| author | smolkas | 
| Thu, 14 Feb 2013 22:49:22 +0100 | |
| changeset 51129 | 1edc2cc25f19 | 
| parent 49962 | a8cc904a6820 | 
| child 51489 | f738e6dbd844 | 
| permissions | -rw-r--r-- | 
| 28952 
15a4b2cf8c34
made repository layout more coherent with logical distribution structure; stripped some $Id$s
 haftmann parents: 
27239diff
changeset | 1 | (* Author : Jacques D. Fleuriot | 
| 12224 | 2 | Copyright : 2001 University of Edinburgh | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 3 | Conversion to Isar and new proofs by Lawrence C Paulson, 2004 | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 4 | Conversion of Mac Laurin to Isar by Lukas Bulwahn and Bernhard Häupler, 2005 | 
| 12224 | 5 | *) | 
| 6 | ||
| 15944 | 7 | header{*MacLaurin Series*}
 | 
| 8 | ||
| 15131 | 9 | theory MacLaurin | 
| 29811 
026b0f9f579f
fixed Proofs and dependencies ; Theory Dense_Linear_Order moved to Library
 chaieb@chaieb-laptop parents: 
29803diff
changeset | 10 | imports Transcendental | 
| 15131 | 11 | begin | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 12 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 13 | subsection{*Maclaurin's Theorem with Lagrange Form of Remainder*}
 | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 14 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 15 | text{*This is a very long, messy proof even now that it's been broken down
 | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 16 | into lemmas.*} | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 17 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 18 | lemma Maclaurin_lemma: | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 19 | "0 < h ==> | 
| 15539 | 20 | \<exists>B. f h = (\<Sum>m=0..<n. (j m / real (fact m)) * (h^m)) + | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 21 | (B * ((h^n) / real(fact n)))" | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 22 | by (rule exI[where x = "(f h - (\<Sum>m=0..<n. (j m / real (fact m)) * h^m)) * | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 23 | real(fact n) / (h^n)"]) simp | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 24 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 25 | lemma eq_diff_eq': "(x = y - z) = (y = x + (z::real))" | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 26 | by arith | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 27 | |
| 32038 | 28 | lemma fact_diff_Suc [rule_format]: | 
| 29 | "n < Suc m ==> fact (Suc m - n) = (Suc m - n) * fact (m - n)" | |
| 30 | by (subst fact_reduce_nat, auto) | |
| 31 | ||
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 32 | lemma Maclaurin_lemma2: | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 33 | fixes B | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 34 | assumes DERIV : "\<forall>m t. m < n \<and> 0\<le>t \<and> t\<le>h \<longrightarrow> DERIV (diff m) t :> diff (Suc m) t" | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 35 | and INIT : "n = Suc k" | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 36 | defines "difg \<equiv> (\<lambda>m t. diff m t - ((\<Sum>p = 0..<n - m. diff (m + p) 0 / real (fact p) * t ^ p) + | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 37 | B * (t ^ (n - m) / real (fact (n - m)))))" (is "difg \<equiv> (\<lambda>m t. diff m t - ?difg m t)") | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 38 | shows "\<forall>m t. m < n & 0 \<le> t & t \<le> h --> DERIV (difg m) t :> difg (Suc m) t" | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 39 | proof (rule allI impI)+ | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 40 | fix m t assume INIT2: "m < n & 0 \<le> t & t \<le> h" | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 41 | have "DERIV (difg m) t :> diff (Suc m) t - | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 42 | ((\<Sum>x = 0..<n - m. real x * t ^ (x - Suc 0) * diff (m + x) 0 / real (fact x)) + | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 43 | real (n - m) * t ^ (n - Suc m) * B / real (fact (n - m)))" unfolding difg_def | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 44 | by (auto intro!: DERIV_intros DERIV[rule_format, OF INIT2]) | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 45 | moreover | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 46 |   from INIT2 have intvl: "{..<n - m} = insert 0 (Suc ` {..<n - Suc m})" and "0 < n - m"
 | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 47 | unfolding atLeast0LessThan[symmetric] by auto | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 48 | have "(\<Sum>x = 0..<n - m. real x * t ^ (x - Suc 0) * diff (m + x) 0 / real (fact x)) = | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 49 | (\<Sum>x = 0..<n - Suc m. real (Suc x) * t ^ x * diff (Suc m + x) 0 / real (fact (Suc x)))" | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 50 | unfolding intvl atLeast0LessThan by (subst setsum.insert) (auto simp: setsum.reindex) | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 51 | moreover | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 52 | have fact_neq_0: "\<And>x::nat. real (fact x) + real x * real (fact x) \<noteq> 0" | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 53 | by (metis fact_gt_zero_nat not_add_less1 real_of_nat_add real_of_nat_mult real_of_nat_zero_iff) | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 54 | have "\<And>x. real (Suc x) * t ^ x * diff (Suc m + x) 0 / real (fact (Suc x)) = | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 55 | diff (Suc m + x) 0 * t^x / real (fact x)" | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 56 | by (auto simp: field_simps real_of_nat_Suc fact_neq_0 intro!: nonzero_divide_eq_eq[THEN iffD2]) | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 57 | moreover | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 58 | have "real (n - m) * t ^ (n - Suc m) * B / real (fact (n - m)) = | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 59 | B * (t ^ (n - Suc m) / real (fact (n - Suc m)))" | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 60 | using `0 < n - m` by (simp add: fact_reduce_nat) | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 61 | ultimately show "DERIV (difg m) t :> difg (Suc m) t" | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 62 | unfolding difg_def by simp | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 63 | qed | 
| 32038 | 64 | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 65 | lemma Maclaurin: | 
| 29187 | 66 | assumes h: "0 < h" | 
| 67 | assumes n: "0 < n" | |
| 68 | assumes diff_0: "diff 0 = f" | |
| 69 | assumes diff_Suc: | |
| 70 | "\<forall>m t. m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t" | |
| 71 | shows | |
| 72 | "\<exists>t. 0 < t & t < h & | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 73 | f h = | 
| 15539 | 74 |               setsum (%m. (diff m 0 / real (fact m)) * h ^ m) {0..<n} +
 | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 75 | (diff n t / real (fact n)) * h ^ n" | 
| 29187 | 76 | proof - | 
| 77 | from n obtain m where m: "n = Suc m" | |
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 78 | by (cases n) (simp add: n) | 
| 29187 | 79 | |
| 80 | obtain B where f_h: "f h = | |
| 81 | (\<Sum>m = 0..<n. diff m (0\<Colon>real) / real (fact m) * h ^ m) + | |
| 82 | B * (h ^ n / real (fact n))" | |
| 83 | using Maclaurin_lemma [OF h] .. | |
| 84 | ||
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 85 | def g \<equiv> "(\<lambda>t. f t - | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 86 |     (setsum (\<lambda>m. (diff m 0 / real(fact m)) * t^m) {0..<n}
 | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 87 | + (B * (t^n / real(fact n)))))" | 
| 29187 | 88 | |
| 89 | have g2: "g 0 = 0 & g h = 0" | |
| 90 | apply (simp add: m f_h g_def del: setsum_op_ivl_Suc) | |
| 30082 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
29811diff
changeset | 91 | apply (cut_tac n = m and k = "Suc 0" in sumr_offset2) | 
| 29187 | 92 | apply (simp add: eq_diff_eq' diff_0 del: setsum_op_ivl_Suc) | 
| 93 | done | |
| 94 | ||
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 95 | def difg \<equiv> "(%m t. diff m t - | 
| 29187 | 96 |     (setsum (%p. (diff (m + p) 0 / real (fact p)) * (t ^ p)) {0..<n-m}
 | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 97 | + (B * ((t ^ (n - m)) / real (fact (n - m))))))" | 
| 29187 | 98 | |
| 99 | have difg_0: "difg 0 = g" | |
| 100 | unfolding difg_def g_def by (simp add: diff_0) | |
| 101 | ||
| 102 | have difg_Suc: "\<forall>(m\<Colon>nat) t\<Colon>real. | |
| 103 | m < n \<and> (0\<Colon>real) \<le> t \<and> t \<le> h \<longrightarrow> DERIV (difg m) t :> difg (Suc m) t" | |
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 104 | using diff_Suc m unfolding difg_def by (rule Maclaurin_lemma2) | 
| 29187 | 105 | |
| 106 | have difg_eq_0: "\<forall>m. m < n --> difg m 0 = 0" | |
| 107 | apply clarify | |
| 108 | apply (simp add: m difg_def) | |
| 109 | apply (frule less_iff_Suc_add [THEN iffD1], clarify) | |
| 110 | apply (simp del: setsum_op_ivl_Suc) | |
| 30082 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
29811diff
changeset | 111 | apply (insert sumr_offset4 [of "Suc 0"]) | 
| 32047 | 112 | apply (simp del: setsum_op_ivl_Suc fact_Suc) | 
| 29187 | 113 | done | 
| 114 | ||
| 115 | have isCont_difg: "\<And>m x. \<lbrakk>m < n; 0 \<le> x; x \<le> h\<rbrakk> \<Longrightarrow> isCont (difg m) x" | |
| 116 | by (rule DERIV_isCont [OF difg_Suc [rule_format]]) simp | |
| 117 | ||
| 118 | have differentiable_difg: | |
| 119 | "\<And>m x. \<lbrakk>m < n; 0 \<le> x; x \<le> h\<rbrakk> \<Longrightarrow> difg m differentiable x" | |
| 120 | by (rule differentiableI [OF difg_Suc [rule_format]]) simp | |
| 121 | ||
| 122 | have difg_Suc_eq_0: "\<And>m t. \<lbrakk>m < n; 0 \<le> t; t \<le> h; DERIV (difg m) t :> 0\<rbrakk> | |
| 123 | \<Longrightarrow> difg (Suc m) t = 0" | |
| 124 | by (rule DERIV_unique [OF difg_Suc [rule_format]]) simp | |
| 125 | ||
| 126 | have "m < n" using m by simp | |
| 127 | ||
| 128 | have "\<exists>t. 0 < t \<and> t < h \<and> DERIV (difg m) t :> 0" | |
| 129 | using `m < n` | |
| 130 | proof (induct m) | |
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 131 | case 0 | 
| 29187 | 132 | show ?case | 
| 133 | proof (rule Rolle) | |
| 134 | show "0 < h" by fact | |
| 135 | show "difg 0 0 = difg 0 h" by (simp add: difg_0 g2) | |
| 136 | show "\<forall>x. 0 \<le> x \<and> x \<le> h \<longrightarrow> isCont (difg (0\<Colon>nat)) x" | |
| 137 | by (simp add: isCont_difg n) | |
| 138 | show "\<forall>x. 0 < x \<and> x < h \<longrightarrow> difg (0\<Colon>nat) differentiable x" | |
| 139 | by (simp add: differentiable_difg n) | |
| 140 | qed | |
| 141 | next | |
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 142 | case (Suc m') | 
| 29187 | 143 | hence "\<exists>t. 0 < t \<and> t < h \<and> DERIV (difg m') t :> 0" by simp | 
| 144 | then obtain t where t: "0 < t" "t < h" "DERIV (difg m') t :> 0" by fast | |
| 145 | have "\<exists>t'. 0 < t' \<and> t' < t \<and> DERIV (difg (Suc m')) t' :> 0" | |
| 146 | proof (rule Rolle) | |
| 147 | show "0 < t" by fact | |
| 148 | show "difg (Suc m') 0 = difg (Suc m') t" | |
| 149 | using t `Suc m' < n` by (simp add: difg_Suc_eq_0 difg_eq_0) | |
| 150 | show "\<forall>x. 0 \<le> x \<and> x \<le> t \<longrightarrow> isCont (difg (Suc m')) x" | |
| 151 | using `t < h` `Suc m' < n` by (simp add: isCont_difg) | |
| 152 | show "\<forall>x. 0 < x \<and> x < t \<longrightarrow> difg (Suc m') differentiable x" | |
| 153 | using `t < h` `Suc m' < n` by (simp add: differentiable_difg) | |
| 154 | qed | |
| 155 | thus ?case | |
| 156 | using `t < h` by auto | |
| 157 | qed | |
| 158 | ||
| 159 | then obtain t where "0 < t" "t < h" "DERIV (difg m) t :> 0" by fast | |
| 160 | ||
| 161 | hence "difg (Suc m) t = 0" | |
| 162 | using `m < n` by (simp add: difg_Suc_eq_0) | |
| 163 | ||
| 164 | show ?thesis | |
| 165 | proof (intro exI conjI) | |
| 166 | show "0 < t" by fact | |
| 167 | show "t < h" by fact | |
| 168 | show "f h = | |
| 169 | (\<Sum>m = 0..<n. diff m 0 / real (fact m) * h ^ m) + | |
| 170 | diff n t / real (fact n) * h ^ n" | |
| 171 | using `difg (Suc m) t = 0` | |
| 32047 | 172 | by (simp add: m f_h difg_def del: fact_Suc) | 
| 29187 | 173 | qed | 
| 174 | qed | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 175 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 176 | lemma Maclaurin_objl: | 
| 25162 | 177 | "0 < h & n>0 & diff 0 = f & | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 178 | (\<forall>m t. m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 179 | --> (\<exists>t. 0 < t & t < h & | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 180 | f h = (\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) + | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 181 | diff n t / real (fact n) * h ^ n)" | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 182 | by (blast intro: Maclaurin) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 183 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 184 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 185 | lemma Maclaurin2: | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 186 | assumes INIT1: "0 < h " and INIT2: "diff 0 = f" | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 187 | and DERIV: "\<forall>m t. | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 188 | m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t" | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 189 | shows "\<exists>t. 0 < t \<and> t \<le> h \<and> f h = | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 190 | (\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) + | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 191 | diff n t / real (fact n) * h ^ n" | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 192 | proof (cases "n") | 
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44319diff
changeset | 193 | case 0 with INIT1 INIT2 show ?thesis by fastforce | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 194 | next | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 195 | case Suc | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 196 | hence "n > 0" by simp | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 197 | from INIT1 this INIT2 DERIV have "\<exists>t>0. t < h \<and> | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 198 | f h = | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 199 | (\<Sum>m = 0..<n. diff m 0 / real (fact m) * h ^ m) + diff n t / real (fact n) * h ^ n" | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 200 | by (rule Maclaurin) | 
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44319diff
changeset | 201 | thus ?thesis by fastforce | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 202 | qed | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 203 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 204 | lemma Maclaurin2_objl: | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 205 | "0 < h & diff 0 = f & | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 206 | (\<forall>m t. | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 207 | m < n & 0 \<le> t & t \<le> h --> DERIV (diff m) t :> diff (Suc m) t) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 208 | --> (\<exists>t. 0 < t & | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 209 | t \<le> h & | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 210 | f h = | 
| 15539 | 211 | (\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) + | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 212 | diff n t / real (fact n) * h ^ n)" | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 213 | by (blast intro: Maclaurin2) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 214 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 215 | lemma Maclaurin_minus: | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 216 | assumes "h < 0" "0 < n" "diff 0 = f" | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 217 | and DERIV: "\<forall>m t. m < n & h \<le> t & t \<le> 0 --> DERIV (diff m) t :> diff (Suc m) t" | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 218 | shows "\<exists>t. h < t & t < 0 & | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 219 | f h = (\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) + | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 220 | diff n t / real (fact n) * h ^ n" | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 221 | proof - | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 222 |   txt "Transform @{text ABL'} into @{text DERIV_intros} format."
 | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 223 | note DERIV' = DERIV_chain'[OF _ DERIV[rule_format], THEN DERIV_cong] | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 224 | from assms | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 225 | have "\<exists>t>0. t < - h \<and> | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 226 | f (- (- h)) = | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 227 | (\<Sum>m = 0..<n. | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 228 | (- 1) ^ m * diff m (- 0) / real (fact m) * (- h) ^ m) + | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 229 | (- 1) ^ n * diff n (- t) / real (fact n) * (- h) ^ n" | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 230 | by (intro Maclaurin) (auto intro!: DERIV_intros DERIV') | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 231 | then guess t .. | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 232 | moreover | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 233 | have "-1 ^ n * diff n (- t) * (- h) ^ n / real (fact n) = diff n (- t) * h ^ n / real (fact n)" | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 234 | by (auto simp add: power_mult_distrib[symmetric]) | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 235 | moreover | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 236 | have "(SUM m = 0..<n. -1 ^ m * diff m 0 * (- h) ^ m / real (fact m)) = (SUM m = 0..<n. diff m 0 * h ^ m / real (fact m))" | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 237 | by (auto intro: setsum_cong simp add: power_mult_distrib[symmetric]) | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 238 | ultimately have " h < - t \<and> | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 239 | - t < 0 \<and> | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 240 | f h = | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 241 | (\<Sum>m = 0..<n. diff m 0 / real (fact m) * h ^ m) + diff n (- t) / real (fact n) * h ^ n" | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 242 | by auto | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 243 | thus ?thesis .. | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 244 | qed | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 245 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 246 | lemma Maclaurin_minus_objl: | 
| 25162 | 247 | "(h < 0 & n > 0 & diff 0 = f & | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 248 | (\<forall>m t. | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 249 | m < n & h \<le> t & t \<le> 0 --> DERIV (diff m) t :> diff (Suc m) t)) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 250 | --> (\<exists>t. h < t & | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 251 | t < 0 & | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 252 | f h = | 
| 15539 | 253 | (\<Sum>m=0..<n. diff m 0 / real (fact m) * h ^ m) + | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 254 | diff n t / real (fact n) * h ^ n)" | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 255 | by (blast intro: Maclaurin_minus) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 256 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 257 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 258 | subsection{*More Convenient "Bidirectional" Version.*}
 | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 259 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 260 | (* not good for PVS sin_approx, cos_approx *) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 261 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 262 | lemma Maclaurin_bi_le_lemma [rule_format]: | 
| 25162 | 263 | "n>0 \<longrightarrow> | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 264 | diff 0 0 = | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 265 | (\<Sum>m = 0..<n. diff m 0 * 0 ^ m / real (fact m)) + | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 266 | diff n 0 * 0 ^ n / real (fact n)" | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 267 | by (induct "n") auto | 
| 14738 | 268 | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 269 | lemma Maclaurin_bi_le: | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 270 | assumes "diff 0 = f" | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 271 | and DERIV : "\<forall>m t. m < n & abs t \<le> abs x --> DERIV (diff m) t :> diff (Suc m) t" | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 272 | shows "\<exists>t. abs t \<le> abs x & | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 273 | f x = | 
| 15539 | 274 | (\<Sum>m=0..<n. diff m 0 / real (fact m) * x ^ m) + | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 275 | diff n t / real (fact n) * x ^ n" (is "\<exists>t. _ \<and> f x = ?f x t") | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 276 | proof cases | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 277 | assume "n = 0" with `diff 0 = f` show ?thesis by force | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 278 | next | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 279 | assume "n \<noteq> 0" | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 280 | show ?thesis | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 281 | proof (cases rule: linorder_cases) | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 282 | assume "x = 0" with `n \<noteq> 0` `diff 0 = f` DERIV | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 283 | have "\<bar>0\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x 0" by (force simp add: Maclaurin_bi_le_lemma) | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 284 | thus ?thesis .. | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 285 | next | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 286 | assume "x < 0" | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 287 | with `n \<noteq> 0` DERIV | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 288 | have "\<exists>t>x. t < 0 \<and> diff 0 x = ?f x t" by (intro Maclaurin_minus) auto | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 289 | then guess t .. | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 290 | with `x < 0` `diff 0 = f` have "\<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x t" by simp | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 291 | thus ?thesis .. | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 292 | next | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 293 | assume "x > 0" | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 294 | with `n \<noteq> 0` `diff 0 = f` DERIV | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 295 | have "\<exists>t>0. t < x \<and> diff 0 x = ?f x t" by (intro Maclaurin) auto | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 296 | then guess t .. | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 297 | with `x > 0` `diff 0 = f` have "\<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x t" by simp | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 298 | thus ?thesis .. | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 299 | qed | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 300 | qed | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 301 | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 302 | lemma Maclaurin_all_lt: | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 303 | assumes INIT1: "diff 0 = f" and INIT2: "0 < n" and INIT3: "x \<noteq> 0" | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 304 | and DERIV: "\<forall>m x. DERIV (diff m) x :> diff(Suc m) x" | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 305 | shows "\<exists>t. 0 < abs t & abs t < abs x & f x = | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 306 | (\<Sum>m=0..<n. (diff m 0 / real (fact m)) * x ^ m) + | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 307 | (diff n t / real (fact n)) * x ^ n" (is "\<exists>t. _ \<and> _ \<and> f x = ?f x t") | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 308 | proof (cases rule: linorder_cases) | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 309 | assume "x = 0" with INIT3 show "?thesis".. | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 310 | next | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 311 | assume "x < 0" | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 312 | with assms have "\<exists>t>x. t < 0 \<and> f x = ?f x t" by (intro Maclaurin_minus) auto | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 313 | then guess t .. | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 314 | with `x < 0` have "0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> f x = ?f x t" by simp | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 315 | thus ?thesis .. | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 316 | next | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 317 | assume "x > 0" | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 318 | with assms have "\<exists>t>0. t < x \<and> f x = ?f x t " by (intro Maclaurin) auto | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 319 | then guess t .. | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 320 | with `x > 0` have "0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> f x = ?f x t" by simp | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 321 | thus ?thesis .. | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 322 | qed | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 323 | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 324 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 325 | lemma Maclaurin_all_lt_objl: | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 326 | "diff 0 = f & | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 327 | (\<forall>m x. DERIV (diff m) x :> diff(Suc m) x) & | 
| 25162 | 328 | x ~= 0 & n > 0 | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 329 | --> (\<exists>t. 0 < abs t & abs t < abs x & | 
| 15539 | 330 | f x = (\<Sum>m=0..<n. (diff m 0 / real (fact m)) * x ^ m) + | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 331 | (diff n t / real (fact n)) * x ^ n)" | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 332 | by (blast intro: Maclaurin_all_lt) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 333 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 334 | lemma Maclaurin_zero [rule_format]: | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 335 | "x = (0::real) | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 336 | ==> n \<noteq> 0 --> | 
| 15539 | 337 | (\<Sum>m=0..<n. (diff m (0::real) / real (fact m)) * x ^ m) = | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 338 | diff 0 0" | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 339 | by (induct n, auto) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 340 | |
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 341 | |
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 342 | lemma Maclaurin_all_le: | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 343 | assumes INIT: "diff 0 = f" | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 344 | and DERIV: "\<forall>m x. DERIV (diff m) x :> diff (Suc m) x" | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 345 | shows "\<exists>t. abs t \<le> abs x & f x = | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 346 | (\<Sum>m=0..<n. (diff m 0 / real (fact m)) * x ^ m) + | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 347 | (diff n t / real (fact n)) * x ^ n" (is "\<exists>t. _ \<and> f x = ?f x t") | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 348 | proof cases | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 349 | assume "n = 0" with INIT show ?thesis by force | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 350 | next | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 351 | assume "n \<noteq> 0" | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 352 | show ?thesis | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 353 | proof cases | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 354 | assume "x = 0" | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 355 | with `n \<noteq> 0` have "(\<Sum>m = 0..<n. diff m 0 / real (fact m) * x ^ m) = diff 0 0" | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 356 | by (intro Maclaurin_zero) auto | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 357 | with INIT `x = 0` `n \<noteq> 0` have " \<bar>0\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x 0" by force | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 358 | thus ?thesis .. | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 359 | next | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 360 | assume "x \<noteq> 0" | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 361 | with INIT `n \<noteq> 0` DERIV have "\<exists>t. 0 < \<bar>t\<bar> \<and> \<bar>t\<bar> < \<bar>x\<bar> \<and> f x = ?f x t" | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 362 | by (intro Maclaurin_all_lt) auto | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 363 | then guess t .. | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 364 | hence "\<bar>t\<bar> \<le> \<bar>x\<bar> \<and> f x = ?f x t" by simp | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 365 | thus ?thesis .. | 
| 41120 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 366 | qed | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 367 | qed | 
| 
74e41b2d48ea
adding an Isar version of the MacLaurin theorem from some students' work in 2005
 bulwahn parents: 
36974diff
changeset | 368 | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 369 | lemma Maclaurin_all_le_objl: "diff 0 = f & | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 370 | (\<forall>m x. DERIV (diff m) x :> diff (Suc m) x) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 371 | --> (\<exists>t. abs t \<le> abs x & | 
| 15539 | 372 | f x = (\<Sum>m=0..<n. (diff m 0 / real (fact m)) * x ^ m) + | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 373 | (diff n t / real (fact n)) * x ^ n)" | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 374 | by (blast intro: Maclaurin_all_le) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 375 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 376 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 377 | subsection{*Version for Exponential Function*}
 | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 378 | |
| 25162 | 379 | lemma Maclaurin_exp_lt: "[| x ~= 0; n > 0 |] | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 380 | ==> (\<exists>t. 0 < abs t & | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 381 | abs t < abs x & | 
| 15539 | 382 | exp x = (\<Sum>m=0..<n. (x ^ m) / real (fact m)) + | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 383 | (exp t / real (fact n)) * x ^ n)" | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 384 | by (cut_tac diff = "%n. exp" and f = exp and x = x and n = n in Maclaurin_all_lt_objl, auto) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 385 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 386 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 387 | lemma Maclaurin_exp_le: | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 388 | "\<exists>t. abs t \<le> abs x & | 
| 15539 | 389 | exp x = (\<Sum>m=0..<n. (x ^ m) / real (fact m)) + | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 390 | (exp t / real (fact n)) * x ^ n" | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 391 | by (cut_tac diff = "%n. exp" and f = exp and x = x and n = n in Maclaurin_all_le_objl, auto) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 392 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 393 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 394 | subsection{*Version for Sine Function*}
 | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 395 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 396 | lemma mod_exhaust_less_4: | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 397 | "m mod 4 = 0 | m mod 4 = 1 | m mod 4 = 2 | m mod 4 = (3::nat)" | 
| 20217 
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
 webertj parents: 
19765diff
changeset | 398 | by auto | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 399 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 400 | lemma Suc_Suc_mult_two_diff_two [rule_format, simp]: | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 401 | "n\<noteq>0 --> Suc (Suc (2 * n - 2)) = 2*n" | 
| 15251 | 402 | by (induct "n", auto) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 403 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 404 | lemma lemma_Suc_Suc_4n_diff_2 [rule_format, simp]: | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 405 | "n\<noteq>0 --> Suc (Suc (4*n - 2)) = 4*n" | 
| 15251 | 406 | by (induct "n", auto) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 407 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 408 | lemma Suc_mult_two_diff_one [rule_format, simp]: | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 409 | "n\<noteq>0 --> Suc (2 * n - 1) = 2*n" | 
| 15251 | 410 | by (induct "n", auto) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 411 | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 412 | |
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 413 | text{*It is unclear why so many variant results are needed.*}
 | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 414 | |
| 36974 
b877866b5b00
remove some unnamed simp rules from Transcendental.thy; move the needed ones to MacLaurin.thy where they are used
 huffman parents: 
32047diff
changeset | 415 | lemma sin_expansion_lemma: | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 416 | "sin (x + real (Suc m) * pi / 2) = | 
| 36974 
b877866b5b00
remove some unnamed simp rules from Transcendental.thy; move the needed ones to MacLaurin.thy where they are used
 huffman parents: 
32047diff
changeset | 417 | cos (x + real (m) * pi / 2)" | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44890diff
changeset | 418 | by (simp only: cos_add sin_add real_of_nat_Suc add_divide_distrib distrib_right, auto) | 
| 36974 
b877866b5b00
remove some unnamed simp rules from Transcendental.thy; move the needed ones to MacLaurin.thy where they are used
 huffman parents: 
32047diff
changeset | 419 | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 420 | lemma Maclaurin_sin_expansion2: | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 421 | "\<exists>t. abs t \<le> abs x & | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 422 | sin x = | 
| 44306 
33572a766836
fold definitions of sin_coeff and cos_coeff in Maclaurin lemmas
 huffman parents: 
41166diff
changeset | 423 | (\<Sum>m=0..<n. sin_coeff m * x ^ m) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 424 | + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)" | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 425 | apply (cut_tac f = sin and n = n and x = x | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 426 | and diff = "%n x. sin (x + 1/2*real n * pi)" in Maclaurin_all_lt_objl) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 427 | apply safe | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 428 | apply (simp (no_asm)) | 
| 36974 
b877866b5b00
remove some unnamed simp rules from Transcendental.thy; move the needed ones to MacLaurin.thy where they are used
 huffman parents: 
32047diff
changeset | 429 | apply (simp (no_asm) add: sin_expansion_lemma) | 
| 44308 
d2a6f9af02f4
Transcendental.thy: remove several unused lemmas and simplify some proofs
 huffman parents: 
44306diff
changeset | 430 | apply (force intro!: DERIV_intros) | 
| 44306 
33572a766836
fold definitions of sin_coeff and cos_coeff in Maclaurin lemmas
 huffman parents: 
41166diff
changeset | 431 | apply (subst (asm) setsum_0', clarify, case_tac "a", simp, simp) | 
| 
33572a766836
fold definitions of sin_coeff and cos_coeff in Maclaurin lemmas
 huffman parents: 
41166diff
changeset | 432 | apply (cases n, simp, simp) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 433 | apply (rule ccontr, simp) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 434 | apply (drule_tac x = x in spec, simp) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 435 | apply (erule ssubst) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 436 | apply (rule_tac x = t in exI, simp) | 
| 15536 | 437 | apply (rule setsum_cong[OF refl]) | 
| 44306 
33572a766836
fold definitions of sin_coeff and cos_coeff in Maclaurin lemmas
 huffman parents: 
41166diff
changeset | 438 | apply (auto simp add: sin_coeff_def sin_zero_iff odd_Suc_mult_two_ex) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 439 | done | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 440 | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 441 | lemma Maclaurin_sin_expansion: | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 442 | "\<exists>t. sin x = | 
| 44306 
33572a766836
fold definitions of sin_coeff and cos_coeff in Maclaurin lemmas
 huffman parents: 
41166diff
changeset | 443 | (\<Sum>m=0..<n. sin_coeff m * x ^ m) | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 444 | + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)" | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 445 | apply (insert Maclaurin_sin_expansion2 [of x n]) | 
| 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 446 | apply (blast intro: elim:) | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 447 | done | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 448 | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 449 | lemma Maclaurin_sin_expansion3: | 
| 25162 | 450 | "[| n > 0; 0 < x |] ==> | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 451 | \<exists>t. 0 < t & t < x & | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 452 | sin x = | 
| 44306 
33572a766836
fold definitions of sin_coeff and cos_coeff in Maclaurin lemmas
 huffman parents: 
41166diff
changeset | 453 | (\<Sum>m=0..<n. sin_coeff m * x ^ m) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 454 | + ((sin(t + 1/2 * real(n) *pi) / real (fact n)) * x ^ n)" | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 455 | apply (cut_tac f = sin and n = n and h = x and diff = "%n x. sin (x + 1/2*real (n) *pi)" in Maclaurin_objl) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 456 | apply safe | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 457 | apply simp | 
| 36974 
b877866b5b00
remove some unnamed simp rules from Transcendental.thy; move the needed ones to MacLaurin.thy where they are used
 huffman parents: 
32047diff
changeset | 458 | apply (simp (no_asm) add: sin_expansion_lemma) | 
| 44308 
d2a6f9af02f4
Transcendental.thy: remove several unused lemmas and simplify some proofs
 huffman parents: 
44306diff
changeset | 459 | apply (force intro!: DERIV_intros) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 460 | apply (erule ssubst) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 461 | apply (rule_tac x = t in exI, simp) | 
| 15536 | 462 | apply (rule setsum_cong[OF refl]) | 
| 44306 
33572a766836
fold definitions of sin_coeff and cos_coeff in Maclaurin lemmas
 huffman parents: 
41166diff
changeset | 463 | apply (auto simp add: sin_coeff_def sin_zero_iff odd_Suc_mult_two_ex) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 464 | done | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 465 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 466 | lemma Maclaurin_sin_expansion4: | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 467 | "0 < x ==> | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 468 | \<exists>t. 0 < t & t \<le> x & | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 469 | sin x = | 
| 44306 
33572a766836
fold definitions of sin_coeff and cos_coeff in Maclaurin lemmas
 huffman parents: 
41166diff
changeset | 470 | (\<Sum>m=0..<n. sin_coeff m * x ^ m) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 471 | + ((sin(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)" | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 472 | apply (cut_tac f = sin and n = n and h = x and diff = "%n x. sin (x + 1/2*real (n) *pi)" in Maclaurin2_objl) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 473 | apply safe | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 474 | apply simp | 
| 36974 
b877866b5b00
remove some unnamed simp rules from Transcendental.thy; move the needed ones to MacLaurin.thy where they are used
 huffman parents: 
32047diff
changeset | 475 | apply (simp (no_asm) add: sin_expansion_lemma) | 
| 44308 
d2a6f9af02f4
Transcendental.thy: remove several unused lemmas and simplify some proofs
 huffman parents: 
44306diff
changeset | 476 | apply (force intro!: DERIV_intros) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 477 | apply (erule ssubst) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 478 | apply (rule_tac x = t in exI, simp) | 
| 15536 | 479 | apply (rule setsum_cong[OF refl]) | 
| 44306 
33572a766836
fold definitions of sin_coeff and cos_coeff in Maclaurin lemmas
 huffman parents: 
41166diff
changeset | 480 | apply (auto simp add: sin_coeff_def sin_zero_iff odd_Suc_mult_two_ex) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 481 | done | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 482 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 483 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 484 | subsection{*Maclaurin Expansion for Cosine Function*}
 | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 485 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 486 | lemma sumr_cos_zero_one [simp]: | 
| 44306 
33572a766836
fold definitions of sin_coeff and cos_coeff in Maclaurin lemmas
 huffman parents: 
41166diff
changeset | 487 | "(\<Sum>m=0..<(Suc n). cos_coeff m * 0 ^ m) = 1" | 
| 15251 | 488 | by (induct "n", auto) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 489 | |
| 36974 
b877866b5b00
remove some unnamed simp rules from Transcendental.thy; move the needed ones to MacLaurin.thy where they are used
 huffman parents: 
32047diff
changeset | 490 | lemma cos_expansion_lemma: | 
| 
b877866b5b00
remove some unnamed simp rules from Transcendental.thy; move the needed ones to MacLaurin.thy where they are used
 huffman parents: 
32047diff
changeset | 491 | "cos (x + real(Suc m) * pi / 2) = -sin (x + real m * pi / 2)" | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44890diff
changeset | 492 | by (simp only: cos_add sin_add real_of_nat_Suc distrib_right add_divide_distrib, auto) | 
| 36974 
b877866b5b00
remove some unnamed simp rules from Transcendental.thy; move the needed ones to MacLaurin.thy where they are used
 huffman parents: 
32047diff
changeset | 493 | |
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 494 | lemma Maclaurin_cos_expansion: | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 495 | "\<exists>t. abs t \<le> abs x & | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 496 | cos x = | 
| 44306 
33572a766836
fold definitions of sin_coeff and cos_coeff in Maclaurin lemmas
 huffman parents: 
41166diff
changeset | 497 | (\<Sum>m=0..<n. cos_coeff m * x ^ m) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 498 | + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)" | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 499 | apply (cut_tac f = cos and n = n and x = x and diff = "%n x. cos (x + 1/2*real (n) *pi)" in Maclaurin_all_lt_objl) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 500 | apply safe | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 501 | apply (simp (no_asm)) | 
| 36974 
b877866b5b00
remove some unnamed simp rules from Transcendental.thy; move the needed ones to MacLaurin.thy where they are used
 huffman parents: 
32047diff
changeset | 502 | apply (simp (no_asm) add: cos_expansion_lemma) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 503 | apply (case_tac "n", simp) | 
| 15561 | 504 | apply (simp del: setsum_op_ivl_Suc) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 505 | apply (rule ccontr, simp) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 506 | apply (drule_tac x = x in spec, simp) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 507 | apply (erule ssubst) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 508 | apply (rule_tac x = t in exI, simp) | 
| 15536 | 509 | apply (rule setsum_cong[OF refl]) | 
| 44306 
33572a766836
fold definitions of sin_coeff and cos_coeff in Maclaurin lemmas
 huffman parents: 
41166diff
changeset | 510 | apply (auto simp add: cos_coeff_def cos_zero_iff even_mult_two_ex) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 511 | done | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 512 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 513 | lemma Maclaurin_cos_expansion2: | 
| 25162 | 514 | "[| 0 < x; n > 0 |] ==> | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 515 | \<exists>t. 0 < t & t < x & | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 516 | cos x = | 
| 44306 
33572a766836
fold definitions of sin_coeff and cos_coeff in Maclaurin lemmas
 huffman parents: 
41166diff
changeset | 517 | (\<Sum>m=0..<n. cos_coeff m * x ^ m) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 518 | + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)" | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 519 | apply (cut_tac f = cos and n = n and h = x and diff = "%n x. cos (x + 1/2*real (n) *pi)" in Maclaurin_objl) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 520 | apply safe | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 521 | apply simp | 
| 36974 
b877866b5b00
remove some unnamed simp rules from Transcendental.thy; move the needed ones to MacLaurin.thy where they are used
 huffman parents: 
32047diff
changeset | 522 | apply (simp (no_asm) add: cos_expansion_lemma) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 523 | apply (erule ssubst) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 524 | apply (rule_tac x = t in exI, simp) | 
| 15536 | 525 | apply (rule setsum_cong[OF refl]) | 
| 44306 
33572a766836
fold definitions of sin_coeff and cos_coeff in Maclaurin lemmas
 huffman parents: 
41166diff
changeset | 526 | apply (auto simp add: cos_coeff_def cos_zero_iff even_mult_two_ex) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 527 | done | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 528 | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 529 | lemma Maclaurin_minus_cos_expansion: | 
| 25162 | 530 | "[| x < 0; n > 0 |] ==> | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 531 | \<exists>t. x < t & t < 0 & | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 532 | cos x = | 
| 44306 
33572a766836
fold definitions of sin_coeff and cos_coeff in Maclaurin lemmas
 huffman parents: 
41166diff
changeset | 533 | (\<Sum>m=0..<n. cos_coeff m * x ^ m) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 534 | + ((cos(t + 1/2 * real (n) *pi) / real (fact n)) * x ^ n)" | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 535 | apply (cut_tac f = cos and n = n and h = x and diff = "%n x. cos (x + 1/2*real (n) *pi)" in Maclaurin_minus_objl) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 536 | apply safe | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 537 | apply simp | 
| 36974 
b877866b5b00
remove some unnamed simp rules from Transcendental.thy; move the needed ones to MacLaurin.thy where they are used
 huffman parents: 
32047diff
changeset | 538 | apply (simp (no_asm) add: cos_expansion_lemma) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 539 | apply (erule ssubst) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 540 | apply (rule_tac x = t in exI, simp) | 
| 15536 | 541 | apply (rule setsum_cong[OF refl]) | 
| 44306 
33572a766836
fold definitions of sin_coeff and cos_coeff in Maclaurin lemmas
 huffman parents: 
41166diff
changeset | 542 | apply (auto simp add: cos_coeff_def cos_zero_iff even_mult_two_ex) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 543 | done | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 544 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 545 | (* ------------------------------------------------------------------------- *) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 546 | (* Version for ln(1 +/- x). Where is it?? *) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 547 | (* ------------------------------------------------------------------------- *) | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 548 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 549 | lemma sin_bound_lemma: | 
| 15081 | 550 | "[|x = y; abs u \<le> (v::real) |] ==> \<bar>(x + u) - y\<bar> \<le> v" | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 551 | by auto | 
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 552 | |
| 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 553 | lemma Maclaurin_sin_bound: | 
| 44306 
33572a766836
fold definitions of sin_coeff and cos_coeff in Maclaurin lemmas
 huffman parents: 
41166diff
changeset | 554 | "abs(sin x - (\<Sum>m=0..<n. sin_coeff m * x ^ m)) | 
| 
33572a766836
fold definitions of sin_coeff and cos_coeff in Maclaurin lemmas
 huffman parents: 
41166diff
changeset | 555 | \<le> inverse(real (fact n)) * \<bar>x\<bar> ^ n" | 
| 14738 | 556 | proof - | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 557 | have "!! x (y::real). x \<le> 1 \<Longrightarrow> 0 \<le> y \<Longrightarrow> x * y \<le> 1 * y" | 
| 14738 | 558 | by (rule_tac mult_right_mono,simp_all) | 
| 559 | note est = this[simplified] | |
| 22985 | 560 | let ?diff = "\<lambda>(n::nat) x. if n mod 4 = 0 then sin(x) else if n mod 4 = 1 then cos(x) else if n mod 4 = 2 then -sin(x) else -cos(x)" | 
| 561 | have diff_0: "?diff 0 = sin" by simp | |
| 562 | have DERIV_diff: "\<forall>m x. DERIV (?diff m) x :> ?diff (Suc m) x" | |
| 563 | apply (clarify) | |
| 564 | apply (subst (1 2 3) mod_Suc_eq_Suc_mod) | |
| 565 | apply (cut_tac m=m in mod_exhaust_less_4) | |
| 31881 | 566 | apply (safe, auto intro!: DERIV_intros) | 
| 22985 | 567 | done | 
| 568 | from Maclaurin_all_le [OF diff_0 DERIV_diff] | |
| 569 | obtain t where t1: "\<bar>t\<bar> \<le> \<bar>x\<bar>" and | |
| 570 | t2: "sin x = (\<Sum>m = 0..<n. ?diff m 0 / real (fact m) * x ^ m) + | |
| 571 | ?diff n t / real (fact n) * x ^ n" by fast | |
| 572 | have diff_m_0: | |
| 573 | "\<And>m. ?diff m 0 = (if even m then 0 | |
| 23177 | 574 | else -1 ^ ((m - Suc 0) div 2))" | 
| 22985 | 575 | apply (subst even_even_mod_4_iff) | 
| 576 | apply (cut_tac m=m in mod_exhaust_less_4) | |
| 577 | apply (elim disjE, simp_all) | |
| 578 | apply (safe dest!: mod_eqD, simp_all) | |
| 579 | done | |
| 14738 | 580 | show ?thesis | 
| 44306 
33572a766836
fold definitions of sin_coeff and cos_coeff in Maclaurin lemmas
 huffman parents: 
41166diff
changeset | 581 | unfolding sin_coeff_def | 
| 22985 | 582 | apply (subst t2) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 583 | apply (rule sin_bound_lemma) | 
| 15536 | 584 | apply (rule setsum_cong[OF refl]) | 
| 22985 | 585 | apply (subst diff_m_0, simp) | 
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 586 | apply (auto intro: mult_right_mono [where b=1, simplified] mult_right_mono | 
| 41166 
4b2a457b17e8
beautify MacLaurin proofs; make better use of DERIV_intros
 hoelzl parents: 
41120diff
changeset | 587 | simp add: est mult_nonneg_nonneg mult_ac divide_inverse | 
| 16924 | 588 | power_abs [symmetric] abs_mult) | 
| 14738 | 589 | done | 
| 590 | qed | |
| 591 | ||
| 15079 
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
 paulson parents: 
14738diff
changeset | 592 | end |