| author | smolkas | 
| Wed, 28 Nov 2012 12:25:43 +0100 | |
| changeset 50267 | 1da2e67242d6 | 
| parent 35621 | 1c084dda4c3c | 
| child 58249 | 180f1b3508ed | 
| permissions | -rw-r--r-- | 
| 13075 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 1 | (* Title: HOL/Induct/Comb.thy | 
| 3120 
c58423c20740
New directory to contain examples of (co)inductive definitions
 paulson parents: diff
changeset | 2 | Author: Lawrence C Paulson | 
| 
c58423c20740
New directory to contain examples of (co)inductive definitions
 paulson parents: diff
changeset | 3 | Copyright 1996 University of Cambridge | 
| 
c58423c20740
New directory to contain examples of (co)inductive definitions
 paulson parents: diff
changeset | 4 | *) | 
| 
c58423c20740
New directory to contain examples of (co)inductive definitions
 paulson parents: diff
changeset | 5 | |
| 13075 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 6 | header {* Combinatory Logic example: the Church-Rosser Theorem *}
 | 
| 3120 
c58423c20740
New directory to contain examples of (co)inductive definitions
 paulson parents: diff
changeset | 7 | |
| 16417 | 8 | theory Comb imports Main begin | 
| 13075 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 9 | |
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 10 | text {*
 | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 11 | Curiously, combinators do not include free variables. | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 12 | |
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 13 |   Example taken from \cite{camilleri-melham}.
 | 
| 3120 
c58423c20740
New directory to contain examples of (co)inductive definitions
 paulson parents: diff
changeset | 14 | |
| 13075 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 15 | HOL system proofs may be found in the HOL distribution at | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 16 | .../contrib/rule-induction/cl.ml | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 17 | *} | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 18 | |
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 19 | subsection {* Definitions *}
 | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 20 | |
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 21 | text {* Datatype definition of combinators @{text S} and @{text K}. *}
 | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 22 | |
| 3120 
c58423c20740
New directory to contain examples of (co)inductive definitions
 paulson parents: diff
changeset | 23 | datatype comb = K | 
| 
c58423c20740
New directory to contain examples of (co)inductive definitions
 paulson parents: diff
changeset | 24 | | S | 
| 19736 | 25 | | Ap comb comb (infixl "##" 90) | 
| 26 | ||
| 21210 | 27 | notation (xsymbols) | 
| 19736 | 28 | Ap (infixl "\<bullet>" 90) | 
| 29 | ||
| 3120 
c58423c20740
New directory to contain examples of (co)inductive definitions
 paulson parents: diff
changeset | 30 | |
| 13075 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 31 | text {*
 | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 32 |   Inductive definition of contractions, @{text "-1->"} and
 | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 33 |   (multi-step) reductions, @{text "--->"}.
 | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 34 | *} | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 35 | |
| 23746 | 36 | inductive_set | 
| 37 | contract :: "(comb*comb) set" | |
| 38 | and contract_rel1 :: "[comb,comb] => bool" (infixl "-1->" 50) | |
| 39 | where | |
| 40 | "x -1-> y == (x,y) \<in> contract" | |
| 41 | | K: "K##x##y -1-> x" | |
| 42 | | S: "S##x##y##z -1-> (x##z)##(y##z)" | |
| 43 | | Ap1: "x-1->y ==> x##z -1-> y##z" | |
| 44 | | Ap2: "x-1->y ==> z##x -1-> z##y" | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 45 | |
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 46 | abbreviation | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 47 | contract_rel :: "[comb,comb] => bool" (infixl "--->" 50) where | 
| 19736 | 48 | "x ---> y == (x,y) \<in> contract^*" | 
| 15816 | 49 | |
| 13075 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 50 | text {*
 | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 51 |   Inductive definition of parallel contractions, @{text "=1=>"} and
 | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 52 |   (multi-step) parallel reductions, @{text "===>"}.
 | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 53 | *} | 
| 3120 
c58423c20740
New directory to contain examples of (co)inductive definitions
 paulson parents: diff
changeset | 54 | |
| 23746 | 55 | inductive_set | 
| 3120 
c58423c20740
New directory to contain examples of (co)inductive definitions
 paulson parents: diff
changeset | 56 | parcontract :: "(comb*comb) set" | 
| 23746 | 57 | and parcontract_rel1 :: "[comb,comb] => bool" (infixl "=1=>" 50) | 
| 58 | where | |
| 59 | "x =1=> y == (x,y) \<in> parcontract" | |
| 60 | | refl: "x =1=> x" | |
| 61 | | K: "K##x##y =1=> x" | |
| 62 | | S: "S##x##y##z =1=> (x##z)##(y##z)" | |
| 63 | | Ap: "[| x=1=>y; z=1=>w |] ==> x##z =1=> y##w" | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 64 | |
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 65 | abbreviation | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 66 | parcontract_rel :: "[comb,comb] => bool" (infixl "===>" 50) where | 
| 19736 | 67 | "x ===> y == (x,y) \<in> parcontract^*" | 
| 3120 
c58423c20740
New directory to contain examples of (co)inductive definitions
 paulson parents: diff
changeset | 68 | |
| 13075 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 69 | text {*
 | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 70 | Misc definitions. | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 71 | *} | 
| 3120 
c58423c20740
New directory to contain examples of (co)inductive definitions
 paulson parents: diff
changeset | 72 | |
| 19736 | 73 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 74 | I :: comb where | 
| 19736 | 75 | "I = S##K##K" | 
| 3120 
c58423c20740
New directory to contain examples of (co)inductive definitions
 paulson parents: diff
changeset | 76 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 77 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 78 |   diamond   :: "('a * 'a)set => bool" where
 | 
| 13075 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 79 |     --{*confluence; Lambda/Commutation treats this more abstractly*}
 | 
| 19736 | 80 | "diamond(r) = (\<forall>x y. (x,y) \<in> r --> | 
| 13075 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 81 | (\<forall>y'. (x,y') \<in> r --> | 
| 19736 | 82 | (\<exists>z. (y,z) \<in> r & (y',z) \<in> r)))" | 
| 13075 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 83 | |
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 84 | |
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 85 | subsection {*Reflexive/Transitive closure preserves Church-Rosser property*}
 | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 86 | |
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 87 | text{*So does the Transitive closure, with a similar proof*}
 | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 88 | |
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 89 | text{*Strip lemma.  
 | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 90 | The induction hypothesis covers all but the last diamond of the strip.*} | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 91 | lemma diamond_strip_lemmaE [rule_format]: | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 92 | "[| diamond(r); (x,y) \<in> r^* |] ==> | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 93 | \<forall>y'. (x,y') \<in> r --> (\<exists>z. (y',z) \<in> r^* & (y,z) \<in> r)" | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 94 | apply (unfold diamond_def) | 
| 16563 | 95 | apply (erule rtrancl_induct) | 
| 96 | apply (meson rtrancl_refl) | |
| 97 | apply (meson rtrancl_trans r_into_rtrancl) | |
| 13075 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 98 | done | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 99 | |
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 100 | lemma diamond_rtrancl: "diamond(r) ==> diamond(r^*)" | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 101 | apply (simp (no_asm_simp) add: diamond_def) | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 102 | apply (rule impI [THEN allI, THEN allI]) | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 103 | apply (erule rtrancl_induct, blast) | 
| 16588 | 104 | apply (meson rtrancl_trans r_into_rtrancl diamond_strip_lemmaE) | 
| 13075 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 105 | done | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 106 | |
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 107 | |
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 108 | subsection {* Non-contraction results *}
 | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 109 | |
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 110 | text {* Derive a case for each combinator constructor. *}
 | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 111 | |
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 112 | inductive_cases | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 113 | K_contractE [elim!]: "K -1-> r" | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 114 | and S_contractE [elim!]: "S -1-> r" | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 115 | and Ap_contractE [elim!]: "p##q -1-> r" | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 116 | |
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 117 | declare contract.K [intro!] contract.S [intro!] | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 118 | declare contract.Ap1 [intro] contract.Ap2 [intro] | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 119 | |
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 120 | lemma I_contract_E [elim!]: "I -1-> z ==> P" | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 121 | by (unfold I_def, blast) | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 122 | |
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 123 | lemma K1_contractD [elim!]: "K##x -1-> z ==> (\<exists>x'. z = K##x' & x -1-> x')" | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 124 | by blast | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 125 | |
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 126 | lemma Ap_reduce1 [intro]: "x ---> y ==> x##z ---> y##z" | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 127 | apply (erule rtrancl_induct) | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 128 | apply (blast intro: rtrancl_trans)+ | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 129 | done | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 130 | |
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 131 | lemma Ap_reduce2 [intro]: "x ---> y ==> z##x ---> z##y" | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 132 | apply (erule rtrancl_induct) | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 133 | apply (blast intro: rtrancl_trans)+ | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 134 | done | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 135 | |
| 35621 | 136 | text {*Counterexample to the diamond property for @{term "x -1-> y"}*}
 | 
| 13075 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 137 | |
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 138 | lemma not_diamond_contract: "~ diamond(contract)" | 
| 35621 | 139 | by (unfold diamond_def, metis S_contractE contract.K) | 
| 13075 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 140 | |
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 141 | |
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 142 | subsection {* Results about Parallel Contraction *}
 | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 143 | |
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 144 | text {* Derive a case for each combinator constructor. *}
 | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 145 | |
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 146 | inductive_cases | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 147 | K_parcontractE [elim!]: "K =1=> r" | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 148 | and S_parcontractE [elim!]: "S =1=> r" | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 149 | and Ap_parcontractE [elim!]: "p##q =1=> r" | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 150 | |
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 151 | declare parcontract.intros [intro] | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 152 | |
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 153 | (*** Basic properties of parallel contraction ***) | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 154 | |
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 155 | subsection {* Basic properties of parallel contraction *}
 | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 156 | |
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 157 | lemma K1_parcontractD [dest!]: "K##x =1=> z ==> (\<exists>x'. z = K##x' & x =1=> x')" | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 158 | by blast | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 159 | |
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 160 | lemma S1_parcontractD [dest!]: "S##x =1=> z ==> (\<exists>x'. z = S##x' & x =1=> x')" | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 161 | by blast | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 162 | |
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 163 | lemma S2_parcontractD [dest!]: | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 164 | "S##x##y =1=> z ==> (\<exists>x' y'. z = S##x'##y' & x =1=> x' & y =1=> y')" | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 165 | by blast | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 166 | |
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 167 | text{*The rules above are not essential but make proofs much faster*}
 | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 168 | |
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 169 | text{*Church-Rosser property for parallel contraction*}
 | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 170 | lemma diamond_parcontract: "diamond parcontract" | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 171 | apply (unfold diamond_def) | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 172 | apply (rule impI [THEN allI, THEN allI]) | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 173 | apply (erule parcontract.induct, fast+) | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 174 | done | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 175 | |
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 176 | text {*
 | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 177 |   \medskip Equivalence of @{prop "p ---> q"} and @{prop "p ===> q"}.
 | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 178 | *} | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 179 | |
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 180 | lemma contract_subset_parcontract: "contract <= parcontract" | 
| 35621 | 181 | by (auto, erule contract.induct, blast+) | 
| 13075 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 182 | |
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 183 | text{*Reductions: simply throw together reflexivity, transitivity and
 | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 184 | the one-step reductions*} | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 185 | |
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 186 | declare r_into_rtrancl [intro] rtrancl_trans [intro] | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 187 | |
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 188 | (*Example only: not used*) | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 189 | lemma reduce_I: "I##x ---> x" | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 190 | by (unfold I_def, blast) | 
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 191 | |
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 192 | lemma parcontract_subset_reduce: "parcontract <= contract^*" | 
| 35621 | 193 | by (auto, erule parcontract.induct, blast+) | 
| 13075 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 194 | |
| 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 195 | lemma reduce_eq_parreduce: "contract^* = parcontract^*" | 
| 35621 | 196 | by (metis contract_subset_parcontract parcontract_subset_reduce rtrancl_subset) | 
| 13075 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 197 | |
| 35621 | 198 | theorem diamond_reduce: "diamond(contract^*)" | 
| 13075 
d3e1d554cd6d
conversion of some HOL/Induct proof scripts to Isar
 paulson parents: 
11359diff
changeset | 199 | by (simp add: reduce_eq_parreduce diamond_rtrancl diamond_parcontract) | 
| 3120 
c58423c20740
New directory to contain examples of (co)inductive definitions
 paulson parents: diff
changeset | 200 | |
| 
c58423c20740
New directory to contain examples of (co)inductive definitions
 paulson parents: diff
changeset | 201 | end |