| 
120
 | 
     1  | 
(*  Title: 	ZF/coinductive.ML
  | 
| 
0
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
 | 
     4  | 
    Copyright   1993  University of Cambridge
  | 
| 
 | 
     5  | 
  | 
| 
120
 | 
     6  | 
Coinductive Definitions for Zermelo-Fraenkel Set Theory
  | 
| 
0
 | 
     7  | 
  | 
| 
 | 
     8  | 
Uses greatest fixedpoints with Quine-inspired products and sums
  | 
| 
 | 
     9  | 
  | 
| 
 | 
    10  | 
Sums are used only for mutual recursion;
  | 
| 
 | 
    11  | 
Products are used only to derive "streamlined" induction rules for relations
  | 
| 
 | 
    12  | 
*)
  | 
| 
 | 
    13  | 
  | 
| 
 | 
    14  | 
structure Gfp =
  | 
| 
 | 
    15  | 
  struct
  | 
| 
 | 
    16  | 
  val oper	= Const("gfp",      [iT,iT-->iT]--->iT)
 | 
| 
 | 
    17  | 
  val bnd_mono	= Const("bnd_mono", [iT,iT-->iT]--->oT)
 | 
| 
 | 
    18  | 
  val bnd_monoI	= bnd_monoI
  | 
| 
 | 
    19  | 
  val subs	= def_gfp_subset
  | 
| 
 | 
    20  | 
  val Tarski	= def_gfp_Tarski
  | 
| 
 | 
    21  | 
  val induct	= def_Collect_coinduct
  | 
| 
 | 
    22  | 
  end;
  | 
| 
 | 
    23  | 
  | 
| 
 | 
    24  | 
structure Quine_Prod =
  | 
| 
 | 
    25  | 
  struct
  | 
| 
 | 
    26  | 
  val sigma	= Const("QSigma", [iT, iT-->iT]--->iT)
 | 
| 
 | 
    27  | 
  val pair	= Const("QPair", [iT,iT]--->iT)
 | 
| 
 | 
    28  | 
  val split_const	= Const("qsplit", [[iT,iT]--->iT, iT]--->iT)
 | 
| 
 | 
    29  | 
  val fsplit_const	= Const("qfsplit", [[iT,iT]--->oT, iT]--->oT)
 | 
| 
 | 
    30  | 
  val pair_iff	= QPair_iff
  | 
| 
 | 
    31  | 
  val split_eq	= qsplit
  | 
| 
 | 
    32  | 
  val fsplitI	= qfsplitI
  | 
| 
 | 
    33  | 
  val fsplitD	= qfsplitD
  | 
| 
 | 
    34  | 
  val fsplitE	= qfsplitE
  | 
| 
 | 
    35  | 
  end;
  | 
| 
 | 
    36  | 
  | 
| 
 | 
    37  | 
structure Quine_Sum =
  | 
| 
 | 
    38  | 
  struct
  | 
| 
 | 
    39  | 
  val sum	= Const("op <+>", [iT,iT]--->iT)
 | 
| 
 | 
    40  | 
  val inl	= Const("QInl", iT-->iT)
 | 
| 
 | 
    41  | 
  val inr	= Const("QInr", iT-->iT)
 | 
| 
 | 
    42  | 
  val elim	= Const("qcase", [iT-->iT, iT-->iT, iT]--->iT)
 | 
| 
 | 
    43  | 
  val case_inl	= qcase_QInl
  | 
| 
 | 
    44  | 
  val case_inr	= qcase_QInr
  | 
| 
 | 
    45  | 
  val inl_iff	= QInl_iff
  | 
| 
 | 
    46  | 
  val inr_iff	= QInr_iff
  | 
| 
 | 
    47  | 
  val distinct	= QInl_QInr_iff
  | 
| 
 | 
    48  | 
  val distinct' = QInr_QInl_iff
  | 
| 
 | 
    49  | 
  end;
  | 
| 
 | 
    50  | 
  | 
| 
120
 | 
    51  | 
signature COINDRULE =
  | 
| 
0
 | 
    52  | 
  sig
  | 
| 
120
 | 
    53  | 
  val coinduct : thm
  | 
| 
0
 | 
    54  | 
  end;
  | 
| 
 | 
    55  | 
  | 
| 
 | 
    56  | 
  | 
| 
120
 | 
    57  | 
functor CoInductive_Fun (Ind: INDUCTIVE) 
  | 
| 
 | 
    58  | 
          : sig include INTR_ELIM COINDRULE end =
  | 
| 
0
 | 
    59  | 
struct
  | 
| 
 | 
    60  | 
structure Intr_elim = 
  | 
| 
 | 
    61  | 
    Intr_elim_Fun(structure Ind=Ind and Fp=Gfp and 
  | 
| 
 | 
    62  | 
		  Pr=Quine_Prod and Su=Quine_Sum);
  | 
| 
 | 
    63  | 
  | 
| 
 | 
    64  | 
open Intr_elim 
  | 
| 
120
 | 
    65  | 
val coinduct = raw_induct
  | 
| 
0
 | 
    66  | 
end;
  | 
| 
 | 
    67  | 
  |