| author | haftmann | 
| Mon, 28 May 2012 13:38:07 +0200 | |
| changeset 48003 | 1d11af40b106 | 
| parent 47818 | 151d137f1095 | 
| child 48909 | b2dea007e55e | 
| permissions | -rw-r--r-- | 
| 44070 | 1 | header "Semantic Equivalence up to a Condition" | 
| 2 | ||
| 3 | theory Sem_Equiv | |
| 4 | imports Hoare_Sound_Complete | |
| 5 | begin | |
| 6 | ||
| 7 | definition | |
| 8 |   equiv_up_to :: "assn \<Rightarrow> com \<Rightarrow> com \<Rightarrow> bool" ("_ \<Turnstile> _ \<sim> _" [60,0,10] 60)
 | |
| 9 | where | |
| 10 | "P \<Turnstile> c \<sim> c' \<equiv> \<forall>s s'. P s \<longrightarrow> (c,s) \<Rightarrow> s' \<longleftrightarrow> (c',s) \<Rightarrow> s'" | |
| 11 | ||
| 12 | definition | |
| 13 |   bequiv_up_to :: "assn \<Rightarrow> bexp \<Rightarrow> bexp \<Rightarrow> bool" ("_ \<Turnstile> _ <\<sim>> _" [60,0,10] 60)
 | |
| 14 | where | |
| 15 | "P \<Turnstile> b <\<sim>> b' \<equiv> \<forall>s. P s \<longrightarrow> bval b s = bval b' s" | |
| 16 | ||
| 17 | lemma equiv_up_to_True: | |
| 18 | "((\<lambda>_. True) \<Turnstile> c \<sim> c') = (c \<sim> c')" | |
| 19 | by (simp add: equiv_def equiv_up_to_def) | |
| 20 | ||
| 21 | lemma equiv_up_to_weaken: | |
| 22 | "P \<Turnstile> c \<sim> c' \<Longrightarrow> (\<And>s. P' s \<Longrightarrow> P s) \<Longrightarrow> P' \<Turnstile> c \<sim> c'" | |
| 23 | by (simp add: equiv_up_to_def) | |
| 24 | ||
| 25 | lemma equiv_up_toI: | |
| 26 | "(\<And>s s'. P s \<Longrightarrow> (c, s) \<Rightarrow> s' = (c', s) \<Rightarrow> s') \<Longrightarrow> P \<Turnstile> c \<sim> c'" | |
| 27 | by (unfold equiv_up_to_def) blast | |
| 28 | ||
| 29 | lemma equiv_up_toD1: | |
| 30 | "P \<Turnstile> c \<sim> c' \<Longrightarrow> P s \<Longrightarrow> (c, s) \<Rightarrow> s' \<Longrightarrow> (c', s) \<Rightarrow> s'" | |
| 31 | by (unfold equiv_up_to_def) blast | |
| 32 | ||
| 33 | lemma equiv_up_toD2: | |
| 34 | "P \<Turnstile> c \<sim> c' \<Longrightarrow> P s \<Longrightarrow> (c', s) \<Rightarrow> s' \<Longrightarrow> (c, s) \<Rightarrow> s'" | |
| 35 | by (unfold equiv_up_to_def) blast | |
| 36 | ||
| 37 | ||
| 38 | lemma equiv_up_to_refl [simp, intro!]: | |
| 39 | "P \<Turnstile> c \<sim> c" | |
| 40 | by (auto simp: equiv_up_to_def) | |
| 41 | ||
| 42 | lemma equiv_up_to_sym: | |
| 43 | "(P \<Turnstile> c \<sim> c') = (P \<Turnstile> c' \<sim> c)" | |
| 44 | by (auto simp: equiv_up_to_def) | |
| 45 | ||
| 45218 | 46 | lemma equiv_up_to_trans: | 
| 44070 | 47 | "P \<Turnstile> c \<sim> c' \<Longrightarrow> P \<Turnstile> c' \<sim> c'' \<Longrightarrow> P \<Turnstile> c \<sim> c''" | 
| 48 | by (auto simp: equiv_up_to_def) | |
| 49 | ||
| 50 | ||
| 51 | lemma bequiv_up_to_refl [simp, intro!]: | |
| 52 | "P \<Turnstile> b <\<sim>> b" | |
| 53 | by (auto simp: bequiv_up_to_def) | |
| 54 | ||
| 55 | lemma bequiv_up_to_sym: | |
| 56 | "(P \<Turnstile> b <\<sim>> b') = (P \<Turnstile> b' <\<sim>> b)" | |
| 57 | by (auto simp: bequiv_up_to_def) | |
| 58 | ||
| 45218 | 59 | lemma bequiv_up_to_trans: | 
| 44070 | 60 | "P \<Turnstile> b <\<sim>> b' \<Longrightarrow> P \<Turnstile> b' <\<sim>> b'' \<Longrightarrow> P \<Turnstile> b <\<sim>> b''" | 
| 61 | by (auto simp: bequiv_up_to_def) | |
| 62 | ||
| 63 | ||
| 64 | lemma equiv_up_to_hoare: | |
| 65 |   "P' \<Turnstile> c \<sim> c' \<Longrightarrow> (\<And>s. P s \<Longrightarrow> P' s) \<Longrightarrow> (\<Turnstile> {P} c {Q}) = (\<Turnstile> {P} c' {Q})"
 | |
| 66 | unfolding hoare_valid_def equiv_up_to_def by blast | |
| 67 | ||
| 68 | lemma equiv_up_to_hoare_eq: | |
| 69 |   "P \<Turnstile> c \<sim> c' \<Longrightarrow> (\<Turnstile> {P} c {Q}) = (\<Turnstile> {P} c' {Q})"
 | |
| 70 | by (rule equiv_up_to_hoare) | |
| 71 | ||
| 72 | ||
| 47818 | 73 | lemma equiv_up_to_seq: | 
| 44070 | 74 |   "P \<Turnstile> c \<sim> c' \<Longrightarrow> Q \<Turnstile> d \<sim> d' \<Longrightarrow> \<Turnstile> {P} c {Q} \<Longrightarrow>
 | 
| 75 | P \<Turnstile> (c; d) \<sim> (c'; d')" | |
| 76 | by (clarsimp simp: equiv_up_to_def hoare_valid_def) blast | |
| 77 | ||
| 78 | lemma equiv_up_to_while_lemma: | |
| 79 | shows "(d,s) \<Rightarrow> s' \<Longrightarrow> | |
| 80 | P \<Turnstile> b <\<sim>> b' \<Longrightarrow> | |
| 81 | (\<lambda>s. P s \<and> bval b s) \<Turnstile> c \<sim> c' \<Longrightarrow> | |
| 82 |          \<Turnstile> {\<lambda>s. P s \<and> bval b s} c {P} \<Longrightarrow> 
 | |
| 83 | P s \<Longrightarrow> | |
| 84 | d = WHILE b DO c \<Longrightarrow> | |
| 85 | (WHILE b' DO c', s) \<Rightarrow> s'" | |
| 45015 | 86 | proof (induction rule: big_step_induct) | 
| 44070 | 87 | case (WhileTrue b s1 c s2 s3) | 
| 45015 | 88 | note IH = WhileTrue.IH(2) [OF WhileTrue.prems(1-3) _ WhileTrue.prems(5)] | 
| 44070 | 89 | from WhileTrue.prems | 
| 90 | have "P \<Turnstile> b <\<sim>> b'" by simp | |
| 91 | with `bval b s1` `P s1` | |
| 92 | have "bval b' s1" by (simp add: bequiv_up_to_def) | |
| 93 | moreover | |
| 94 | from WhileTrue.prems | |
| 95 | have "(\<lambda>s. P s \<and> bval b s) \<Turnstile> c \<sim> c'" by simp | |
| 96 | with `bval b s1` `P s1` `(c, s1) \<Rightarrow> s2` | |
| 97 | have "(c', s1) \<Rightarrow> s2" by (simp add: equiv_up_to_def) | |
| 98 | moreover | |
| 99 | from WhileTrue.prems | |
| 100 |   have "\<Turnstile> {\<lambda>s. P s \<and> bval b s} c {P}" by simp
 | |
| 101 | with `P s1` `bval b s1` `(c, s1) \<Rightarrow> s2` | |
| 102 | have "P s2" by (simp add: hoare_valid_def) | |
| 103 | hence "(WHILE b' DO c', s2) \<Rightarrow> s3" by (rule IH) | |
| 104 | ultimately | |
| 105 | show ?case by blast | |
| 106 | next | |
| 107 | case WhileFalse | |
| 108 | thus ?case by (auto simp: bequiv_up_to_def) | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44261diff
changeset | 109 | qed (fastforce simp: equiv_up_to_def bequiv_up_to_def hoare_valid_def)+ | 
| 44070 | 110 | |
| 111 | lemma bequiv_context_subst: | |
| 112 | "P \<Turnstile> b <\<sim>> b' \<Longrightarrow> (P s \<and> bval b s) = (P s \<and> bval b' s)" | |
| 113 | by (auto simp: bequiv_up_to_def) | |
| 114 | ||
| 115 | lemma equiv_up_to_while: | |
| 116 | "P \<Turnstile> b <\<sim>> b' \<Longrightarrow> (\<lambda>s. P s \<and> bval b s) \<Turnstile> c \<sim> c' \<Longrightarrow> | |
| 117 |    \<Turnstile> {\<lambda>s. P s \<and> bval b s} c {P} \<Longrightarrow> 
 | |
| 118 | P \<Turnstile> WHILE b DO c \<sim> WHILE b' DO c'" | |
| 119 | apply (safe intro!: equiv_up_toI) | |
| 120 | apply (auto intro: equiv_up_to_while_lemma)[1] | |
| 121 | apply (simp add: equiv_up_to_hoare_eq bequiv_context_subst) | |
| 122 | apply (drule equiv_up_to_sym [THEN iffD1]) | |
| 123 | apply (drule bequiv_up_to_sym [THEN iffD1]) | |
| 124 | apply (auto intro: equiv_up_to_while_lemma)[1] | |
| 125 | done | |
| 126 | ||
| 127 | lemma equiv_up_to_while_weak: | |
| 128 |   "P \<Turnstile> b <\<sim>> b' \<Longrightarrow> P \<Turnstile> c \<sim> c' \<Longrightarrow> \<Turnstile> {P} c {P} \<Longrightarrow> 
 | |
| 129 | P \<Turnstile> WHILE b DO c \<sim> WHILE b' DO c'" | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44261diff
changeset | 130 | by (fastforce elim!: equiv_up_to_while equiv_up_to_weaken | 
| 44070 | 131 | simp: hoare_valid_def) | 
| 132 | ||
| 133 | lemma equiv_up_to_if: | |
| 44261 | 134 | "P \<Turnstile> b <\<sim>> b' \<Longrightarrow> (\<lambda>s. P s \<and> bval b s) \<Turnstile> c \<sim> c' \<Longrightarrow> (\<lambda>s. P s \<and> \<not>bval b s) \<Turnstile> d \<sim> d' \<Longrightarrow> | 
| 44070 | 135 | P \<Turnstile> IF b THEN c ELSE d \<sim> IF b' THEN c' ELSE d'" | 
| 136 | by (auto simp: bequiv_up_to_def equiv_up_to_def) | |
| 137 | ||
| 138 | lemma equiv_up_to_if_weak: | |
| 139 | "P \<Turnstile> b <\<sim>> b' \<Longrightarrow> P \<Turnstile> c \<sim> c' \<Longrightarrow> P \<Turnstile> d \<sim> d' \<Longrightarrow> | |
| 140 | P \<Turnstile> IF b THEN c ELSE d \<sim> IF b' THEN c' ELSE d'" | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44261diff
changeset | 141 | by (fastforce elim!: equiv_up_to_if equiv_up_to_weaken) | 
| 44070 | 142 | |
| 143 | lemma equiv_up_to_if_True [intro!]: | |
| 144 | "(\<And>s. P s \<Longrightarrow> bval b s) \<Longrightarrow> P \<Turnstile> IF b THEN c1 ELSE c2 \<sim> c1" | |
| 145 | by (auto simp: equiv_up_to_def) | |
| 146 | ||
| 147 | lemma equiv_up_to_if_False [intro!]: | |
| 148 | "(\<And>s. P s \<Longrightarrow> \<not> bval b s) \<Longrightarrow> P \<Turnstile> IF b THEN c1 ELSE c2 \<sim> c2" | |
| 149 | by (auto simp: equiv_up_to_def) | |
| 150 | ||
| 151 | lemma equiv_up_to_while_False [intro!]: | |
| 152 | "(\<And>s. P s \<Longrightarrow> \<not> bval b s) \<Longrightarrow> P \<Turnstile> WHILE b DO c \<sim> SKIP" | |
| 153 | by (auto simp: equiv_up_to_def) | |
| 154 | ||
| 45200 | 155 | lemma while_never: "(c, s) \<Rightarrow> u \<Longrightarrow> c \<noteq> WHILE (Bc True) DO c'" | 
| 44070 | 156 | by (induct rule: big_step_induct) auto | 
| 157 | ||
| 158 | lemma equiv_up_to_while_True [intro!,simp]: | |
| 45200 | 159 | "P \<Turnstile> WHILE Bc True DO c \<sim> WHILE Bc True DO SKIP" | 
| 44070 | 160 | unfolding equiv_up_to_def | 
| 161 | by (blast dest: while_never) | |
| 162 | ||
| 163 | ||
| 44261 | 164 | end |