author | blanchet |
Sun, 01 Oct 2017 15:17:31 +0200 | |
changeset 66739 | 1e5c7599aa5b |
parent 61386 | 0a29a984a91b |
child 69593 | 3dda49e08b9d |
permissions | -rw-r--r-- |
41959 | 1 |
(* Title: Sequents/LK0.thy |
7093 | 2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
3 |
Copyright 1993 University of Cambridge |
|
4 |
||
5 |
There may be printing problems if a seqent is in expanded normal form |
|
35113 | 6 |
(eta-expanded, beta-contracted). |
7093 | 7 |
*) |
8 |
||
60770 | 9 |
section \<open>Classical First-Order Sequent Calculus\<close> |
17481 | 10 |
|
11 |
theory LK0 |
|
12 |
imports Sequents |
|
13 |
begin |
|
7093 | 14 |
|
55380
4de48353034e
prefer vacuous definitional type classes over axiomatic ones;
wenzelm
parents:
55233
diff
changeset
|
15 |
class "term" |
36452 | 16 |
default_sort "term" |
7093 | 17 |
|
18 |
consts |
|
19 |
||
21524 | 20 |
Trueprop :: "two_seqi" |
7093 | 21 |
|
17481 | 22 |
True :: o |
23 |
False :: o |
|
61385 | 24 |
equal :: "['a,'a] \<Rightarrow> o" (infixl "=" 50) |
25 |
Not :: "o \<Rightarrow> o" ("\<not> _" [40] 40) |
|
26 |
conj :: "[o,o] \<Rightarrow> o" (infixr "\<and>" 35) |
|
27 |
disj :: "[o,o] \<Rightarrow> o" (infixr "\<or>" 30) |
|
28 |
imp :: "[o,o] \<Rightarrow> o" (infixr "\<longrightarrow>" 25) |
|
29 |
iff :: "[o,o] \<Rightarrow> o" (infixr "\<longleftrightarrow>" 25) |
|
30 |
The :: "('a \<Rightarrow> o) \<Rightarrow> 'a" (binder "THE " 10) |
|
31 |
All :: "('a \<Rightarrow> o) \<Rightarrow> o" (binder "\<forall>" 10) |
|
32 |
Ex :: "('a \<Rightarrow> o) \<Rightarrow> o" (binder "\<exists>" 10) |
|
7093 | 33 |
|
34 |
syntax |
|
61386 | 35 |
"_Trueprop" :: "two_seqe" ("((_)/ \<turnstile> (_))" [6,6] 5) |
17481 | 36 |
|
60770 | 37 |
parse_translation \<open>[(@{syntax_const "_Trueprop"}, K (two_seq_tr @{const_syntax Trueprop}))]\<close> |
38 |
print_translation \<open>[(@{const_syntax Trueprop}, K (two_seq_tr' @{syntax_const "_Trueprop"}))]\<close> |
|
7093 | 39 |
|
22894 | 40 |
abbreviation |
61385 | 41 |
not_equal (infixl "\<noteq>" 50) where |
42 |
"x \<noteq> y \<equiv> \<not> (x = y)" |
|
7093 | 43 |
|
51309 | 44 |
axiomatization where |
7093 | 45 |
|
46 |
(*Structural rules: contraction, thinning, exchange [Soren Heilmann] *) |
|
47 |
||
61386 | 48 |
contRS: "$H \<turnstile> $E, $S, $S, $F \<Longrightarrow> $H \<turnstile> $E, $S, $F" and |
49 |
contLS: "$H, $S, $S, $G \<turnstile> $E \<Longrightarrow> $H, $S, $G \<turnstile> $E" and |
|
7093 | 50 |
|
61386 | 51 |
thinRS: "$H \<turnstile> $E, $F \<Longrightarrow> $H \<turnstile> $E, $S, $F" and |
52 |
thinLS: "$H, $G \<turnstile> $E \<Longrightarrow> $H, $S, $G \<turnstile> $E" and |
|
7093 | 53 |
|
61386 | 54 |
exchRS: "$H \<turnstile> $E, $R, $S, $F \<Longrightarrow> $H \<turnstile> $E, $S, $R, $F" and |
55 |
exchLS: "$H, $R, $S, $G \<turnstile> $E \<Longrightarrow> $H, $S, $R, $G \<turnstile> $E" and |
|
7093 | 56 |
|
61386 | 57 |
cut: "\<lbrakk>$H \<turnstile> $E, P; $H, P \<turnstile> $E\<rbrakk> \<Longrightarrow> $H \<turnstile> $E" and |
7093 | 58 |
|
59 |
(*Propositional rules*) |
|
60 |
||
61386 | 61 |
basic: "$H, P, $G \<turnstile> $E, P, $F" and |
7093 | 62 |
|
61386 | 63 |
conjR: "\<lbrakk>$H\<turnstile> $E, P, $F; $H\<turnstile> $E, Q, $F\<rbrakk> \<Longrightarrow> $H\<turnstile> $E, P \<and> Q, $F" and |
64 |
conjL: "$H, P, Q, $G \<turnstile> $E \<Longrightarrow> $H, P \<and> Q, $G \<turnstile> $E" and |
|
7093 | 65 |
|
61386 | 66 |
disjR: "$H \<turnstile> $E, P, Q, $F \<Longrightarrow> $H \<turnstile> $E, P \<or> Q, $F" and |
67 |
disjL: "\<lbrakk>$H, P, $G \<turnstile> $E; $H, Q, $G \<turnstile> $E\<rbrakk> \<Longrightarrow> $H, P \<or> Q, $G \<turnstile> $E" and |
|
7093 | 68 |
|
61386 | 69 |
impR: "$H, P \<turnstile> $E, Q, $F \<Longrightarrow> $H \<turnstile> $E, P \<longrightarrow> Q, $F" and |
70 |
impL: "\<lbrakk>$H,$G \<turnstile> $E,P; $H, Q, $G \<turnstile> $E\<rbrakk> \<Longrightarrow> $H, P \<longrightarrow> Q, $G \<turnstile> $E" and |
|
7093 | 71 |
|
61386 | 72 |
notR: "$H, P \<turnstile> $E, $F \<Longrightarrow> $H \<turnstile> $E, \<not> P, $F" and |
73 |
notL: "$H, $G \<turnstile> $E, P \<Longrightarrow> $H, \<not> P, $G \<turnstile> $E" and |
|
7093 | 74 |
|
61386 | 75 |
FalseL: "$H, False, $G \<turnstile> $E" and |
7093 | 76 |
|
61385 | 77 |
True_def: "True \<equiv> False \<longrightarrow> False" and |
78 |
iff_def: "P \<longleftrightarrow> Q \<equiv> (P \<longrightarrow> Q) \<and> (Q \<longrightarrow> P)" |
|
7093 | 79 |
|
51309 | 80 |
axiomatization where |
7093 | 81 |
(*Quantifiers*) |
82 |
||
61386 | 83 |
allR: "(\<And>x. $H \<turnstile> $E, P(x), $F) \<Longrightarrow> $H \<turnstile> $E, \<forall>x. P(x), $F" and |
84 |
allL: "$H, P(x), $G, \<forall>x. P(x) \<turnstile> $E \<Longrightarrow> $H, \<forall>x. P(x), $G \<turnstile> $E" and |
|
7093 | 85 |
|
61386 | 86 |
exR: "$H \<turnstile> $E, P(x), $F, \<exists>x. P(x) \<Longrightarrow> $H \<turnstile> $E, \<exists>x. P(x), $F" and |
87 |
exL: "(\<And>x. $H, P(x), $G \<turnstile> $E) \<Longrightarrow> $H, \<exists>x. P(x), $G \<turnstile> $E" and |
|
7093 | 88 |
|
89 |
(*Equality*) |
|
61386 | 90 |
refl: "$H \<turnstile> $E, a = a, $F" and |
91 |
subst: "\<And>G H E. $H(a), $G(a) \<turnstile> $E(a) \<Longrightarrow> $H(b), a=b, $G(b) \<turnstile> $E(b)" |
|
7093 | 92 |
|
93 |
(* Reflection *) |
|
94 |
||
51309 | 95 |
axiomatization where |
61386 | 96 |
eq_reflection: "\<turnstile> x = y \<Longrightarrow> (x \<equiv> y)" and |
97 |
iff_reflection: "\<turnstile> P \<longleftrightarrow> Q \<Longrightarrow> (P \<equiv> Q)" |
|
7093 | 98 |
|
99 |
(*Descriptions*) |
|
100 |
||
51309 | 101 |
axiomatization where |
61386 | 102 |
The: "\<lbrakk>$H \<turnstile> $E, P(a), $F; \<And>x.$H, P(x) \<turnstile> $E, x=a, $F\<rbrakk> \<Longrightarrow> |
103 |
$H \<turnstile> $E, P(THE x. P(x)), $F" |
|
7093 | 104 |
|
61385 | 105 |
definition If :: "[o, 'a, 'a] \<Rightarrow> 'a" ("(if (_)/ then (_)/ else (_))" 10) |
106 |
where "If(P,x,y) \<equiv> THE z::'a. (P \<longrightarrow> z = x) \<and> (\<not> P \<longrightarrow> z = y)" |
|
7093 | 107 |
|
21426 | 108 |
|
109 |
(** Structural Rules on formulas **) |
|
110 |
||
111 |
(*contraction*) |
|
112 |
||
61386 | 113 |
lemma contR: "$H \<turnstile> $E, P, P, $F \<Longrightarrow> $H \<turnstile> $E, P, $F" |
21426 | 114 |
by (rule contRS) |
115 |
||
61386 | 116 |
lemma contL: "$H, P, P, $G \<turnstile> $E \<Longrightarrow> $H, P, $G \<turnstile> $E" |
21426 | 117 |
by (rule contLS) |
118 |
||
119 |
(*thinning*) |
|
120 |
||
61386 | 121 |
lemma thinR: "$H \<turnstile> $E, $F \<Longrightarrow> $H \<turnstile> $E, P, $F" |
21426 | 122 |
by (rule thinRS) |
123 |
||
61386 | 124 |
lemma thinL: "$H, $G \<turnstile> $E \<Longrightarrow> $H, P, $G \<turnstile> $E" |
21426 | 125 |
by (rule thinLS) |
126 |
||
127 |
(*exchange*) |
|
128 |
||
61386 | 129 |
lemma exchR: "$H \<turnstile> $E, Q, P, $F \<Longrightarrow> $H \<turnstile> $E, P, Q, $F" |
21426 | 130 |
by (rule exchRS) |
131 |
||
61386 | 132 |
lemma exchL: "$H, Q, P, $G \<turnstile> $E \<Longrightarrow> $H, P, Q, $G \<turnstile> $E" |
21426 | 133 |
by (rule exchLS) |
134 |
||
60770 | 135 |
ML \<open> |
21426 | 136 |
(*Cut and thin, replacing the right-side formula*) |
27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
27146
diff
changeset
|
137 |
fun cutR_tac ctxt s i = |
59780 | 138 |
Rule_Insts.res_inst_tac ctxt [((("P", 0), Position.none), s)] [] @{thm cut} i THEN |
60754 | 139 |
resolve_tac ctxt @{thms thinR} i |
21426 | 140 |
|
141 |
(*Cut and thin, replacing the left-side formula*) |
|
27208
5fe899199f85
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
27146
diff
changeset
|
142 |
fun cutL_tac ctxt s i = |
59780 | 143 |
Rule_Insts.res_inst_tac ctxt [((("P", 0), Position.none), s)] [] @{thm cut} i THEN |
60754 | 144 |
resolve_tac ctxt @{thms thinL} (i + 1) |
60770 | 145 |
\<close> |
21426 | 146 |
|
147 |
||
148 |
(** If-and-only-if rules **) |
|
61386 | 149 |
lemma iffR: "\<lbrakk>$H,P \<turnstile> $E,Q,$F; $H,Q \<turnstile> $E,P,$F\<rbrakk> \<Longrightarrow> $H \<turnstile> $E, P \<longleftrightarrow> Q, $F" |
21426 | 150 |
apply (unfold iff_def) |
151 |
apply (assumption | rule conjR impR)+ |
|
152 |
done |
|
153 |
||
61386 | 154 |
lemma iffL: "\<lbrakk>$H,$G \<turnstile> $E,P,Q; $H,Q,P,$G \<turnstile> $E\<rbrakk> \<Longrightarrow> $H, P \<longleftrightarrow> Q, $G \<turnstile> $E" |
21426 | 155 |
apply (unfold iff_def) |
156 |
apply (assumption | rule conjL impL basic)+ |
|
157 |
done |
|
158 |
||
61386 | 159 |
lemma iff_refl: "$H \<turnstile> $E, (P \<longleftrightarrow> P), $F" |
21426 | 160 |
apply (rule iffR basic)+ |
161 |
done |
|
162 |
||
61386 | 163 |
lemma TrueR: "$H \<turnstile> $E, True, $F" |
21426 | 164 |
apply (unfold True_def) |
165 |
apply (rule impR) |
|
166 |
apply (rule basic) |
|
167 |
done |
|
168 |
||
169 |
(*Descriptions*) |
|
170 |
lemma the_equality: |
|
61386 | 171 |
assumes p1: "$H \<turnstile> $E, P(a), $F" |
172 |
and p2: "\<And>x. $H, P(x) \<turnstile> $E, x=a, $F" |
|
173 |
shows "$H \<turnstile> $E, (THE x. P(x)) = a, $F" |
|
21426 | 174 |
apply (rule cut) |
175 |
apply (rule_tac [2] p2) |
|
176 |
apply (rule The, rule thinR, rule exchRS, rule p1) |
|
177 |
apply (rule thinR, rule exchRS, rule p2) |
|
178 |
done |
|
179 |
||
180 |
||
181 |
(** Weakened quantifier rules. Incomplete, they let the search terminate.**) |
|
182 |
||
61386 | 183 |
lemma allL_thin: "$H, P(x), $G \<turnstile> $E \<Longrightarrow> $H, \<forall>x. P(x), $G \<turnstile> $E" |
21426 | 184 |
apply (rule allL) |
185 |
apply (erule thinL) |
|
186 |
done |
|
187 |
||
61386 | 188 |
lemma exR_thin: "$H \<turnstile> $E, P(x), $F \<Longrightarrow> $H \<turnstile> $E, \<exists>x. P(x), $F" |
21426 | 189 |
apply (rule exR) |
190 |
apply (erule thinR) |
|
191 |
done |
|
192 |
||
193 |
(*The rules of LK*) |
|
194 |
||
55228 | 195 |
lemmas [safe] = |
196 |
iffR iffL |
|
197 |
notR notL |
|
198 |
impR impL |
|
199 |
disjR disjL |
|
200 |
conjR conjL |
|
201 |
FalseL TrueR |
|
202 |
refl basic |
|
60770 | 203 |
ML \<open>val prop_pack = Cla.get_pack @{context}\<close> |
55228 | 204 |
|
205 |
lemmas [safe] = exL allR |
|
206 |
lemmas [unsafe] = the_equality exR_thin allL_thin |
|
60770 | 207 |
ML \<open>val LK_pack = Cla.get_pack @{context}\<close> |
21426 | 208 |
|
60770 | 209 |
ML \<open> |
55228 | 210 |
val LK_dup_pack = |
211 |
Cla.put_pack prop_pack @{context} |
|
212 |
|> fold_rev Cla.add_safe @{thms allR exL} |
|
213 |
|> fold_rev Cla.add_unsafe @{thms allL exR the_equality} |
|
214 |
|> Cla.get_pack; |
|
60770 | 215 |
\<close> |
21426 | 216 |
|
55228 | 217 |
method_setup fast_prop = |
60770 | 218 |
\<open>Scan.succeed (fn ctxt => SIMPLE_METHOD' (Cla.fast_tac (Cla.put_pack prop_pack ctxt)))\<close> |
21426 | 219 |
|
55228 | 220 |
method_setup fast_dup = |
60770 | 221 |
\<open>Scan.succeed (fn ctxt => SIMPLE_METHOD' (Cla.fast_tac (Cla.put_pack LK_dup_pack ctxt)))\<close> |
55228 | 222 |
|
223 |
method_setup best_dup = |
|
60770 | 224 |
\<open>Scan.succeed (fn ctxt => SIMPLE_METHOD' (Cla.best_tac (Cla.put_pack LK_dup_pack ctxt)))\<close> |
7093 | 225 |
|
60770 | 226 |
method_setup lem = \<open> |
60754 | 227 |
Attrib.thm >> (fn th => fn ctxt => |
55233 | 228 |
SIMPLE_METHOD' (fn i => |
60754 | 229 |
resolve_tac ctxt [@{thm thinR} RS @{thm cut}] i THEN |
230 |
REPEAT (resolve_tac ctxt @{thms thinL} i) THEN |
|
231 |
resolve_tac ctxt [th] i)) |
|
60770 | 232 |
\<close> |
55233 | 233 |
|
7118
ee384c7b7416
adding missing declarations for the <<...>> notation
paulson
parents:
7093
diff
changeset
|
234 |
|
21426 | 235 |
lemma mp_R: |
61386 | 236 |
assumes major: "$H \<turnstile> $E, $F, P \<longrightarrow> Q" |
237 |
and minor: "$H \<turnstile> $E, $F, P" |
|
238 |
shows "$H \<turnstile> $E, Q, $F" |
|
21426 | 239 |
apply (rule thinRS [THEN cut], rule major) |
55228 | 240 |
apply step |
21426 | 241 |
apply (rule thinR, rule minor) |
242 |
done |
|
243 |
||
244 |
lemma mp_L: |
|
61386 | 245 |
assumes major: "$H, $G \<turnstile> $E, P \<longrightarrow> Q" |
246 |
and minor: "$H, $G, Q \<turnstile> $E" |
|
247 |
shows "$H, P, $G \<turnstile> $E" |
|
21426 | 248 |
apply (rule thinL [THEN cut], rule major) |
55228 | 249 |
apply step |
21426 | 250 |
apply (rule thinL, rule minor) |
251 |
done |
|
252 |
||
253 |
||
254 |
(** Two rules to generate left- and right- rules from implications **) |
|
255 |
||
256 |
lemma R_of_imp: |
|
61386 | 257 |
assumes major: "\<turnstile> P \<longrightarrow> Q" |
258 |
and minor: "$H \<turnstile> $E, $F, P" |
|
259 |
shows "$H \<turnstile> $E, Q, $F" |
|
21426 | 260 |
apply (rule mp_R) |
261 |
apply (rule_tac [2] minor) |
|
262 |
apply (rule thinRS, rule major [THEN thinLS]) |
|
263 |
done |
|
264 |
||
265 |
lemma L_of_imp: |
|
61386 | 266 |
assumes major: "\<turnstile> P \<longrightarrow> Q" |
267 |
and minor: "$H, $G, Q \<turnstile> $E" |
|
268 |
shows "$H, P, $G \<turnstile> $E" |
|
21426 | 269 |
apply (rule mp_L) |
270 |
apply (rule_tac [2] minor) |
|
271 |
apply (rule thinRS, rule major [THEN thinLS]) |
|
272 |
done |
|
273 |
||
274 |
(*Can be used to create implications in a subgoal*) |
|
275 |
lemma backwards_impR: |
|
61386 | 276 |
assumes prem: "$H, $G \<turnstile> $E, $F, P \<longrightarrow> Q" |
277 |
shows "$H, P, $G \<turnstile> $E, Q, $F" |
|
21426 | 278 |
apply (rule mp_L) |
279 |
apply (rule_tac [2] basic) |
|
280 |
apply (rule thinR, rule prem) |
|
281 |
done |
|
282 |
||
61386 | 283 |
lemma conjunct1: "\<turnstile>P \<and> Q \<Longrightarrow> \<turnstile>P" |
21426 | 284 |
apply (erule thinR [THEN cut]) |
285 |
apply fast |
|
286 |
done |
|
287 |
||
61386 | 288 |
lemma conjunct2: "\<turnstile>P \<and> Q \<Longrightarrow> \<turnstile>Q" |
21426 | 289 |
apply (erule thinR [THEN cut]) |
290 |
apply fast |
|
291 |
done |
|
292 |
||
61386 | 293 |
lemma spec: "\<turnstile> (\<forall>x. P(x)) \<Longrightarrow> \<turnstile> P(x)" |
21426 | 294 |
apply (erule thinR [THEN cut]) |
295 |
apply fast |
|
296 |
done |
|
297 |
||
298 |
||
299 |
(** Equality **) |
|
300 |
||
61386 | 301 |
lemma sym: "\<turnstile> a = b \<longrightarrow> b = a" |
55228 | 302 |
by (safe add!: subst) |
21426 | 303 |
|
61386 | 304 |
lemma trans: "\<turnstile> a = b \<longrightarrow> b = c \<longrightarrow> a = c" |
55228 | 305 |
by (safe add!: subst) |
21426 | 306 |
|
307 |
(* Symmetry of equality in hypotheses *) |
|
45602 | 308 |
lemmas symL = sym [THEN L_of_imp] |
21426 | 309 |
|
310 |
(* Symmetry of equality in hypotheses *) |
|
45602 | 311 |
lemmas symR = sym [THEN R_of_imp] |
21426 | 312 |
|
61386 | 313 |
lemma transR: "\<lbrakk>$H\<turnstile> $E, $F, a = b; $H\<turnstile> $E, $F, b=c\<rbrakk> \<Longrightarrow> $H\<turnstile> $E, a = c, $F" |
21426 | 314 |
by (rule trans [THEN R_of_imp, THEN mp_R]) |
315 |
||
316 |
(* Two theorms for rewriting only one instance of a definition: |
|
317 |
the first for definitions of formulae and the second for terms *) |
|
318 |
||
61386 | 319 |
lemma def_imp_iff: "(A \<equiv> B) \<Longrightarrow> \<turnstile> A \<longleftrightarrow> B" |
21426 | 320 |
apply unfold |
321 |
apply (rule iff_refl) |
|
322 |
done |
|
323 |
||
61386 | 324 |
lemma meta_eq_to_obj_eq: "(A \<equiv> B) \<Longrightarrow> \<turnstile> A = B" |
21426 | 325 |
apply unfold |
326 |
apply (rule refl) |
|
327 |
done |
|
328 |
||
329 |
||
330 |
(** if-then-else rules **) |
|
331 |
||
61386 | 332 |
lemma if_True: "\<turnstile> (if True then x else y) = x" |
21426 | 333 |
unfolding If_def by fast |
334 |
||
61386 | 335 |
lemma if_False: "\<turnstile> (if False then x else y) = y" |
21426 | 336 |
unfolding If_def by fast |
337 |
||
61386 | 338 |
lemma if_P: "\<turnstile> P \<Longrightarrow> \<turnstile> (if P then x else y) = x" |
21426 | 339 |
apply (unfold If_def) |
340 |
apply (erule thinR [THEN cut]) |
|
341 |
apply fast |
|
342 |
done |
|
343 |
||
61386 | 344 |
lemma if_not_P: "\<turnstile> \<not> P \<Longrightarrow> \<turnstile> (if P then x else y) = y" |
21426 | 345 |
apply (unfold If_def) |
346 |
apply (erule thinR [THEN cut]) |
|
347 |
apply fast |
|
348 |
done |
|
349 |
||
350 |
end |