| author | haftmann | 
| Thu, 04 Dec 2008 14:43:33 +0100 | |
| changeset 28965 | 1de908189869 | 
| parent 28290 | 4cc2b6046258 | 
| child 29265 | 5b4247055bd7 | 
| permissions | -rw-r--r-- | 
| 23274 | 1  | 
structure LinZTac =  | 
2  | 
struct  | 
|
3  | 
||
4  | 
val trace = ref false;  | 
|
5  | 
fun trace_msg s = if !trace then tracing s else ();  | 
|
6  | 
||
7  | 
val cooper_ss = @{simpset};
 | 
|
8  | 
||
9  | 
val nT = HOLogic.natT;  | 
|
| 
26075
 
815f3ccc0b45
added lemma lists {normalize,succ,pred,minus,add,mult}_bin_simps
 
huffman 
parents: 
25985 
diff
changeset
 | 
10  | 
val binarith = @{thms normalize_bin_simps};
 | 
| 23318 | 11  | 
val comp_arith = binarith @ simp_thms  | 
| 23274 | 12  | 
|
| 
27651
 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 
haftmann 
parents: 
26075 
diff
changeset
 | 
13  | 
val zdvd_int = @{thm zdvd_int};
 | 
| 
 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 
haftmann 
parents: 
26075 
diff
changeset
 | 
14  | 
val zdiff_int_split = @{thm zdiff_int_split};
 | 
| 
 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 
haftmann 
parents: 
26075 
diff
changeset
 | 
15  | 
val all_nat = @{thm all_nat};
 | 
| 
 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 
haftmann 
parents: 
26075 
diff
changeset
 | 
16  | 
val ex_nat = @{thm ex_nat};
 | 
| 
 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 
haftmann 
parents: 
26075 
diff
changeset
 | 
17  | 
val number_of1 = @{thm number_of1};
 | 
| 
 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 
haftmann 
parents: 
26075 
diff
changeset
 | 
18  | 
val number_of2 = @{thm number_of2};
 | 
| 
 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 
haftmann 
parents: 
26075 
diff
changeset
 | 
19  | 
val split_zdiv = @{thm split_zdiv};
 | 
| 
 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 
haftmann 
parents: 
26075 
diff
changeset
 | 
20  | 
val split_zmod = @{thm split_zmod};
 | 
| 
 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 
haftmann 
parents: 
26075 
diff
changeset
 | 
21  | 
val mod_div_equality' = @{thm mod_div_equality'};
 | 
| 
 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 
haftmann 
parents: 
26075 
diff
changeset
 | 
22  | 
val split_div' = @{thm split_div'};
 | 
| 
 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 
haftmann 
parents: 
26075 
diff
changeset
 | 
23  | 
val Suc_plus1 = @{thm Suc_plus1};
 | 
| 
 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 
haftmann 
parents: 
26075 
diff
changeset
 | 
24  | 
val imp_le_cong = @{thm imp_le_cong};
 | 
| 
 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 
haftmann 
parents: 
26075 
diff
changeset
 | 
25  | 
val conj_le_cong = @{thm conj_le_cong};
 | 
| 23469 | 26  | 
val nat_mod_add_eq = @{thm mod_add1_eq} RS sym;
 | 
27  | 
val nat_mod_add_left_eq = @{thm mod_add_left_eq} RS sym;
 | 
|
28  | 
val nat_mod_add_right_eq = @{thm mod_add_right_eq} RS sym;
 | 
|
| 
27651
 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 
haftmann 
parents: 
26075 
diff
changeset
 | 
29  | 
val int_mod_add_eq = @{thm zmod_zadd1_eq} RS sym;
 | 
| 
 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 
haftmann 
parents: 
26075 
diff
changeset
 | 
30  | 
val int_mod_add_left_eq = @{thm zmod_zadd_left_eq} RS sym;
 | 
| 
 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 
haftmann 
parents: 
26075 
diff
changeset
 | 
31  | 
val int_mod_add_right_eq = @{thm zmod_zadd_right_eq} RS sym;
 | 
| 
 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 
haftmann 
parents: 
26075 
diff
changeset
 | 
32  | 
val nat_div_add_eq = @{thm div_add1_eq} RS sym;
 | 
| 
 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 
haftmann 
parents: 
26075 
diff
changeset
 | 
33  | 
val int_div_add_eq = @{thm zdiv_zadd1_eq} RS sym;
 | 
| 23274 | 34  | 
|
35  | 
fun prepare_for_linz q fm =  | 
|
36  | 
let  | 
|
37  | 
val ps = Logic.strip_params fm  | 
|
38  | 
val hs = map HOLogic.dest_Trueprop (Logic.strip_assums_hyp fm)  | 
|
39  | 
val c = HOLogic.dest_Trueprop (Logic.strip_assums_concl fm)  | 
|
40  | 
fun mk_all ((s, T), (P,n)) =  | 
|
41  | 
if 0 mem loose_bnos P then  | 
|
42  | 
(HOLogic.all_const T $ Abs (s, T, P), n)  | 
|
43  | 
else (incr_boundvars ~1 P, n-1)  | 
|
44  | 
fun mk_all2 (v, t) = HOLogic.all_const (fastype_of v) $ lambda v t;  | 
|
| 
27651
 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 
haftmann 
parents: 
26075 
diff
changeset
 | 
45  | 
val rhs = hs  | 
| 23274 | 46  | 
val np = length ps  | 
47  | 
val (fm',np) = foldr (fn ((x, T), (fm,n)) => mk_all ((x, T), (fm,n)))  | 
|
48  | 
(foldr HOLogic.mk_imp c rhs, np) ps  | 
|
49  | 
val (vs, _) = List.partition (fn t => q orelse (type_of t) = nT)  | 
|
50  | 
(term_frees fm' @ term_vars fm');  | 
|
51  | 
val fm2 = foldr mk_all2 fm' vs  | 
|
52  | 
in (fm2, np + length vs, length rhs) end;  | 
|
53  | 
||
54  | 
(*Object quantifier to meta --*)  | 
|
55  | 
fun spec_step n th = if (n=0) then th else (spec_step (n-1) th) RS spec ;  | 
|
56  | 
||
57  | 
(* object implication to meta---*)  | 
|
58  | 
fun mp_step n th = if (n=0) then th else (mp_step (n-1) th) RS mp;  | 
|
59  | 
||
60  | 
||
| 
23590
 
ad95084a5c63
renamed ObjectLogic.atomize_tac to ObjectLogic.atomize_prems_tac;
 
wenzelm 
parents: 
23469 
diff
changeset
 | 
61  | 
fun linz_tac ctxt q i = ObjectLogic.atomize_prems_tac i THEN (fn st =>  | 
| 23274 | 62  | 
let  | 
63  | 
val g = List.nth (prems_of st, i - 1)  | 
|
64  | 
val thy = ProofContext.theory_of ctxt  | 
|
65  | 
(* Transform the term*)  | 
|
66  | 
val (t,np,nh) = prepare_for_linz q g  | 
|
67  | 
(* Some simpsets for dealing with mod div abs and nat*)  | 
|
68  | 
val mod_div_simpset = HOL_basic_ss  | 
|
69  | 
addsimps [refl,nat_mod_add_eq, nat_mod_add_left_eq,  | 
|
70  | 
nat_mod_add_right_eq, int_mod_add_eq,  | 
|
71  | 
int_mod_add_right_eq, int_mod_add_left_eq,  | 
|
72  | 
nat_div_add_eq, int_div_add_eq,  | 
|
| 23469 | 73  | 
				  @{thm mod_self}, @{thm "zmod_self"},
 | 
| 
27651
 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 
haftmann 
parents: 
26075 
diff
changeset
 | 
74  | 
				  @{thm mod_by_0}, @{thm div_by_0},
 | 
| 23274 | 75  | 
				  @{thm "zdiv_zero"}, @{thm "zmod_zero"}, @{thm "div_0"}, @{thm "mod_0"},
 | 
76  | 
				  @{thm "zdiv_1"}, @{thm "zmod_1"}, @{thm "div_1"}, @{thm "mod_1"},
 | 
|
77  | 
Suc_plus1]  | 
|
| 23880 | 78  | 
			addsimps @{thms add_ac}
 | 
| 23274 | 79  | 
addsimprocs [cancel_div_mod_proc]  | 
80  | 
val simpset0 = HOL_basic_ss  | 
|
81  | 
addsimps [mod_div_equality', Suc_plus1]  | 
|
82  | 
addsimps comp_arith  | 
|
83  | 
      addsplits [split_zdiv, split_zmod, split_div', @{thm "split_min"}, @{thm "split_max"}]
 | 
|
84  | 
(* Simp rules for changing (n::int) to int n *)  | 
|
85  | 
val simpset1 = HOL_basic_ss  | 
|
86  | 
addsimps [nat_number_of_def, zdvd_int] @ map (fn r => r RS sym)  | 
|
| 23364 | 87  | 
        [@{thm int_int_eq}, @{thm zle_int}, @{thm zless_int}, @{thm zadd_int}, @{thm zmult_int}]
 | 
| 23274 | 88  | 
addsplits [zdiff_int_split]  | 
89  | 
(*simp rules for elimination of int n*)  | 
|
90  | 
||
91  | 
val simpset2 = HOL_basic_ss  | 
|
| 23364 | 92  | 
      addsimps [@{thm nat_0_le}, @{thm all_nat}, @{thm ex_nat}, @{thm number_of1}, @{thm number_of2}, @{thm int_0}, @{thm int_1}]
 | 
93  | 
      addcongs [@{thm conj_le_cong}, @{thm imp_le_cong}]
 | 
|
| 23274 | 94  | 
(* simp rules for elimination of abs *)  | 
| 23364 | 95  | 
    val simpset3 = HOL_basic_ss addsplits [@{thm abs_split}]
 | 
| 23274 | 96  | 
val ct = cterm_of thy (HOLogic.mk_Trueprop t)  | 
97  | 
(* Theorem for the nat --> int transformation *)  | 
|
98  | 
val pre_thm = Seq.hd (EVERY  | 
|
99  | 
[simp_tac mod_div_simpset 1, simp_tac simpset0 1,  | 
|
100  | 
TRY (simp_tac simpset1 1), TRY (simp_tac simpset2 1),  | 
|
101  | 
TRY (simp_tac simpset3 1), TRY (simp_tac cooper_ss 1)]  | 
|
102  | 
(trivial ct))  | 
|
103  | 
fun assm_tac i = REPEAT_DETERM_N nh (assume_tac i)  | 
|
104  | 
(* The result of the quantifier elimination *)  | 
|
105  | 
val (th, tac) = case (prop_of pre_thm) of  | 
|
106  | 
        Const ("==>", _) $ (Const ("Trueprop", _) $ t1) $ _ =>
 | 
|
| 28290 | 107  | 
let val pth = linzqe_oracle (cterm_of thy (Pattern.eta_long [] t1))  | 
| 23274 | 108  | 
in  | 
109  | 
((pth RS iffD2) RS pre_thm,  | 
|
110  | 
assm_tac (i + 1) THEN (if q then I else TRY) (rtac TrueI i))  | 
|
111  | 
end  | 
|
112  | 
| _ => (pre_thm, assm_tac i)  | 
|
113  | 
in (rtac (((mp_step nh) o (spec_step np)) th) i  | 
|
114  | 
THEN tac) st  | 
|
115  | 
end handle Subscript => no_tac st);  | 
|
116  | 
||
117  | 
fun linz_args meth =  | 
|
118  | 
let val parse_flag =  | 
|
119  | 
Args.$$$ "no_quantify" >> (K (K false));  | 
|
120  | 
in  | 
|
121  | 
Method.simple_args  | 
|
122  | 
  (Scan.optional (Args.$$$ "(" |-- Scan.repeat1 parse_flag --| Args.$$$ ")") [] >>
 | 
|
123  | 
curry (Library.foldl op |>) true)  | 
|
124  | 
(fn q => fn ctxt => meth ctxt q 1)  | 
|
125  | 
end;  | 
|
126  | 
||
127  | 
fun linz_method ctxt q i = Method.METHOD (fn facts =>  | 
|
128  | 
Method.insert_tac facts 1 THEN linz_tac ctxt q i);  | 
|
129  | 
||
130  | 
val setup =  | 
|
131  | 
  Method.add_method ("cooper",
 | 
|
132  | 
linz_args linz_method,  | 
|
133  | 
"decision procedure for linear integer arithmetic");  | 
|
134  | 
||
| 
23590
 
ad95084a5c63
renamed ObjectLogic.atomize_tac to ObjectLogic.atomize_prems_tac;
 
wenzelm 
parents: 
23469 
diff
changeset
 | 
135  | 
end  |