| author | wenzelm | 
| Mon, 20 Oct 1997 11:06:01 +0200 | |
| changeset 3942 | 1f1c1f524d19 | 
| parent 2877 | 6476784dba1c | 
| child 4091 | 771b1f6422a8 | 
| permissions | -rw-r--r-- | 
| 1461 | 1  | 
(* Title: ZF/domrange  | 
| 0 | 2  | 
ID: $Id$  | 
| 1461 | 3  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
| 0 | 4  | 
Copyright 1991 University of Cambridge  | 
5  | 
||
6  | 
Converse, domain, range of a relation or function  | 
|
7  | 
*)  | 
|
8  | 
||
9  | 
(*** converse ***)  | 
|
10  | 
||
| 2877 | 11  | 
qed_goalw "converse_iff" ZF.thy [converse_def]  | 
| 687 | 12  | 
"<a,b>: converse(r) <-> <b,a>:r"  | 
| 2877 | 13  | 
(fn _ => [ (Blast_tac 1) ]);  | 
| 687 | 14  | 
|
| 2877 | 15  | 
qed_goalw "converseI" ZF.thy [converse_def]  | 
| 0 | 16  | 
"!!a b r. <a,b>:r ==> <b,a>:converse(r)"  | 
| 2877 | 17  | 
(fn _ => [ (Blast_tac 1) ]);  | 
| 0 | 18  | 
|
| 2877 | 19  | 
qed_goalw "converseD" ZF.thy [converse_def]  | 
| 0 | 20  | 
"!!a b r. <a,b> : converse(r) ==> <b,a> : r"  | 
| 2877 | 21  | 
(fn _ => [ (Blast_tac 1) ]);  | 
| 0 | 22  | 
|
| 2877 | 23  | 
qed_goalw "converseE" ZF.thy [converse_def]  | 
| 0 | 24  | 
"[| yx : converse(r); \  | 
25  | 
\ !!x y. [| yx=<y,x>; <x,y>:r |] ==> P \  | 
|
26  | 
\ |] ==> P"  | 
|
27  | 
(fn [major,minor]=>  | 
|
28  | 
[ (rtac (major RS ReplaceE) 1),  | 
|
29  | 
(REPEAT (eresolve_tac [exE, conjE, minor] 1)),  | 
|
30  | 
(hyp_subst_tac 1),  | 
|
31  | 
(assume_tac 1) ]);  | 
|
32  | 
||
| 2469 | 33  | 
Addsimps [converse_iff];  | 
34  | 
AddSIs [converseI];  | 
|
35  | 
AddSEs [converseD,converseE];  | 
|
| 0 | 36  | 
|
| 2877 | 37  | 
qed_goal "converse_converse" ZF.thy  | 
| 0 | 38  | 
"!!A B r. r<=Sigma(A,B) ==> converse(converse(r)) = r"  | 
| 2877 | 39  | 
(fn _ => [ (Blast_tac 1) ]);  | 
| 0 | 40  | 
|
| 2877 | 41  | 
qed_goal "converse_type" ZF.thy "!!A B r. r<=A*B ==> converse(r)<=B*A"  | 
42  | 
(fn _ => [ (Blast_tac 1) ]);  | 
|
| 0 | 43  | 
|
| 2877 | 44  | 
qed_goal "converse_prod" ZF.thy "converse(A*B) = B*A"  | 
45  | 
(fn _ => [ (Blast_tac 1) ]);  | 
|
| 0 | 46  | 
|
| 2877 | 47  | 
qed_goal "converse_empty" ZF.thy "converse(0) = 0"  | 
48  | 
(fn _ => [ (Blast_tac 1) ]);  | 
|
| 2469 | 49  | 
|
50  | 
Addsimps [converse_prod, converse_empty];  | 
|
| 0 | 51  | 
|
52  | 
(*** domain ***)  | 
|
53  | 
||
| 2877 | 54  | 
qed_goalw "domain_iff" ZF.thy [domain_def]  | 
| 0 | 55  | 
"a: domain(r) <-> (EX y. <a,y>: r)"  | 
| 2877 | 56  | 
(fn _=> [ (Blast_tac 1) ]);  | 
| 0 | 57  | 
|
| 2877 | 58  | 
qed_goal "domainI" ZF.thy "!!a b r. <a,b>: r ==> a: domain(r)"  | 
| 2469 | 59  | 
(fn _=> [ (etac (exI RS (domain_iff RS iffD2)) 1) ]);  | 
| 0 | 60  | 
|
| 2877 | 61  | 
qed_goal "domainE" ZF.thy  | 
| 0 | 62  | 
"[| a : domain(r); !!y. <a,y>: r ==> P |] ==> P"  | 
63  | 
(fn prems=>  | 
|
64  | 
[ (rtac (domain_iff RS iffD1 RS exE) 1),  | 
|
65  | 
(REPEAT (ares_tac prems 1)) ]);  | 
|
66  | 
||
| 2469 | 67  | 
AddIs [domainI];  | 
68  | 
AddSEs [domainE];  | 
|
| 0 | 69  | 
|
| 2877 | 70  | 
qed_goal "domain_subset" ZF.thy "domain(Sigma(A,B)) <= A"  | 
71  | 
(fn _=> [ (Blast_tac 1) ]);  | 
|
| 0 | 72  | 
|
73  | 
(*** range ***)  | 
|
74  | 
||
| 2877 | 75  | 
qed_goalw "rangeI" ZF.thy [range_def] "!!a b r.<a,b>: r ==> b : range(r)"  | 
| 0 | 76  | 
(fn _ => [ (etac (converseI RS domainI) 1) ]);  | 
77  | 
||
| 2877 | 78  | 
qed_goalw "rangeE" ZF.thy [range_def]  | 
| 0 | 79  | 
"[| b : range(r); !!x. <x,b>: r ==> P |] ==> P"  | 
80  | 
(fn major::prems=>  | 
|
81  | 
[ (rtac (major RS domainE) 1),  | 
|
82  | 
(resolve_tac prems 1),  | 
|
83  | 
(etac converseD 1) ]);  | 
|
84  | 
||
| 2469 | 85  | 
AddIs [rangeI];  | 
86  | 
AddSEs [rangeE];  | 
|
87  | 
||
| 2877 | 88  | 
qed_goalw "range_subset" ZF.thy [range_def] "range(A*B) <= B"  | 
| 0 | 89  | 
(fn _ =>  | 
| 2033 | 90  | 
[ (stac converse_prod 1),  | 
| 0 | 91  | 
(rtac domain_subset 1) ]);  | 
92  | 
||
93  | 
||
94  | 
(*** field ***)  | 
|
95  | 
||
| 2877 | 96  | 
qed_goalw "fieldI1" ZF.thy [field_def] "!!r. <a,b>: r ==> a : field(r)"  | 
97  | 
(fn _ => [ (Blast_tac 1) ]);  | 
|
| 0 | 98  | 
|
| 2877 | 99  | 
qed_goalw "fieldI2" ZF.thy [field_def] "!!r. <a,b>: r ==> b : field(r)"  | 
100  | 
(fn _ => [ (Blast_tac 1) ]);  | 
|
| 0 | 101  | 
|
| 2877 | 102  | 
qed_goalw "fieldCI" ZF.thy [field_def]  | 
| 0 | 103  | 
"(~ <c,a>:r ==> <a,b>: r) ==> a : field(r)"  | 
| 2877 | 104  | 
(fn [prem]=> [ (blast_tac (!claset addIs [prem]) 1) ]);  | 
| 0 | 105  | 
|
| 2877 | 106  | 
qed_goalw "fieldE" ZF.thy [field_def]  | 
| 0 | 107  | 
"[| a : field(r); \  | 
108  | 
\ !!x. <a,x>: r ==> P; \  | 
|
109  | 
\ !!x. <x,a>: r ==> P |] ==> P"  | 
|
110  | 
(fn major::prems=>  | 
|
111  | 
[ (rtac (major RS UnE) 1),  | 
|
112  | 
(REPEAT (eresolve_tac (prems@[domainE,rangeE]) 1)) ]);  | 
|
113  | 
||
| 2469 | 114  | 
AddIs [fieldCI];  | 
115  | 
AddSEs [fieldE];  | 
|
| 0 | 116  | 
|
| 2877 | 117  | 
qed_goal "field_subset" ZF.thy "field(A*B) <= A Un B"  | 
118  | 
(fn _ => [ (Blast_tac 1) ]);  | 
|
| 2469 | 119  | 
|
| 2877 | 120  | 
qed_goalw "domain_subset_field" ZF.thy [field_def]  | 
| 0 | 121  | 
"domain(r) <= field(r)"  | 
122  | 
(fn _ => [ (rtac Un_upper1 1) ]);  | 
|
123  | 
||
| 2877 | 124  | 
qed_goalw "range_subset_field" ZF.thy [field_def]  | 
| 0 | 125  | 
"range(r) <= field(r)"  | 
126  | 
(fn _ => [ (rtac Un_upper2 1) ]);  | 
|
127  | 
||
| 2877 | 128  | 
qed_goal "domain_times_range" ZF.thy  | 
| 0 | 129  | 
"!!A B r. r <= Sigma(A,B) ==> r <= domain(r)*range(r)"  | 
| 2877 | 130  | 
(fn _ => [ (Blast_tac 1) ]);  | 
| 0 | 131  | 
|
| 2877 | 132  | 
qed_goal "field_times_field" ZF.thy  | 
| 0 | 133  | 
"!!A B r. r <= Sigma(A,B) ==> r <= field(r)*field(r)"  | 
| 2877 | 134  | 
(fn _ => [ (Blast_tac 1) ]);  | 
| 0 | 135  | 
|
136  | 
||
137  | 
(*** Image of a set under a function/relation ***)  | 
|
138  | 
||
| 2877 | 139  | 
qed_goalw "image_iff" ZF.thy [image_def] "b : r``A <-> (EX x:A. <x,b>:r)"  | 
140  | 
(fn _ => [ (Blast_tac 1) ]);  | 
|
| 0 | 141  | 
|
| 2877 | 142  | 
qed_goal "image_singleton_iff" ZF.thy    "b : r``{a} <-> <a,b>:r"
 | 
| 0 | 143  | 
(fn _ => [ rtac (image_iff RS iff_trans) 1,  | 
| 2877 | 144  | 
Blast_tac 1 ]);  | 
| 0 | 145  | 
|
| 2877 | 146  | 
qed_goalw "imageI" ZF.thy [image_def]  | 
| 0 | 147  | 
"!!a b r. [| <a,b>: r; a:A |] ==> b : r``A"  | 
| 2877 | 148  | 
(fn _ => [ (Blast_tac 1) ]);  | 
| 0 | 149  | 
|
| 2877 | 150  | 
qed_goalw "imageE" ZF.thy [image_def]  | 
| 0 | 151  | 
"[| b: r``A; !!x.[| <x,b>: r; x:A |] ==> P |] ==> P"  | 
152  | 
(fn major::prems=>  | 
|
153  | 
[ (rtac (major RS CollectE) 1),  | 
|
154  | 
(REPEAT (etac bexE 1 ORELSE ares_tac prems 1)) ]);  | 
|
155  | 
||
| 2469 | 156  | 
AddIs [imageI];  | 
157  | 
AddSEs [imageE];  | 
|
158  | 
||
| 2877 | 159  | 
qed_goal "image_subset" ZF.thy "!!A B r. r <= A*B ==> r``C <= B"  | 
160  | 
(fn _ => [ (Blast_tac 1) ]);  | 
|
| 0 | 161  | 
|
162  | 
||
163  | 
(*** Inverse image of a set under a function/relation ***)  | 
|
164  | 
||
| 2877 | 165  | 
qed_goalw "vimage_iff" ZF.thy [vimage_def,image_def,converse_def]  | 
| 0 | 166  | 
"a : r-``B <-> (EX y:B. <a,y>:r)"  | 
| 2877 | 167  | 
(fn _ => [ (Blast_tac 1) ]);  | 
| 0 | 168  | 
|
| 2877 | 169  | 
qed_goal "vimage_singleton_iff" ZF.thy  | 
| 0 | 170  | 
    "a : r-``{b} <-> <a,b>:r"
 | 
171  | 
(fn _ => [ rtac (vimage_iff RS iff_trans) 1,  | 
|
| 2877 | 172  | 
Blast_tac 1 ]);  | 
| 0 | 173  | 
|
| 2877 | 174  | 
qed_goalw "vimageI" ZF.thy [vimage_def]  | 
| 0 | 175  | 
"!!A B r. [| <a,b>: r; b:B |] ==> a : r-``B"  | 
| 2877 | 176  | 
(fn _ => [ (Blast_tac 1) ]);  | 
| 0 | 177  | 
|
| 2877 | 178  | 
qed_goalw "vimageE" ZF.thy [vimage_def]  | 
| 0 | 179  | 
"[| a: r-``B; !!x.[| <a,x>: r; x:B |] ==> P |] ==> P"  | 
180  | 
(fn major::prems=>  | 
|
181  | 
[ (rtac (major RS imageE) 1),  | 
|
182  | 
(REPEAT (etac converseD 1 ORELSE ares_tac prems 1)) ]);  | 
|
183  | 
||
| 2877 | 184  | 
qed_goalw "vimage_subset" ZF.thy [vimage_def]  | 
| 
14
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
0 
diff
changeset
 | 
185  | 
"!!A B r. r <= A*B ==> r-``C <= A"  | 
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
0 
diff
changeset
 | 
186  | 
(fn _ => [ (etac (converse_type RS image_subset) 1) ]);  | 
| 0 | 187  | 
|
188  | 
||
189  | 
(** Theorem-proving for ZF set theory **)  | 
|
190  | 
||
| 2469 | 191  | 
AddIs [vimageI];  | 
192  | 
AddSEs [vimageE];  | 
|
193  | 
||
| 2493 | 194  | 
val ZF_cs = !claset delrules [equalityI];  | 
| 0 | 195  | 
|
196  | 
(** The Union of a set of relations is a relation -- Lemma for fun_Union **)  | 
|
| 2877 | 197  | 
goal ZF.thy "!!S. (ALL x:S. EX A B. x <= A*B) ==> \  | 
| 0 | 198  | 
\ Union(S) <= domain(Union(S)) * range(Union(S))";  | 
| 2877 | 199  | 
by (Blast_tac 1);  | 
| 760 | 200  | 
qed "rel_Union";  | 
| 0 | 201  | 
|
202  | 
(** The Union of 2 relations is a relation (Lemma for fun_Un) **)  | 
|
| 2877 | 203  | 
qed_goal "rel_Un" ZF.thy  | 
| 0 | 204  | 
"!!r s. [| r <= A*B; s <= C*D |] ==> (r Un s) <= (A Un C) * (B Un D)"  | 
| 2877 | 205  | 
(fn _ => [ (Blast_tac 1) ]);  | 
| 0 | 206  | 
|
207  | 
||
| 2877 | 208  | 
goal ZF.thy "!!r. [| <a,c> : r; c~=b |] ==> domain(r-{<a,b>}) = domain(r)";
 | 
209  | 
by (Blast_tac 1);  | 
|
| 2469 | 210  | 
qed "domain_Diff_eq";  | 
211  | 
||
| 2877 | 212  | 
goal ZF.thy "!!r. [| <c,b> : r; c~=a |] ==> range(r-{<a,b>}) = range(r)";
 | 
213  | 
by (Blast_tac 1);  | 
|
| 2469 | 214  | 
qed "range_Diff_eq";  | 
215  |