| 
8177
 | 
     1  | 
(*  Title:      HOL/IMPP/Misc.thy
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author:     David von Oheimb
  | 
| 
 | 
     4  | 
    Copyright   1999 TUM
  | 
| 
17477
 | 
     5  | 
*)
  | 
| 
8177
 | 
     6  | 
  | 
| 
17477
 | 
     7  | 
header {* Several examples for Hoare logic *}
 | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
theory Misc
  | 
| 
 | 
    10  | 
imports Hoare
  | 
| 
 | 
    11  | 
begin
  | 
| 
8177
 | 
    12  | 
  | 
| 
 | 
    13  | 
defs
  | 
| 
28524
 | 
    14  | 
  newlocs_def: "newlocs       == %x. undefined"
  | 
| 
17477
 | 
    15  | 
  setlocs_def: "setlocs s l'  == case s of st g l => st g l'"
  | 
| 
 | 
    16  | 
  getlocs_def: "getlocs s     == case s of st g l => l"
  | 
| 
 | 
    17  | 
   update_def: "update s vn v == case vn of
  | 
| 
 | 
    18  | 
                               Glb gn => (case s of st g l => st (g(gn:=v)) l)
  | 
| 
 | 
    19  | 
                             | Loc ln => (case s of st g l => st g (l(ln:=v)))"
  | 
| 
 | 
    20  | 
  | 
| 
19803
 | 
    21  | 
  | 
| 
 | 
    22  | 
subsection "state access"
  | 
| 
 | 
    23  | 
  | 
| 
 | 
    24  | 
lemma getlocs_def2: "getlocs (st g l) = l"
  | 
| 
 | 
    25  | 
apply (unfold getlocs_def)
  | 
| 
 | 
    26  | 
apply simp
  | 
| 
 | 
    27  | 
done
  | 
| 
 | 
    28  | 
  | 
| 
 | 
    29  | 
lemma update_Loc_idem2 [simp]: "s[Loc Y::=s<Y>] = s"
  | 
| 
 | 
    30  | 
apply (unfold update_def)
  | 
| 
 | 
    31  | 
apply (induct_tac s)
  | 
| 
 | 
    32  | 
apply (simp add: getlocs_def2)
  | 
| 
 | 
    33  | 
done
  | 
| 
 | 
    34  | 
  | 
| 
 | 
    35  | 
lemma update_overwrt [simp]: "s[X::=x][X::=y] = s[X::=y]"
  | 
| 
 | 
    36  | 
apply (unfold update_def)
  | 
| 
 | 
    37  | 
apply (induct_tac X)
  | 
| 
 | 
    38  | 
apply  auto
  | 
| 
 | 
    39  | 
apply  (induct_tac [!] s)
  | 
| 
 | 
    40  | 
apply  auto
  | 
| 
 | 
    41  | 
done
  | 
| 
 | 
    42  | 
  | 
| 
 | 
    43  | 
lemma getlocs_Loc_update [simp]: "(s[Loc Y::=k])<Y'> = (if Y=Y' then k else s<Y'>)"
  | 
| 
 | 
    44  | 
apply (unfold update_def)
  | 
| 
 | 
    45  | 
apply (induct_tac s)
  | 
| 
 | 
    46  | 
apply (simp add: getlocs_def2)
  | 
| 
 | 
    47  | 
done
  | 
| 
 | 
    48  | 
  | 
| 
 | 
    49  | 
lemma getlocs_Glb_update [simp]: "getlocs (s[Glb Y::=k]) = getlocs s"
  | 
| 
 | 
    50  | 
apply (unfold update_def)
  | 
| 
 | 
    51  | 
apply (induct_tac s)
  | 
| 
 | 
    52  | 
apply (simp add: getlocs_def2)
  | 
| 
 | 
    53  | 
done
  | 
| 
 | 
    54  | 
  | 
| 
 | 
    55  | 
lemma getlocs_setlocs [simp]: "getlocs (setlocs s l) = l"
  | 
| 
 | 
    56  | 
apply (unfold setlocs_def)
  | 
| 
 | 
    57  | 
apply (induct_tac s)
  | 
| 
 | 
    58  | 
apply auto
  | 
| 
 | 
    59  | 
apply (simp add: getlocs_def2)
  | 
| 
 | 
    60  | 
done
  | 
| 
 | 
    61  | 
  | 
| 
 | 
    62  | 
lemma getlocs_setlocs_lemma: "getlocs (setlocs s (getlocs s')[Y::=k]) = getlocs (s'[Y::=k])"
  | 
| 
 | 
    63  | 
apply (induct_tac Y)
  | 
| 
 | 
    64  | 
apply (rule_tac [2] ext)
  | 
| 
 | 
    65  | 
apply auto
  | 
| 
 | 
    66  | 
done
  | 
| 
 | 
    67  | 
  | 
| 
 | 
    68  | 
(*unused*)
  | 
| 
 | 
    69  | 
lemma classic_Local_valid: 
  | 
| 
 | 
    70  | 
"!v. G|={%Z s. P Z (s[Loc Y::=v]) & s<Y> = a (s[Loc Y::=v])}.  
 | 
| 
 | 
    71  | 
  c .{%Z s. Q Z (s[Loc Y::=v])} ==> G|={P}. LOCAL Y:=a IN c .{Q}"
 | 
| 
 | 
    72  | 
apply (unfold hoare_valids_def)
  | 
| 
 | 
    73  | 
apply (simp (no_asm_use) add: triple_valid_def2)
  | 
| 
 | 
    74  | 
apply clarsimp
  | 
| 
 | 
    75  | 
apply (drule_tac x = "s<Y>" in spec)
  | 
| 
 | 
    76  | 
apply (tactic "smp_tac 1 1")
  | 
| 
 | 
    77  | 
apply (drule spec)
  | 
| 
 | 
    78  | 
apply (drule_tac x = "s[Loc Y::=a s]" in spec)
  | 
| 
 | 
    79  | 
apply (simp (no_asm_use))
  | 
| 
 | 
    80  | 
apply (erule (1) notE impE)
  | 
| 
 | 
    81  | 
apply (tactic "smp_tac 1 1")
  | 
| 
 | 
    82  | 
apply simp
  | 
| 
 | 
    83  | 
done
  | 
| 
 | 
    84  | 
  | 
| 
 | 
    85  | 
lemma classic_Local: "!v. G|-{%Z s. P Z (s[Loc Y::=v]) & s<Y> = a (s[Loc Y::=v])}.  
 | 
| 
 | 
    86  | 
  c .{%Z s. Q Z (s[Loc Y::=v])} ==> G|-{P}. LOCAL Y:=a IN c .{Q}"
 | 
| 
 | 
    87  | 
apply (rule export_s)
  | 
| 
 | 
    88  | 
apply (rule hoare_derivs.Local [THEN conseq1])
  | 
| 
 | 
    89  | 
apply (erule spec)
  | 
| 
 | 
    90  | 
apply force
  | 
| 
 | 
    91  | 
done
  | 
| 
 | 
    92  | 
  | 
| 
 | 
    93  | 
lemma classic_Local_indep: "[| Y~=Y'; G|-{P}. c .{%Z s. s<Y'> = d} |] ==>  
 | 
| 
 | 
    94  | 
  G|-{%Z s. P Z (s[Loc Y::=a s])}. LOCAL Y:=a IN c .{%Z s. s<Y'> = d}"
 | 
| 
 | 
    95  | 
apply (rule classic_Local)
  | 
| 
 | 
    96  | 
apply clarsimp
  | 
| 
 | 
    97  | 
apply (erule conseq12)
  | 
| 
 | 
    98  | 
apply clarsimp
  | 
| 
 | 
    99  | 
apply (drule sym)
  | 
| 
 | 
   100  | 
apply simp
  | 
| 
 | 
   101  | 
done
  | 
| 
 | 
   102  | 
  | 
| 
 | 
   103  | 
lemma Local_indep: "[| Y~=Y'; G|-{P}. c .{%Z s. s<Y'> = d} |] ==>  
 | 
| 
 | 
   104  | 
  G|-{%Z s. P Z (s[Loc Y::=a s])}. LOCAL Y:=a IN c .{%Z s. s<Y'> = d}"
 | 
| 
 | 
   105  | 
apply (rule export_s)
  | 
| 
 | 
   106  | 
apply (rule hoare_derivs.Local)
  | 
| 
 | 
   107  | 
apply clarsimp
  | 
| 
 | 
   108  | 
done
  | 
| 
 | 
   109  | 
  | 
| 
 | 
   110  | 
lemma weak_Local_indep: "[| Y'~=Y; G|-{P}. c .{%Z s. s<Y'> = d} |] ==>  
 | 
| 
 | 
   111  | 
  G|-{%Z s. P Z (s[Loc Y::=a s])}. LOCAL Y:=a IN c .{%Z s. s<Y'> = d}"
 | 
| 
 | 
   112  | 
apply (rule weak_Local)
  | 
| 
 | 
   113  | 
apply auto
  | 
| 
 | 
   114  | 
done
  | 
| 
 | 
   115  | 
  | 
| 
 | 
   116  | 
  | 
| 
 | 
   117  | 
lemma export_Local_invariant: "G|-{%Z s. Z = s<Y>}. LOCAL Y:=a IN c .{%Z s. Z = s<Y>}"
 | 
| 
 | 
   118  | 
apply (rule export_s)
  | 
| 
 | 
   119  | 
apply (rule_tac P' = "%Z s. s'=s & True" and Q' = "%Z s. s'<Y> = s<Y>" in conseq12)
  | 
| 
 | 
   120  | 
prefer 2
  | 
| 
 | 
   121  | 
apply  clarsimp
  | 
| 
 | 
   122  | 
apply (rule hoare_derivs.Local)
  | 
| 
 | 
   123  | 
apply clarsimp
  | 
| 
 | 
   124  | 
apply (rule trueI)
  | 
| 
 | 
   125  | 
done
  | 
| 
 | 
   126  | 
  | 
| 
 | 
   127  | 
lemma classic_Local_invariant: "G|-{%Z s. Z = s<Y>}. LOCAL Y:=a IN c .{%Z s. Z = s<Y>}"
 | 
| 
 | 
   128  | 
apply (rule classic_Local)
  | 
| 
 | 
   129  | 
apply clarsimp
  | 
| 
 | 
   130  | 
apply (rule trueI [THEN conseq12])
  | 
| 
 | 
   131  | 
apply clarsimp
  | 
| 
 | 
   132  | 
done
  | 
| 
 | 
   133  | 
  | 
| 
 | 
   134  | 
lemma Call_invariant: "G|-{P}. BODY pn .{%Z s. Q Z (setlocs s (getlocs s')[X::=s<Res>])} ==>  
 | 
| 
 | 
   135  | 
  G|-{%Z s. s'=s & I Z (getlocs (s[X::=k Z])) & P Z (setlocs s newlocs[Loc Arg::=a s])}.  
 | 
| 
 | 
   136  | 
  X:=CALL pn (a) .{%Z s. I Z (getlocs (s[X::=k Z])) & Q Z s}"
 | 
| 
 | 
   137  | 
apply (rule_tac s'1 = "s'" and
  | 
| 
 | 
   138  | 
  Q' = "%Z s. I Z (getlocs (s[X::=k Z])) = I Z (getlocs (s'[X::=k Z])) & Q Z s" in
  | 
| 
 | 
   139  | 
  hoare_derivs.Call [THEN conseq12])
  | 
| 
 | 
   140  | 
apply  (simp (no_asm_simp) add: getlocs_setlocs_lemma)
  | 
| 
 | 
   141  | 
apply force
  | 
| 
 | 
   142  | 
done
  | 
| 
8177
 | 
   143  | 
  | 
| 
 | 
   144  | 
end
  |