorphic recursion *} |
|
7 |
||
8 |
theory Abstract_NAT |
|
9 |
imports Main |
|
10 |
begin |
|
11 |
||
12 |
text {* Axiomatic Natural Numbers (Peano) -- a monomorphic theory. *} |
|
13 |
||
14 |
locale NAT = |
|
15 |
fixes zero :: 'n |
|
16 |
and succ :: "'n \<Rightarrow> 'n" |
|
17 |
assumes succ_inject [simp]: "(succ m = succ n) = (m = n)" |
|
18 |
and succ_neq_zero [simp]: "succ m \<noteq> zero" |
|
19 |
and induct [case_names zero succ, induct type: 'n]: |
|
20 |
"P zero \<Longrightarrow> (\<And>n. P n \<Longrightarrow> P (succ n)) \<Longrightarrow> P n" |
|
21 |
||
22 |
lemma (in NAT) zero_neq_succ [simp]: "zero \<noteq> succ m" |
|
23 |
by (rule succ_neq_zero [symmetric]) |
|
24 |
||
25 |
||
26 |
text {* |
|
27 |
Primitive recursion as a (functional) relation -- polymorphic! |
|
28 |
||
29 |
(We simulate a localized version of the inductive packages using |
|
30 |
explicit premises + parameters, and an abbreviation.) *} |
|
31 |
||
32 |
consts |
|
33 |
REC :: "'n \<Rightarrow> ('n \<Rightarrow> 'n) \<Rightarrow> 'a \<Rightarrow> ('n \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> ('n * 'a) set" |
|
20713
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
haftmann
parents:
20500
diff
changeset
|
34 |
inductive "REC zer succ e r" |
19087 | 35 |
intros |
20713
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
haftmann
parents:
20500
diff
changeset
|
36 |
Rec_zero: "NAT zer succ \<Longrightarrow> (zer, e) \<in> REC zer succ e r" |
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
haftmann
parents:
20500
diff
changeset
|
37 |
Rec_succ: "NAT zer succ \<Longrightarrow> (m, n) \<in> REC zer succ e r \<Longrightarrow> |
823967ef47f1
renamed 0 and 1 to HOL.zero and HOL.one respectivly; introduced corresponding syntactic classes
haftmann
parents:
20500
diff
changeset
|
38 |
(succ m, r m n) \<in> REC zer succ e r" |
19087 | 39 |
|
19363 | 40 |
abbreviation (in NAT) |
41 |
"Rec == REC zero succ" |
|
19087 | 42 |
|
43 |
lemma (in NAT) Rec_functional: |
|
44 |
fixes x :: 'n |
|
45 |
shows "\<exists>!y::'a. (x, y) \<in> Rec e r" (is "\<exists>!y::'a. _ \<in> ?Rec") |
|
46 |
proof (induct x) |
|
47 |
case zero |
|
48 |
show "\<exists>!y. (zero, y) \<in> ?Rec" |
|
49 |
proof |
|
50 |
show "(zero, e) \<in> ?Rec" by (rule Rec_zero) |
|
51 |
fix y assume "(zero, y) \<in> ?Rec" |
|
52 |
then show "y = e" by cases simp_all |
|
53 |
qed |
|
54 |
next |
|
55 |
case (succ m) |
|
56 |
from `\<exists>!y. (m, y) \<in> ?Rec` |
|
57 |
obtain y where y: "(m, y) \<in> ?Rec" |
|
58 |
and yy': "\<And>y'. (m, y') \<in> ?Rec \<Longrightarrow> y = y'" by blast |
|
59 |
show "\<exists>!z. (succ m, z) \<in> ?Rec" |
|
60 |
proof |
|
61 |
from _ y show "(succ m, r m y) \<in> ?Rec" by (rule Rec_succ) |
|
62 |
fix z assume "(succ m, z) \<in> ?Rec" |
|
63 |
then obtain u where "z = r m u" and "(m, u) \<in> ?Rec" by cases simp_all |
|
64 |
with yy' show "z = r m y" by (simp only:) |
|
65 |
qed |
|
66 |
qed |
|
67 |
||
68 |
||
69 |
text {* The recursion operator -- polymorphic! *} |
|
70 |
||
71 |
definition (in NAT) |
|
72 |
"rec e r x = (THE y. (x, y) \<in> Rec e r)" |
|
73 |
||
74 |
lemma (in NAT) rec_eval: |
|
75 |
assumes Rec: "(x, y) \<in> Rec e r" |
|
76 |
shows "rec e r x = y" |
|
77 |
unfolding rec_def |
|
78 |
using Rec_functional and Rec by (rule the1_equality) |
|
79 |
||
80 |
lemma (in NAT) rec_zero: "rec e r zero = e" |
|
81 |
proof (rule rec_eval) |
|
82 |
show "(zero, e) \<in> Rec e r" by (rule Rec_zero) |
|
83 |
qed |
|
84 |
||
85 |
lemma (in NAT) rec_succ: "rec e r (succ m) = r m (rec e r m)" |
|
86 |
proof (rule rec_eval) |
|
87 |
let ?Rec = "Rec e r" |
|
88 |
have "(m, rec e r m) \<in> ?Rec" |
|
89 |
unfolding rec_def |
|
90 |
using Rec_functional by (rule theI') |
|
91 |
with _ show "(succ m, r m (rec e r m)) \<in> ?Rec" by (rule Rec_succ) |
|
92 |
qed |
|
93 |
||
94 |
||
95 |
text {* Just see that our abstract specification makes sense \dots *} |
|
96 |
||
97 |
interpretation NAT [0 Suc] |
|
98 |
proof (rule NAT.intro) |
|
99 |
fix m n |
|
100 |
show "(Suc m = Suc n) = (m = n)" by simp |
|
101 |
show "Suc m \<noteq> 0" by simp |
|
102 |
fix P |
|
103 |
assume zero: "P 0" |
|
104 |
and succ: "\<And>n. P n \<Longrightarrow> P (Suc n)" |
|
105 |
show "P n" |
|
106 |
proof (induct n) |
|
107 |
case 0 show ?case by (rule zero) |
|
108 |
next |
|
109 |
case Suc then show ?case by (rule succ) |
|
110 |
qed |
|
111 |
qed |
|
112 |
||
113 |
end |