author | webertj |
Fri, 01 Jun 2007 23:21:40 +0200 | |
changeset 23193 | 1f2d94b6a8ef |
parent 20898 | 113c9516a2d7 |
child 24892 | c663e675e177 |
permissions | -rw-r--r-- |
12610 | 1 |
(* Title: ZF/Induct/Multiset.thy |
12089
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
2 |
ID: $Id$ |
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
3 |
Author: Sidi O Ehmety, Cambridge University Computer Laboratory |
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
4 |
|
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
5 |
A definitional theory of multisets, |
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
6 |
including a wellfoundedness proof for the multiset order. |
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
7 |
|
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
8 |
The theory features ordinal multisets and the usual ordering. |
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
9 |
*) |
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
10 |
|
15201 | 11 |
theory Multiset |
12 |
imports FoldSet Acc |
|
13 |
begin |
|
14 |
||
12860
7fc3fbfed8ef
Multiset: added the translation Mult(A) => A-||>nat-{0}
paulson
parents:
12610
diff
changeset
|
15 |
consts |
7fc3fbfed8ef
Multiset: added the translation Mult(A) => A-||>nat-{0}
paulson
parents:
12610
diff
changeset
|
16 |
(* Short cut for multiset space *) |
15201 | 17 |
Mult :: "i=>i" |
18 |
translations |
|
14046 | 19 |
"Mult(A)" => "A -||> nat-{0}" |
15201 | 20 |
|
12089
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
21 |
constdefs |
15201 | 22 |
|
12891 | 23 |
(* This is the original "restrict" from ZF.thy. |
15201 | 24 |
Restricts the function f to the domain A |
12891 | 25 |
FIXME: adapt Multiset to the new "restrict". *) |
26 |
||
27 |
funrestrict :: "[i,i] => i" |
|
15201 | 28 |
"funrestrict(f,A) == \<lambda>x \<in> A. f`x" |
12891 | 29 |
|
12089
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
30 |
(* M is a multiset *) |
15201 | 31 |
multiset :: "i => o" |
32 |
"multiset(M) == \<exists>A. M \<in> A -> nat-{0} & Finite(A)" |
|
12089
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
33 |
|
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
34 |
mset_of :: "i=>i" |
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
35 |
"mset_of(M) == domain(M)" |
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
36 |
|
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
37 |
munion :: "[i, i] => i" (infixl "+#" 65) |
15201 | 38 |
"M +# N == \<lambda>x \<in> mset_of(M) Un mset_of(N). |
39 |
if x \<in> mset_of(M) Int mset_of(N) then (M`x) #+ (N`x) |
|
40 |
else (if x \<in> mset_of(M) then M`x else N`x)" |
|
12089
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
41 |
|
14046 | 42 |
(*convert a function to a multiset by eliminating 0*) |
15201 | 43 |
normalize :: "i => i" |
14046 | 44 |
"normalize(f) == |
15201 | 45 |
if (\<exists>A. f \<in> A -> nat & Finite(A)) then |
46 |
funrestrict(f, {x \<in> mset_of(f). 0 < f`x}) |
|
14046 | 47 |
else 0" |
12089
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
48 |
|
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
49 |
mdiff :: "[i, i] => i" (infixl "-#" 65) |
15201 | 50 |
"M -# N == normalize(\<lambda>x \<in> mset_of(M). |
51 |
if x \<in> mset_of(N) then M`x #- N`x else M`x)" |
|
12089
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
52 |
|
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
53 |
(* set of elements of a multiset *) |
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
54 |
msingle :: "i => i" ("{#_#}") |
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
55 |
"{#a#} == {<a, 1>}" |
15201 | 56 |
|
57 |
MCollect :: "[i, i=>o] => i" (*comprehension*) |
|
58 |
"MCollect(M, P) == funrestrict(M, {x \<in> mset_of(M). P(x)})" |
|
12089
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
59 |
|
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
60 |
(* Counts the number of occurences of an element in a multiset *) |
15201 | 61 |
mcount :: "[i, i] => i" |
62 |
"mcount(M, a) == if a \<in> mset_of(M) then M`a else 0" |
|
63 |
||
64 |
msize :: "i => i" |
|
65 |
"msize(M) == setsum(%a. $# mcount(M,a), mset_of(M))" |
|
12089
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
66 |
|
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
67 |
syntax |
15201 | 68 |
melem :: "[i,i] => o" ("(_/ :# _)" [50, 51] 50) |
12089
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
69 |
"@MColl" :: "[pttrn, i, o] => i" ("(1{# _ : _./ _#})") |
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
70 |
|
15201 | 71 |
syntax (xsymbols) |
72 |
"@MColl" :: "[pttrn, i, o] => i" ("(1{# _ \<in> _./ _#})") |
|
73 |
||
12089
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
74 |
translations |
15201 | 75 |
"a :# M" == "a \<in> mset_of(M)" |
76 |
"{#x \<in> M. P#}" == "MCollect(M, %x. P)" |
|
12089
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
77 |
|
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
78 |
(* multiset orderings *) |
15201 | 79 |
|
12089
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
80 |
constdefs |
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
81 |
(* multirel1 has to be a set (not a predicate) so that we can form |
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
82 |
its transitive closure and reason about wf(.) and acc(.) *) |
15201 | 83 |
|
12089
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
84 |
multirel1 :: "[i,i]=>i" |
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
85 |
"multirel1(A, r) == |
15201 | 86 |
{<M, N> \<in> Mult(A)*Mult(A). |
87 |
\<exists>a \<in> A. \<exists>M0 \<in> Mult(A). \<exists>K \<in> Mult(A). |
|
88 |
N=M0 +# {#a#} & M=M0 +# K & (\<forall>b \<in> mset_of(K). <b,a> \<in> r)}" |
|
89 |
||
12089
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
90 |
multirel :: "[i, i] => i" |
15201 | 91 |
"multirel(A, r) == multirel1(A, r)^+" |
12089
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
92 |
|
12860
7fc3fbfed8ef
Multiset: added the translation Mult(A) => A-||>nat-{0}
paulson
parents:
12610
diff
changeset
|
93 |
(* ordinal multiset orderings *) |
15201 | 94 |
|
95 |
omultiset :: "i => o" |
|
96 |
"omultiset(M) == \<exists>i. Ord(i) & M \<in> Mult(field(Memrel(i)))" |
|
97 |
||
98 |
mless :: "[i, i] => o" (infixl "<#" 50) |
|
99 |
"M <# N == \<exists>i. Ord(i) & <M, N> \<in> multirel(field(Memrel(i)), Memrel(i))" |
|
100 |
||
101 |
mle :: "[i, i] => o" (infixl "<#=" 50) |
|
102 |
"M <#= N == (omultiset(M) & M = N) | M <# N" |
|
103 |
||
104 |
||
105 |
subsection{*Properties of the original "restrict" from ZF.thy*} |
|
106 |
||
107 |
lemma funrestrict_subset: "[| f \<in> Pi(C,B); A\<subseteq>C |] ==> funrestrict(f,A) \<subseteq> f" |
|
108 |
by (auto simp add: funrestrict_def lam_def intro: apply_Pair) |
|
109 |
||
110 |
lemma funrestrict_type: |
|
111 |
"[| !!x. x \<in> A ==> f`x \<in> B(x) |] ==> funrestrict(f,A) \<in> Pi(A,B)" |
|
112 |
by (simp add: funrestrict_def lam_type) |
|
113 |
||
114 |
lemma funrestrict_type2: "[| f \<in> Pi(C,B); A\<subseteq>C |] ==> funrestrict(f,A) \<in> Pi(A,B)" |
|
115 |
by (blast intro: apply_type funrestrict_type) |
|
116 |
||
117 |
lemma funrestrict [simp]: "a \<in> A ==> funrestrict(f,A) ` a = f`a" |
|
118 |
by (simp add: funrestrict_def) |
|
119 |
||
120 |
lemma funrestrict_empty [simp]: "funrestrict(f,0) = 0" |
|
121 |
by (simp add: funrestrict_def) |
|
122 |
||
123 |
lemma domain_funrestrict [simp]: "domain(funrestrict(f,C)) = C" |
|
124 |
by (auto simp add: funrestrict_def lam_def) |
|
125 |
||
126 |
lemma fun_cons_funrestrict_eq: |
|
127 |
"f \<in> cons(a, b) -> B ==> f = cons(<a, f ` a>, funrestrict(f, b))" |
|
128 |
apply (rule equalityI) |
|
129 |
prefer 2 apply (blast intro: apply_Pair funrestrict_subset [THEN subsetD]) |
|
130 |
apply (auto dest!: Pi_memberD simp add: funrestrict_def lam_def) |
|
131 |
done |
|
132 |
||
133 |
declare domain_of_fun [simp] |
|
134 |
declare domainE [rule del] |
|
135 |
||
136 |
||
137 |
text{* A useful simplification rule *} |
|
138 |
lemma multiset_fun_iff: |
|
139 |
"(f \<in> A -> nat-{0}) <-> f \<in> A->nat&(\<forall>a \<in> A. f`a \<in> nat & 0 < f`a)" |
|
140 |
apply safe |
|
141 |
apply (rule_tac [4] B1 = "range (f) " in Pi_mono [THEN subsetD]) |
|
142 |
apply (auto intro!: Ord_0_lt |
|
143 |
dest: apply_type Diff_subset [THEN Pi_mono, THEN subsetD] |
|
144 |
simp add: range_of_fun apply_iff) |
|
145 |
done |
|
146 |
||
147 |
(** The multiset space **) |
|
148 |
lemma multiset_into_Mult: "[| multiset(M); mset_of(M)\<subseteq>A |] ==> M \<in> Mult(A)" |
|
149 |
apply (simp add: multiset_def) |
|
150 |
apply (auto simp add: multiset_fun_iff mset_of_def) |
|
151 |
apply (rule_tac B1 = "nat-{0}" in FiniteFun_mono [THEN subsetD], simp_all) |
|
152 |
apply (rule Finite_into_Fin [THEN [2] Fin_mono [THEN subsetD], THEN fun_FiniteFunI]) |
|
153 |
apply (simp_all (no_asm_simp) add: multiset_fun_iff) |
|
154 |
done |
|
155 |
||
156 |
lemma Mult_into_multiset: "M \<in> Mult(A) ==> multiset(M) & mset_of(M)\<subseteq>A" |
|
157 |
apply (simp add: multiset_def mset_of_def) |
|
158 |
apply (frule FiniteFun_is_fun) |
|
159 |
apply (drule FiniteFun_domain_Fin) |
|
160 |
apply (frule FinD, clarify) |
|
161 |
apply (rule_tac x = "domain (M) " in exI) |
|
162 |
apply (blast intro: Fin_into_Finite) |
|
163 |
done |
|
164 |
||
165 |
lemma Mult_iff_multiset: "M \<in> Mult(A) <-> multiset(M) & mset_of(M)\<subseteq>A" |
|
166 |
by (blast dest: Mult_into_multiset intro: multiset_into_Mult) |
|
167 |
||
168 |
lemma multiset_iff_Mult_mset_of: "multiset(M) <-> M \<in> Mult(mset_of(M))" |
|
169 |
by (auto simp add: Mult_iff_multiset) |
|
170 |
||
171 |
||
172 |
text{*The @{term multiset} operator*} |
|
173 |
||
174 |
(* the empty multiset is 0 *) |
|
175 |
||
176 |
lemma multiset_0 [simp]: "multiset(0)" |
|
177 |
by (auto intro: FiniteFun.intros simp add: multiset_iff_Mult_mset_of) |
|
178 |
||
179 |
||
180 |
text{*The @{term mset_of} operator*} |
|
181 |
||
182 |
lemma multiset_set_of_Finite [simp]: "multiset(M) ==> Finite(mset_of(M))" |
|
183 |
by (simp add: multiset_def mset_of_def, auto) |
|
184 |
||
185 |
lemma mset_of_0 [iff]: "mset_of(0) = 0" |
|
186 |
by (simp add: mset_of_def) |
|
187 |
||
188 |
lemma mset_is_0_iff: "multiset(M) ==> mset_of(M)=0 <-> M=0" |
|
189 |
by (auto simp add: multiset_def mset_of_def) |
|
190 |
||
191 |
lemma mset_of_single [iff]: "mset_of({#a#}) = {a}" |
|
192 |
by (simp add: msingle_def mset_of_def) |
|
193 |
||
194 |
lemma mset_of_union [iff]: "mset_of(M +# N) = mset_of(M) Un mset_of(N)" |
|
195 |
by (simp add: mset_of_def munion_def) |
|
196 |
||
197 |
lemma mset_of_diff [simp]: "mset_of(M)\<subseteq>A ==> mset_of(M -# N) \<subseteq> A" |
|
198 |
by (auto simp add: mdiff_def multiset_def normalize_def mset_of_def) |
|
199 |
||
200 |
(* msingle *) |
|
201 |
||
202 |
lemma msingle_not_0 [iff]: "{#a#} \<noteq> 0 & 0 \<noteq> {#a#}" |
|
203 |
by (simp add: msingle_def) |
|
204 |
||
205 |
lemma msingle_eq_iff [iff]: "({#a#} = {#b#}) <-> (a = b)" |
|
206 |
by (simp add: msingle_def) |
|
207 |
||
208 |
lemma msingle_multiset [iff,TC]: "multiset({#a#})" |
|
209 |
apply (simp add: multiset_def msingle_def) |
|
210 |
apply (rule_tac x = "{a}" in exI) |
|
211 |
apply (auto intro: Finite_cons Finite_0 fun_extend3) |
|
212 |
done |
|
213 |
||
214 |
(** normalize **) |
|
215 |
||
216 |
lemmas Collect_Finite = Collect_subset [THEN subset_Finite, standard] |
|
217 |
||
218 |
lemma normalize_idem [simp]: "normalize(normalize(f)) = normalize(f)" |
|
219 |
apply (simp add: normalize_def funrestrict_def mset_of_def) |
|
220 |
apply (case_tac "\<exists>A. f \<in> A -> nat & Finite (A) ") |
|
221 |
apply clarify |
|
222 |
apply (drule_tac x = "{x \<in> domain (f) . 0 < f ` x}" in spec) |
|
223 |
apply auto |
|
224 |
apply (auto intro!: lam_type simp add: Collect_Finite) |
|
225 |
done |
|
226 |
||
227 |
lemma normalize_multiset [simp]: "multiset(M) ==> normalize(M) = M" |
|
228 |
by (auto simp add: multiset_def normalize_def mset_of_def funrestrict_def multiset_fun_iff) |
|
229 |
||
230 |
lemma multiset_normalize [simp]: "multiset(normalize(f))" |
|
231 |
apply (simp add: normalize_def) |
|
232 |
apply (simp add: normalize_def mset_of_def multiset_def, auto) |
|
233 |
apply (rule_tac x = "{x \<in> A . 0<f`x}" in exI) |
|
234 |
apply (auto intro: Collect_subset [THEN subset_Finite] funrestrict_type) |
|
235 |
done |
|
236 |
||
237 |
(** Typechecking rules for union and difference of multisets **) |
|
238 |
||
239 |
(* union *) |
|
240 |
||
241 |
lemma munion_multiset [simp]: "[| multiset(M); multiset(N) |] ==> multiset(M +# N)" |
|
242 |
apply (unfold multiset_def munion_def mset_of_def, auto) |
|
243 |
apply (rule_tac x = "A Un Aa" in exI) |
|
244 |
apply (auto intro!: lam_type intro: Finite_Un simp add: multiset_fun_iff zero_less_add) |
|
245 |
done |
|
246 |
||
247 |
(* difference *) |
|
248 |
||
249 |
lemma mdiff_multiset [simp]: "multiset(M -# N)" |
|
250 |
by (simp add: mdiff_def) |
|
251 |
||
252 |
(** Algebraic properties of multisets **) |
|
253 |
||
254 |
(* Union *) |
|
255 |
||
256 |
lemma munion_0 [simp]: "multiset(M) ==> M +# 0 = M & 0 +# M = M" |
|
257 |
apply (simp add: multiset_def) |
|
258 |
apply (auto simp add: munion_def mset_of_def) |
|
259 |
done |
|
260 |
||
261 |
lemma munion_commute: "M +# N = N +# M" |
|
262 |
by (auto intro!: lam_cong simp add: munion_def) |
|
263 |
||
264 |
lemma munion_assoc: "(M +# N) +# K = M +# (N +# K)" |
|
265 |
apply (unfold munion_def mset_of_def) |
|
266 |
apply (rule lam_cong, auto) |
|
267 |
done |
|
268 |
||
269 |
lemma munion_lcommute: "M +# (N +# K) = N +# (M +# K)" |
|
270 |
apply (unfold munion_def mset_of_def) |
|
271 |
apply (rule lam_cong, auto) |
|
272 |
done |
|
273 |
||
274 |
lemmas munion_ac = munion_commute munion_assoc munion_lcommute |
|
275 |
||
276 |
(* Difference *) |
|
277 |
||
278 |
lemma mdiff_self_eq_0 [simp]: "M -# M = 0" |
|
279 |
by (simp add: mdiff_def normalize_def mset_of_def) |
|
280 |
||
281 |
lemma mdiff_0 [simp]: "0 -# M = 0" |
|
282 |
by (simp add: mdiff_def normalize_def) |
|
283 |
||
284 |
lemma mdiff_0_right [simp]: "multiset(M) ==> M -# 0 = M" |
|
285 |
by (auto simp add: multiset_def mdiff_def normalize_def multiset_fun_iff mset_of_def funrestrict_def) |
|
286 |
||
287 |
lemma mdiff_union_inverse2 [simp]: "multiset(M) ==> M +# {#a#} -# {#a#} = M" |
|
288 |
apply (unfold multiset_def munion_def mdiff_def msingle_def normalize_def mset_of_def) |
|
289 |
apply (auto cong add: if_cong simp add: ltD multiset_fun_iff funrestrict_def subset_Un_iff2 [THEN iffD1]) |
|
290 |
prefer 2 apply (force intro!: lam_type) |
|
291 |
apply (subgoal_tac [2] "{x \<in> A \<union> {a} . x \<noteq> a \<and> x \<in> A} = A") |
|
292 |
apply (rule fun_extension, auto) |
|
293 |
apply (drule_tac x = "A Un {a}" in spec) |
|
294 |
apply (simp add: Finite_Un) |
|
295 |
apply (force intro!: lam_type) |
|
296 |
done |
|
297 |
||
298 |
(** Count of elements **) |
|
299 |
||
300 |
lemma mcount_type [simp,TC]: "multiset(M) ==> mcount(M, a) \<in> nat" |
|
301 |
by (auto simp add: multiset_def mcount_def mset_of_def multiset_fun_iff) |
|
302 |
||
303 |
lemma mcount_0 [simp]: "mcount(0, a) = 0" |
|
304 |
by (simp add: mcount_def) |
|
305 |
||
306 |
lemma mcount_single [simp]: "mcount({#b#}, a) = (if a=b then 1 else 0)" |
|
307 |
by (simp add: mcount_def mset_of_def msingle_def) |
|
308 |
||
309 |
lemma mcount_union [simp]: "[| multiset(M); multiset(N) |] |
|
310 |
==> mcount(M +# N, a) = mcount(M, a) #+ mcount (N, a)" |
|
311 |
apply (auto simp add: multiset_def multiset_fun_iff mcount_def munion_def mset_of_def) |
|
312 |
done |
|
313 |
||
314 |
lemma mcount_diff [simp]: |
|
315 |
"multiset(M) ==> mcount(M -# N, a) = mcount(M, a) #- mcount(N, a)" |
|
316 |
apply (simp add: multiset_def) |
|
317 |
apply (auto dest!: not_lt_imp_le |
|
318 |
simp add: mdiff_def multiset_fun_iff mcount_def normalize_def mset_of_def) |
|
319 |
apply (force intro!: lam_type) |
|
320 |
apply (force intro!: lam_type) |
|
321 |
done |
|
322 |
||
323 |
lemma mcount_elem: "[| multiset(M); a \<in> mset_of(M) |] ==> 0 < mcount(M, a)" |
|
324 |
apply (simp add: multiset_def, clarify) |
|
325 |
apply (simp add: mcount_def mset_of_def) |
|
326 |
apply (simp add: multiset_fun_iff) |
|
327 |
done |
|
328 |
||
329 |
(** msize **) |
|
330 |
||
331 |
lemma msize_0 [simp]: "msize(0) = #0" |
|
332 |
by (simp add: msize_def) |
|
333 |
||
334 |
lemma msize_single [simp]: "msize({#a#}) = #1" |
|
335 |
by (simp add: msize_def) |
|
336 |
||
337 |
lemma msize_type [simp,TC]: "msize(M) \<in> int" |
|
338 |
by (simp add: msize_def) |
|
339 |
||
340 |
lemma msize_zpositive: "multiset(M)==> #0 $\<le> msize(M)" |
|
341 |
by (auto simp add: msize_def intro: g_zpos_imp_setsum_zpos) |
|
342 |
||
343 |
lemma msize_int_of_nat: "multiset(M) ==> \<exists>n \<in> nat. msize(M)= $# n" |
|
344 |
apply (rule not_zneg_int_of) |
|
345 |
apply (simp_all (no_asm_simp) add: msize_type [THEN znegative_iff_zless_0] not_zless_iff_zle msize_zpositive) |
|
346 |
done |
|
347 |
||
348 |
lemma not_empty_multiset_imp_exist: |
|
349 |
"[| M\<noteq>0; multiset(M) |] ==> \<exists>a \<in> mset_of(M). 0 < mcount(M, a)" |
|
350 |
apply (simp add: multiset_def) |
|
351 |
apply (erule not_emptyE) |
|
352 |
apply (auto simp add: mset_of_def mcount_def multiset_fun_iff) |
|
353 |
apply (blast dest!: fun_is_rel) |
|
354 |
done |
|
355 |
||
356 |
lemma msize_eq_0_iff: "multiset(M) ==> msize(M)=#0 <-> M=0" |
|
357 |
apply (simp add: msize_def, auto) |
|
358 |
apply (rule_tac Pa = "setsum (?u,?v) \<noteq> #0" in swap) |
|
359 |
apply blast |
|
360 |
apply (drule not_empty_multiset_imp_exist, assumption, clarify) |
|
361 |
apply (subgoal_tac "Finite (mset_of (M) - {a}) ") |
|
362 |
prefer 2 apply (simp add: Finite_Diff) |
|
363 |
apply (subgoal_tac "setsum (%x. $# mcount (M, x), cons (a, mset_of (M) -{a}))=#0") |
|
364 |
prefer 2 apply (simp add: cons_Diff, simp) |
|
365 |
apply (subgoal_tac "#0 $\<le> setsum (%x. $# mcount (M, x), mset_of (M) - {a}) ") |
|
366 |
apply (rule_tac [2] g_zpos_imp_setsum_zpos) |
|
367 |
apply (auto simp add: Finite_Diff not_zless_iff_zle [THEN iff_sym] znegative_iff_zless_0 [THEN iff_sym]) |
|
368 |
apply (rule not_zneg_int_of [THEN bexE]) |
|
369 |
apply (auto simp del: int_of_0 simp add: int_of_add [symmetric] int_of_0 [symmetric]) |
|
370 |
done |
|
371 |
||
372 |
lemma setsum_mcount_Int: |
|
373 |
"Finite(A) ==> setsum(%a. $# mcount(N, a), A Int mset_of(N)) |
|
374 |
= setsum(%a. $# mcount(N, a), A)" |
|
18415 | 375 |
apply (induct rule: Finite_induct) |
376 |
apply auto |
|
15201 | 377 |
apply (subgoal_tac "Finite (B Int mset_of (N))") |
378 |
prefer 2 apply (blast intro: subset_Finite) |
|
379 |
apply (auto simp add: mcount_def Int_cons_left) |
|
380 |
done |
|
381 |
||
382 |
lemma msize_union [simp]: |
|
383 |
"[| multiset(M); multiset(N) |] ==> msize(M +# N) = msize(M) $+ msize(N)" |
|
384 |
apply (simp add: msize_def setsum_Un setsum_addf int_of_add setsum_mcount_Int) |
|
385 |
apply (subst Int_commute) |
|
386 |
apply (simp add: setsum_mcount_Int) |
|
387 |
done |
|
388 |
||
389 |
lemma msize_eq_succ_imp_elem: "[|msize(M)= $# succ(n); n \<in> nat|] ==> \<exists>a. a \<in> mset_of(M)" |
|
390 |
apply (unfold msize_def) |
|
391 |
apply (blast dest: setsum_succD) |
|
392 |
done |
|
393 |
||
394 |
(** Equality of multisets **) |
|
395 |
||
396 |
lemma equality_lemma: |
|
397 |
"[| multiset(M); multiset(N); \<forall>a. mcount(M, a)=mcount(N, a) |] |
|
398 |
==> mset_of(M)=mset_of(N)" |
|
399 |
apply (simp add: multiset_def) |
|
400 |
apply (rule sym, rule equalityI) |
|
401 |
apply (auto simp add: multiset_fun_iff mcount_def mset_of_def) |
|
402 |
apply (drule_tac [!] x=x in spec) |
|
403 |
apply (case_tac [2] "x \<in> Aa", case_tac "x \<in> A", auto) |
|
404 |
done |
|
405 |
||
406 |
lemma multiset_equality: |
|
407 |
"[| multiset(M); multiset(N) |]==> M=N<->(\<forall>a. mcount(M, a)=mcount(N, a))" |
|
408 |
apply auto |
|
409 |
apply (subgoal_tac "mset_of (M) = mset_of (N) ") |
|
410 |
prefer 2 apply (blast intro: equality_lemma) |
|
411 |
apply (simp add: multiset_def mset_of_def) |
|
412 |
apply (auto simp add: multiset_fun_iff) |
|
413 |
apply (rule fun_extension) |
|
414 |
apply (blast, blast) |
|
415 |
apply (drule_tac x = x in spec) |
|
416 |
apply (auto simp add: mcount_def mset_of_def) |
|
417 |
done |
|
418 |
||
419 |
(** More algebraic properties of multisets **) |
|
420 |
||
421 |
lemma munion_eq_0_iff [simp]: "[|multiset(M); multiset(N)|]==>(M +# N =0) <-> (M=0 & N=0)" |
|
422 |
by (auto simp add: multiset_equality) |
|
423 |
||
424 |
lemma empty_eq_munion_iff [simp]: "[|multiset(M); multiset(N)|]==>(0=M +# N) <-> (M=0 & N=0)" |
|
425 |
apply (rule iffI, drule sym) |
|
426 |
apply (simp_all add: multiset_equality) |
|
427 |
done |
|
428 |
||
429 |
lemma munion_right_cancel [simp]: |
|
430 |
"[| multiset(M); multiset(N); multiset(K) |]==>(M +# K = N +# K)<->(M=N)" |
|
431 |
by (auto simp add: multiset_equality) |
|
432 |
||
433 |
lemma munion_left_cancel [simp]: |
|
434 |
"[|multiset(K); multiset(M); multiset(N)|] ==>(K +# M = K +# N) <-> (M = N)" |
|
435 |
by (auto simp add: multiset_equality) |
|
436 |
||
437 |
lemma nat_add_eq_1_cases: "[| m \<in> nat; n \<in> nat |] ==> (m #+ n = 1) <-> (m=1 & n=0) | (m=0 & n=1)" |
|
18415 | 438 |
by (induct_tac n) auto |
15201 | 439 |
|
440 |
lemma munion_is_single: |
|
441 |
"[|multiset(M); multiset(N)|] |
|
442 |
==> (M +# N = {#a#}) <-> (M={#a#} & N=0) | (M = 0 & N = {#a#})" |
|
443 |
apply (simp (no_asm_simp) add: multiset_equality) |
|
444 |
apply safe |
|
445 |
apply simp_all |
|
446 |
apply (case_tac "aa=a") |
|
447 |
apply (drule_tac [2] x = aa in spec) |
|
448 |
apply (drule_tac x = a in spec) |
|
449 |
apply (simp add: nat_add_eq_1_cases, simp) |
|
450 |
apply (case_tac "aaa=aa", simp) |
|
451 |
apply (drule_tac x = aa in spec) |
|
452 |
apply (simp add: nat_add_eq_1_cases) |
|
453 |
apply (case_tac "aaa=a") |
|
454 |
apply (drule_tac [4] x = aa in spec) |
|
455 |
apply (drule_tac [3] x = a in spec) |
|
456 |
apply (drule_tac [2] x = aaa in spec) |
|
457 |
apply (drule_tac x = aa in spec) |
|
458 |
apply (simp_all add: nat_add_eq_1_cases) |
|
459 |
done |
|
460 |
||
461 |
lemma msingle_is_union: "[| multiset(M); multiset(N) |] |
|
462 |
==> ({#a#} = M +# N) <-> ({#a#} = M & N=0 | M = 0 & {#a#} = N)" |
|
463 |
apply (subgoal_tac " ({#a#} = M +# N) <-> (M +# N = {#a#}) ") |
|
464 |
apply (simp (no_asm_simp) add: munion_is_single) |
|
465 |
apply blast |
|
466 |
apply (blast dest: sym) |
|
467 |
done |
|
468 |
||
469 |
(** Towards induction over multisets **) |
|
470 |
||
471 |
lemma setsum_decr: |
|
472 |
"Finite(A) |
|
473 |
==> (\<forall>M. multiset(M) --> |
|
474 |
(\<forall>a \<in> mset_of(M). setsum(%z. $# mcount(M(a:=M`a #- 1), z), A) = |
|
475 |
(if a \<in> A then setsum(%z. $# mcount(M, z), A) $- #1 |
|
476 |
else setsum(%z. $# mcount(M, z), A))))" |
|
477 |
apply (unfold multiset_def) |
|
478 |
apply (erule Finite_induct) |
|
479 |
apply (auto simp add: multiset_fun_iff) |
|
480 |
apply (unfold mset_of_def mcount_def) |
|
481 |
apply (case_tac "x \<in> A", auto) |
|
482 |
apply (subgoal_tac "$# M ` x $+ #-1 = $# M ` x $- $# 1") |
|
483 |
apply (erule ssubst) |
|
484 |
apply (rule int_of_diff, auto) |
|
485 |
done |
|
486 |
||
487 |
lemma setsum_decr2: |
|
488 |
"Finite(A) |
|
489 |
==> \<forall>M. multiset(M) --> (\<forall>a \<in> mset_of(M). |
|
16973 | 490 |
setsum(%x. $# mcount(funrestrict(M, mset_of(M)-{a}), x), A) = |
491 |
(if a \<in> A then setsum(%x. $# mcount(M, x), A) $- $# M`a |
|
492 |
else setsum(%x. $# mcount(M, x), A)))" |
|
15201 | 493 |
apply (simp add: multiset_def) |
494 |
apply (erule Finite_induct) |
|
495 |
apply (auto simp add: multiset_fun_iff mcount_def mset_of_def) |
|
496 |
done |
|
497 |
||
498 |
lemma setsum_decr3: "[| Finite(A); multiset(M); a \<in> mset_of(M) |] |
|
499 |
==> setsum(%x. $# mcount(funrestrict(M, mset_of(M)-{a}), x), A - {a}) = |
|
500 |
(if a \<in> A then setsum(%x. $# mcount(M, x), A) $- $# M`a |
|
501 |
else setsum(%x. $# mcount(M, x), A))" |
|
502 |
apply (subgoal_tac "setsum (%x. $# mcount (funrestrict (M, mset_of (M) -{a}),x),A-{a}) = setsum (%x. $# mcount (funrestrict (M, mset_of (M) -{a}),x),A) ") |
|
503 |
apply (rule_tac [2] setsum_Diff [symmetric]) |
|
504 |
apply (rule sym, rule ssubst, blast) |
|
505 |
apply (rule sym, drule setsum_decr2, auto) |
|
506 |
apply (simp add: mcount_def mset_of_def) |
|
507 |
done |
|
508 |
||
509 |
lemma nat_le_1_cases: "n \<in> nat ==> n le 1 <-> (n=0 | n=1)" |
|
510 |
by (auto elim: natE) |
|
511 |
||
512 |
lemma succ_pred_eq_self: "[| 0<n; n \<in> nat |] ==> succ(n #- 1) = n" |
|
513 |
apply (subgoal_tac "1 le n") |
|
514 |
apply (drule add_diff_inverse2, auto) |
|
515 |
done |
|
516 |
||
517 |
text{*Specialized for use in the proof below.*} |
|
518 |
lemma multiset_funrestict: |
|
519 |
"\<lbrakk>\<forall>a\<in>A. M ` a \<in> nat \<and> 0 < M ` a; Finite(A)\<rbrakk> |
|
520 |
\<Longrightarrow> multiset(funrestrict(M, A - {a}))" |
|
521 |
apply (simp add: multiset_def multiset_fun_iff) |
|
522 |
apply (rule_tac x="A-{a}" in exI) |
|
523 |
apply (auto intro: Finite_Diff funrestrict_type) |
|
524 |
done |
|
525 |
||
526 |
lemma multiset_induct_aux: |
|
527 |
assumes prem1: "!!M a. [| multiset(M); a\<notin>mset_of(M); P(M) |] ==> P(cons(<a, 1>, M))" |
|
528 |
and prem2: "!!M b. [| multiset(M); b \<in> mset_of(M); P(M) |] ==> P(M(b:= M`b #+ 1))" |
|
529 |
shows |
|
530 |
"[| n \<in> nat; P(0) |] |
|
531 |
==> (\<forall>M. multiset(M)--> |
|
532 |
(setsum(%x. $# mcount(M, x), {x \<in> mset_of(M). 0 < M`x}) = $# n) --> P(M))" |
|
533 |
apply (erule nat_induct, clarify) |
|
534 |
apply (frule msize_eq_0_iff) |
|
535 |
apply (auto simp add: mset_of_def multiset_def multiset_fun_iff msize_def) |
|
536 |
apply (subgoal_tac "setsum (%x. $# mcount (M, x), A) =$# succ (x) ") |
|
537 |
apply (drule setsum_succD, auto) |
|
538 |
apply (case_tac "1 <M`a") |
|
539 |
apply (drule_tac [2] not_lt_imp_le) |
|
540 |
apply (simp_all add: nat_le_1_cases) |
|
541 |
apply (subgoal_tac "M= (M (a:=M`a #- 1)) (a:= (M (a:=M`a #- 1))`a #+ 1) ") |
|
542 |
apply (rule_tac [2] A = A and B = "%x. nat" and D = "%x. nat" in fun_extension) |
|
543 |
apply (rule_tac [3] update_type)+ |
|
544 |
apply (simp_all (no_asm_simp)) |
|
545 |
apply (rule_tac [2] impI) |
|
546 |
apply (rule_tac [2] succ_pred_eq_self [symmetric]) |
|
547 |
apply (simp_all (no_asm_simp)) |
|
548 |
apply (rule subst, rule sym, blast, rule prem2) |
|
549 |
apply (simp (no_asm) add: multiset_def multiset_fun_iff) |
|
550 |
apply (rule_tac x = A in exI) |
|
551 |
apply (force intro: update_type) |
|
552 |
apply (simp (no_asm_simp) add: mset_of_def mcount_def) |
|
553 |
apply (drule_tac x = "M (a := M ` a #- 1) " in spec) |
|
554 |
apply (drule mp, drule_tac [2] mp, simp_all) |
|
555 |
apply (rule_tac x = A in exI) |
|
556 |
apply (auto intro: update_type) |
|
557 |
apply (subgoal_tac "Finite ({x \<in> cons (a, A) . x\<noteq>a-->0<M`x}) ") |
|
558 |
prefer 2 apply (blast intro: Collect_subset [THEN subset_Finite] Finite_cons) |
|
559 |
apply (drule_tac A = "{x \<in> cons (a, A) . x\<noteq>a-->0<M`x}" in setsum_decr) |
|
560 |
apply (drule_tac x = M in spec) |
|
561 |
apply (subgoal_tac "multiset (M) ") |
|
562 |
prefer 2 |
|
563 |
apply (simp add: multiset_def multiset_fun_iff) |
|
564 |
apply (rule_tac x = A in exI, force) |
|
565 |
apply (simp_all add: mset_of_def) |
|
566 |
apply (drule_tac psi = "\<forall>x \<in> A. ?u (x) " in asm_rl) |
|
567 |
apply (drule_tac x = a in bspec) |
|
568 |
apply (simp (no_asm_simp)) |
|
569 |
apply (subgoal_tac "cons (a, A) = A") |
|
570 |
prefer 2 apply blast |
|
571 |
apply simp |
|
572 |
apply (subgoal_tac "M=cons (<a, M`a>, funrestrict (M, A-{a}))") |
|
573 |
prefer 2 |
|
574 |
apply (rule fun_cons_funrestrict_eq) |
|
575 |
apply (subgoal_tac "cons (a, A-{a}) = A") |
|
576 |
apply force |
|
577 |
apply force |
|
578 |
apply (rule_tac a = "cons (<a, 1>, funrestrict (M, A - {a}))" in ssubst) |
|
579 |
apply simp |
|
580 |
apply (frule multiset_funrestict, assumption) |
|
581 |
apply (rule prem1, assumption) |
|
582 |
apply (simp add: mset_of_def) |
|
583 |
apply (drule_tac x = "funrestrict (M, A-{a}) " in spec) |
|
584 |
apply (drule mp) |
|
585 |
apply (rule_tac x = "A-{a}" in exI) |
|
586 |
apply (auto intro: Finite_Diff funrestrict_type simp add: funrestrict) |
|
587 |
apply (frule_tac A = A and M = M and a = a in setsum_decr3) |
|
588 |
apply (simp (no_asm_simp) add: multiset_def multiset_fun_iff) |
|
589 |
apply blast |
|
590 |
apply (simp (no_asm_simp) add: mset_of_def) |
|
591 |
apply (drule_tac b = "if ?u then ?v else ?w" in sym, simp_all) |
|
592 |
apply (subgoal_tac "{x \<in> A - {a} . 0 < funrestrict (M, A - {x}) ` x} = A - {a}") |
|
593 |
apply (auto intro!: setsum_cong simp add: zdiff_eq_iff zadd_commute multiset_def multiset_fun_iff mset_of_def) |
|
594 |
done |
|
595 |
||
596 |
lemma multiset_induct2: |
|
597 |
"[| multiset(M); P(0); |
|
598 |
(!!M a. [| multiset(M); a\<notin>mset_of(M); P(M) |] ==> P(cons(<a, 1>, M))); |
|
599 |
(!!M b. [| multiset(M); b \<in> mset_of(M); P(M) |] ==> P(M(b:= M`b #+ 1))) |] |
|
600 |
==> P(M)" |
|
601 |
apply (subgoal_tac "\<exists>n \<in> nat. setsum (\<lambda>x. $# mcount (M, x), {x \<in> mset_of (M) . 0 < M ` x}) = $# n") |
|
602 |
apply (rule_tac [2] not_zneg_int_of) |
|
603 |
apply (simp_all (no_asm_simp) add: znegative_iff_zless_0 not_zless_iff_zle) |
|
604 |
apply (rule_tac [2] g_zpos_imp_setsum_zpos) |
|
605 |
prefer 2 apply (blast intro: multiset_set_of_Finite Collect_subset [THEN subset_Finite]) |
|
606 |
prefer 2 apply (simp add: multiset_def multiset_fun_iff, clarify) |
|
607 |
apply (rule multiset_induct_aux [rule_format], auto) |
|
608 |
done |
|
609 |
||
610 |
lemma munion_single_case1: |
|
611 |
"[| multiset(M); a \<notin>mset_of(M) |] ==> M +# {#a#} = cons(<a, 1>, M)" |
|
612 |
apply (simp add: multiset_def msingle_def) |
|
613 |
apply (auto simp add: munion_def) |
|
614 |
apply (unfold mset_of_def, simp) |
|
615 |
apply (rule fun_extension, rule lam_type, simp_all) |
|
616 |
apply (auto simp add: multiset_fun_iff fun_extend_apply) |
|
617 |
apply (drule_tac c = a and b = 1 in fun_extend3) |
|
618 |
apply (auto simp add: cons_eq Un_commute [of _ "{a}"]) |
|
619 |
done |
|
620 |
||
621 |
lemma munion_single_case2: |
|
622 |
"[| multiset(M); a \<in> mset_of(M) |] ==> M +# {#a#} = M(a:=M`a #+ 1)" |
|
623 |
apply (simp add: multiset_def) |
|
624 |
apply (auto simp add: munion_def multiset_fun_iff msingle_def) |
|
625 |
apply (unfold mset_of_def, simp) |
|
626 |
apply (subgoal_tac "A Un {a} = A") |
|
627 |
apply (rule fun_extension) |
|
628 |
apply (auto dest: domain_type intro: lam_type update_type) |
|
629 |
done |
|
630 |
||
631 |
(* Induction principle for multisets *) |
|
632 |
||
633 |
lemma multiset_induct: |
|
634 |
assumes M: "multiset(M)" |
|
635 |
and P0: "P(0)" |
|
636 |
and step: "!!M a. [| multiset(M); P(M) |] ==> P(M +# {#a#})" |
|
637 |
shows "P(M)" |
|
638 |
apply (rule multiset_induct2 [OF M]) |
|
639 |
apply (simp_all add: P0) |
|
20898 | 640 |
apply (frule_tac [2] a = b in munion_single_case2 [symmetric]) |
641 |
apply (frule_tac a = a in munion_single_case1 [symmetric]) |
|
15201 | 642 |
apply (auto intro: step) |
643 |
done |
|
644 |
||
645 |
(** MCollect **) |
|
646 |
||
647 |
lemma MCollect_multiset [simp]: |
|
648 |
"multiset(M) ==> multiset({# x \<in> M. P(x)#})" |
|
649 |
apply (simp add: MCollect_def multiset_def mset_of_def, clarify) |
|
650 |
apply (rule_tac x = "{x \<in> A. P (x) }" in exI) |
|
651 |
apply (auto dest: CollectD1 [THEN [2] apply_type] |
|
652 |
intro: Collect_subset [THEN subset_Finite] funrestrict_type) |
|
653 |
done |
|
654 |
||
655 |
lemma mset_of_MCollect [simp]: |
|
656 |
"multiset(M) ==> mset_of({# x \<in> M. P(x) #}) \<subseteq> mset_of(M)" |
|
657 |
by (auto simp add: mset_of_def MCollect_def multiset_def funrestrict_def) |
|
658 |
||
659 |
lemma MCollect_mem_iff [iff]: |
|
660 |
"x \<in> mset_of({#x \<in> M. P(x)#}) <-> x \<in> mset_of(M) & P(x)" |
|
661 |
by (simp add: MCollect_def mset_of_def) |
|
662 |
||
663 |
lemma mcount_MCollect [simp]: |
|
664 |
"mcount({# x \<in> M. P(x) #}, a) = (if P(a) then mcount(M,a) else 0)" |
|
665 |
by (simp add: mcount_def MCollect_def mset_of_def) |
|
666 |
||
667 |
lemma multiset_partition: "multiset(M) ==> M = {# x \<in> M. P(x) #} +# {# x \<in> M. ~ P(x) #}" |
|
668 |
by (simp add: multiset_equality) |
|
669 |
||
670 |
lemma natify_elem_is_self [simp]: |
|
671 |
"[| multiset(M); a \<in> mset_of(M) |] ==> natify(M`a) = M`a" |
|
672 |
by (auto simp add: multiset_def mset_of_def multiset_fun_iff) |
|
673 |
||
674 |
(* and more algebraic laws on multisets *) |
|
675 |
||
676 |
lemma munion_eq_conv_diff: "[| multiset(M); multiset(N) |] |
|
677 |
==> (M +# {#a#} = N +# {#b#}) <-> (M = N & a = b | |
|
678 |
M = N -# {#a#} +# {#b#} & N = M -# {#b#} +# {#a#})" |
|
679 |
apply (simp del: mcount_single add: multiset_equality) |
|
680 |
apply (rule iffI, erule_tac [2] disjE, erule_tac [3] conjE) |
|
681 |
apply (case_tac "a=b", auto) |
|
682 |
apply (drule_tac x = a in spec) |
|
683 |
apply (drule_tac [2] x = b in spec) |
|
684 |
apply (drule_tac [3] x = aa in spec) |
|
685 |
apply (drule_tac [4] x = a in spec, auto) |
|
686 |
apply (subgoal_tac [!] "mcount (N,a) :nat") |
|
687 |
apply (erule_tac [3] natE, erule natE, auto) |
|
688 |
done |
|
689 |
||
690 |
lemma melem_diff_single: |
|
691 |
"multiset(M) ==> |
|
692 |
k \<in> mset_of(M -# {#a#}) <-> (k=a & 1 < mcount(M,a)) | (k\<noteq> a & k \<in> mset_of(M))" |
|
693 |
apply (simp add: multiset_def) |
|
694 |
apply (simp add: normalize_def mset_of_def msingle_def mdiff_def mcount_def) |
|
695 |
apply (auto dest: domain_type intro: zero_less_diff [THEN iffD1] |
|
696 |
simp add: multiset_fun_iff apply_iff) |
|
697 |
apply (force intro!: lam_type) |
|
698 |
apply (force intro!: lam_type) |
|
699 |
apply (force intro!: lam_type) |
|
700 |
done |
|
701 |
||
702 |
lemma munion_eq_conv_exist: |
|
703 |
"[| M \<in> Mult(A); N \<in> Mult(A) |] |
|
704 |
==> (M +# {#a#} = N +# {#b#}) <-> |
|
705 |
(M=N & a=b | (\<exists>K \<in> Mult(A). M= K +# {#b#} & N=K +# {#a#}))" |
|
706 |
by (auto simp add: Mult_iff_multiset melem_diff_single munion_eq_conv_diff) |
|
707 |
||
708 |
||
709 |
subsection{*Multiset Orderings*} |
|
710 |
||
711 |
(* multiset on a domain A are finite functions from A to nat-{0} *) |
|
712 |
||
713 |
||
714 |
(* multirel1 type *) |
|
715 |
||
716 |
lemma multirel1_type: "multirel1(A, r) \<subseteq> Mult(A)*Mult(A)" |
|
717 |
by (auto simp add: multirel1_def) |
|
718 |
||
719 |
lemma multirel1_0 [simp]: "multirel1(0, r) =0" |
|
720 |
by (auto simp add: multirel1_def) |
|
721 |
||
722 |
lemma multirel1_iff: |
|
723 |
" <N, M> \<in> multirel1(A, r) <-> |
|
724 |
(\<exists>a. a \<in> A & |
|
725 |
(\<exists>M0. M0 \<in> Mult(A) & (\<exists>K. K \<in> Mult(A) & |
|
726 |
M=M0 +# {#a#} & N=M0 +# K & (\<forall>b \<in> mset_of(K). <b,a> \<in> r))))" |
|
727 |
by (auto simp add: multirel1_def Mult_iff_multiset Bex_def) |
|
728 |
||
729 |
||
730 |
text{*Monotonicity of @{term multirel1}*} |
|
731 |
||
732 |
lemma multirel1_mono1: "A\<subseteq>B ==> multirel1(A, r)\<subseteq>multirel1(B, r)" |
|
733 |
apply (auto simp add: multirel1_def) |
|
734 |
apply (auto simp add: Un_subset_iff Mult_iff_multiset) |
|
735 |
apply (rule_tac x = a in bexI) |
|
736 |
apply (rule_tac x = M0 in bexI, simp) |
|
737 |
apply (rule_tac x = K in bexI) |
|
738 |
apply (auto simp add: Mult_iff_multiset) |
|
739 |
done |
|
740 |
||
741 |
lemma multirel1_mono2: "r\<subseteq>s ==> multirel1(A,r)\<subseteq>multirel1(A, s)" |
|
742 |
apply (simp add: multirel1_def, auto) |
|
743 |
apply (rule_tac x = a in bexI) |
|
744 |
apply (rule_tac x = M0 in bexI) |
|
745 |
apply (simp_all add: Mult_iff_multiset) |
|
746 |
apply (rule_tac x = K in bexI) |
|
747 |
apply (simp_all add: Mult_iff_multiset, auto) |
|
748 |
done |
|
749 |
||
750 |
lemma multirel1_mono: |
|
751 |
"[| A\<subseteq>B; r\<subseteq>s |] ==> multirel1(A, r) \<subseteq> multirel1(B, s)" |
|
752 |
apply (rule subset_trans) |
|
753 |
apply (rule multirel1_mono1) |
|
754 |
apply (rule_tac [2] multirel1_mono2, auto) |
|
755 |
done |
|
756 |
||
757 |
subsection{* Toward the proof of well-foundedness of multirel1 *} |
|
758 |
||
759 |
lemma not_less_0 [iff]: "<M,0> \<notin> multirel1(A, r)" |
|
760 |
by (auto simp add: multirel1_def Mult_iff_multiset) |
|
12089
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
761 |
|
15201 | 762 |
lemma less_munion: "[| <N, M0 +# {#a#}> \<in> multirel1(A, r); M0 \<in> Mult(A) |] ==> |
763 |
(\<exists>M. <M, M0> \<in> multirel1(A, r) & N = M +# {#a#}) | |
|
764 |
(\<exists>K. K \<in> Mult(A) & (\<forall>b \<in> mset_of(K). <b, a> \<in> r) & N = M0 +# K)" |
|
765 |
apply (frule multirel1_type [THEN subsetD]) |
|
766 |
apply (simp add: multirel1_iff) |
|
767 |
apply (auto simp add: munion_eq_conv_exist) |
|
768 |
apply (rule_tac x="Ka +# K" in exI, auto, simp add: Mult_iff_multiset) |
|
769 |
apply (simp (no_asm_simp) add: munion_left_cancel munion_assoc) |
|
770 |
apply (auto simp add: munion_commute) |
|
771 |
done |
|
772 |
||
773 |
lemma multirel1_base: "[| M \<in> Mult(A); a \<in> A |] ==> <M, M +# {#a#}> \<in> multirel1(A, r)" |
|
774 |
apply (auto simp add: multirel1_iff) |
|
775 |
apply (simp add: Mult_iff_multiset) |
|
776 |
apply (rule_tac x = a in exI, clarify) |
|
777 |
apply (rule_tac x = M in exI, simp) |
|
778 |
apply (rule_tac x = 0 in exI, auto) |
|
779 |
done |
|
780 |
||
781 |
lemma acc_0: "acc(0)=0" |
|
782 |
by (auto intro!: equalityI dest: acc.dom_subset [THEN subsetD]) |
|
783 |
||
784 |
lemma lemma1: "[| \<forall>b \<in> A. <b,a> \<in> r --> |
|
785 |
(\<forall>M \<in> acc(multirel1(A, r)). M +# {#b#}:acc(multirel1(A, r))); |
|
786 |
M0 \<in> acc(multirel1(A, r)); a \<in> A; |
|
787 |
\<forall>M. <M,M0> \<in> multirel1(A, r) --> M +# {#a#} \<in> acc(multirel1(A, r)) |] |
|
788 |
==> M0 +# {#a#} \<in> acc(multirel1(A, r))" |
|
15481 | 789 |
apply (subgoal_tac "M0 \<in> Mult(A) ") |
15201 | 790 |
prefer 2 |
791 |
apply (erule acc.cases) |
|
792 |
apply (erule fieldE) |
|
793 |
apply (auto dest: multirel1_type [THEN subsetD]) |
|
794 |
apply (rule accI) |
|
795 |
apply (rename_tac "N") |
|
796 |
apply (drule less_munion, blast) |
|
797 |
apply (auto simp add: Mult_iff_multiset) |
|
798 |
apply (erule_tac P = "\<forall>x \<in> mset_of (K) . <x, a> \<in> r" in rev_mp) |
|
799 |
apply (erule_tac P = "mset_of (K) \<subseteq>A" in rev_mp) |
|
800 |
apply (erule_tac M = K in multiset_induct) |
|
801 |
(* three subgoals *) |
|
802 |
(* subgoal 1: the induction base case *) |
|
803 |
apply (simp (no_asm_simp)) |
|
804 |
(* subgoal 2: the induction general case *) |
|
805 |
apply (simp add: Ball_def Un_subset_iff, clarify) |
|
806 |
apply (drule_tac x = aa in spec, simp) |
|
807 |
apply (subgoal_tac "aa \<in> A") |
|
808 |
prefer 2 apply blast |
|
809 |
apply (drule_tac x = "M0 +# M" and P = |
|
810 |
"%x. x \<in> acc(multirel1(A, r)) \<longrightarrow> ?Q(x)" in spec) |
|
811 |
apply (simp add: munion_assoc [symmetric]) |
|
812 |
(* subgoal 3: additional conditions *) |
|
813 |
apply (auto intro!: multirel1_base [THEN fieldI2] simp add: Mult_iff_multiset) |
|
814 |
done |
|
815 |
||
816 |
lemma lemma2: "[| \<forall>b \<in> A. <b,a> \<in> r |
|
817 |
--> (\<forall>M \<in> acc(multirel1(A, r)). M +# {#b#} :acc(multirel1(A, r))); |
|
818 |
M \<in> acc(multirel1(A, r)); a \<in> A|] ==> M +# {#a#} \<in> acc(multirel1(A, r))" |
|
819 |
apply (erule acc_induct) |
|
820 |
apply (blast intro: lemma1) |
|
821 |
done |
|
822 |
||
823 |
lemma lemma3: "[| wf[A](r); a \<in> A |] |
|
824 |
==> \<forall>M \<in> acc(multirel1(A, r)). M +# {#a#} \<in> acc(multirel1(A, r))" |
|
825 |
apply (erule_tac a = a in wf_on_induct, blast) |
|
826 |
apply (blast intro: lemma2) |
|
827 |
done |
|
828 |
||
829 |
lemma lemma4: "multiset(M) ==> mset_of(M)\<subseteq>A --> |
|
830 |
wf[A](r) --> M \<in> field(multirel1(A, r)) --> M \<in> acc(multirel1(A, r))" |
|
831 |
apply (erule multiset_induct) |
|
832 |
(* proving the base case *) |
|
833 |
apply clarify |
|
834 |
apply (rule accI, force) |
|
835 |
apply (simp add: multirel1_def) |
|
836 |
(* Proving the general case *) |
|
837 |
apply clarify |
|
838 |
apply simp |
|
839 |
apply (subgoal_tac "mset_of (M) \<subseteq>A") |
|
840 |
prefer 2 apply blast |
|
841 |
apply clarify |
|
842 |
apply (drule_tac a = a in lemma3, blast) |
|
843 |
apply (subgoal_tac "M \<in> field (multirel1 (A,r))") |
|
844 |
apply blast |
|
845 |
apply (rule multirel1_base [THEN fieldI1]) |
|
846 |
apply (auto simp add: Mult_iff_multiset) |
|
847 |
done |
|
848 |
||
849 |
lemma all_accessible: "[| wf[A](r); M \<in> Mult(A); A \<noteq> 0|] ==> M \<in> acc(multirel1(A, r))" |
|
850 |
apply (erule not_emptyE) |
|
851 |
apply (rule lemma4 [THEN mp, THEN mp, THEN mp]) |
|
852 |
apply (rule_tac [4] multirel1_base [THEN fieldI1]) |
|
853 |
apply (auto simp add: Mult_iff_multiset) |
|
854 |
done |
|
855 |
||
856 |
lemma wf_on_multirel1: "wf[A](r) ==> wf[A-||>nat-{0}](multirel1(A, r))" |
|
857 |
apply (case_tac "A=0") |
|
858 |
apply (simp (no_asm_simp)) |
|
859 |
apply (rule wf_imp_wf_on) |
|
860 |
apply (rule wf_on_field_imp_wf) |
|
861 |
apply (simp (no_asm_simp) add: wf_on_0) |
|
862 |
apply (rule_tac A = "acc (multirel1 (A,r))" in wf_on_subset_A) |
|
863 |
apply (rule wf_on_acc) |
|
864 |
apply (blast intro: all_accessible) |
|
865 |
done |
|
866 |
||
867 |
lemma wf_multirel1: "wf(r) ==>wf(multirel1(field(r), r))" |
|
868 |
apply (simp (no_asm_use) add: wf_iff_wf_on_field) |
|
869 |
apply (drule wf_on_multirel1) |
|
870 |
apply (rule_tac A = "field (r) -||> nat - {0}" in wf_on_subset_A) |
|
871 |
apply (simp (no_asm_simp)) |
|
872 |
apply (rule field_rel_subset) |
|
873 |
apply (rule multirel1_type) |
|
874 |
done |
|
875 |
||
876 |
(** multirel **) |
|
877 |
||
878 |
lemma multirel_type: "multirel(A, r) \<subseteq> Mult(A)*Mult(A)" |
|
879 |
apply (simp add: multirel_def) |
|
880 |
apply (rule trancl_type [THEN subset_trans]) |
|
881 |
apply (auto dest: multirel1_type [THEN subsetD]) |
|
882 |
done |
|
883 |
||
884 |
(* Monotonicity of multirel *) |
|
885 |
lemma multirel_mono: |
|
886 |
"[| A\<subseteq>B; r\<subseteq>s |] ==> multirel(A, r)\<subseteq>multirel(B,s)" |
|
887 |
apply (simp add: multirel_def) |
|
888 |
apply (rule trancl_mono) |
|
889 |
apply (rule multirel1_mono, auto) |
|
890 |
done |
|
891 |
||
892 |
(* Equivalence of multirel with the usual (closure-free) def *) |
|
893 |
||
894 |
lemma add_diff_eq: "k \<in> nat ==> 0 < k --> n #+ k #- 1 = n #+ (k #- 1)" |
|
895 |
by (erule nat_induct, auto) |
|
896 |
||
897 |
lemma mdiff_union_single_conv: "[|a \<in> mset_of(J); multiset(I); multiset(J) |] |
|
898 |
==> I +# J -# {#a#} = I +# (J-# {#a#})" |
|
899 |
apply (simp (no_asm_simp) add: multiset_equality) |
|
900 |
apply (case_tac "a \<notin> mset_of (I) ") |
|
901 |
apply (auto simp add: mcount_def mset_of_def multiset_def multiset_fun_iff) |
|
902 |
apply (auto dest: domain_type simp add: add_diff_eq) |
|
903 |
done |
|
904 |
||
905 |
lemma diff_add_commute: "[| n le m; m \<in> nat; n \<in> nat; k \<in> nat |] ==> m #- n #+ k = m #+ k #- n" |
|
906 |
by (auto simp add: le_iff less_iff_succ_add) |
|
907 |
||
908 |
(* One direction *) |
|
909 |
||
910 |
lemma multirel_implies_one_step: |
|
911 |
"<M,N> \<in> multirel(A, r) ==> |
|
912 |
trans[A](r) --> |
|
913 |
(\<exists>I J K. |
|
914 |
I \<in> Mult(A) & J \<in> Mult(A) & K \<in> Mult(A) & |
|
915 |
N = I +# J & M = I +# K & J \<noteq> 0 & |
|
916 |
(\<forall>k \<in> mset_of(K). \<exists>j \<in> mset_of(J). <k,j> \<in> r))" |
|
917 |
apply (simp add: multirel_def Ball_def Bex_def) |
|
918 |
apply (erule converse_trancl_induct) |
|
919 |
apply (simp_all add: multirel1_iff Mult_iff_multiset) |
|
920 |
(* Two subgoals remain *) |
|
921 |
(* Subgoal 1 *) |
|
922 |
apply clarify |
|
923 |
apply (rule_tac x = M0 in exI, force) |
|
924 |
(* Subgoal 2 *) |
|
925 |
apply clarify |
|
926 |
apply (case_tac "a \<in> mset_of (Ka) ") |
|
927 |
apply (rule_tac x = I in exI, simp (no_asm_simp)) |
|
928 |
apply (rule_tac x = J in exI, simp (no_asm_simp)) |
|
929 |
apply (rule_tac x = " (Ka -# {#a#}) +# K" in exI, simp (no_asm_simp)) |
|
930 |
apply (simp_all add: Un_subset_iff) |
|
931 |
apply (simp (no_asm_simp) add: munion_assoc [symmetric]) |
|
932 |
apply (drule_tac t = "%M. M-#{#a#}" in subst_context) |
|
933 |
apply (simp add: mdiff_union_single_conv melem_diff_single, clarify) |
|
934 |
apply (erule disjE, simp) |
|
935 |
apply (erule disjE, simp) |
|
936 |
apply (drule_tac x = a and P = "%x. x :# Ka \<longrightarrow> ?Q(x)" in spec) |
|
937 |
apply clarify |
|
938 |
apply (rule_tac x = xa in exI) |
|
939 |
apply (simp (no_asm_simp)) |
|
940 |
apply (blast dest: trans_onD) |
|
941 |
(* new we know that a\<notin>mset_of(Ka) *) |
|
942 |
apply (subgoal_tac "a :# I") |
|
943 |
apply (rule_tac x = "I-#{#a#}" in exI, simp (no_asm_simp)) |
|
944 |
apply (rule_tac x = "J+#{#a#}" in exI) |
|
945 |
apply (simp (no_asm_simp) add: Un_subset_iff) |
|
946 |
apply (rule_tac x = "Ka +# K" in exI) |
|
947 |
apply (simp (no_asm_simp) add: Un_subset_iff) |
|
948 |
apply (rule conjI) |
|
949 |
apply (simp (no_asm_simp) add: multiset_equality mcount_elem [THEN succ_pred_eq_self]) |
|
950 |
apply (rule conjI) |
|
951 |
apply (drule_tac t = "%M. M-#{#a#}" in subst_context) |
|
952 |
apply (simp add: mdiff_union_inverse2) |
|
953 |
apply (simp_all (no_asm_simp) add: multiset_equality) |
|
954 |
apply (rule diff_add_commute [symmetric]) |
|
955 |
apply (auto intro: mcount_elem) |
|
956 |
apply (subgoal_tac "a \<in> mset_of (I +# Ka) ") |
|
957 |
apply (drule_tac [2] sym, auto) |
|
958 |
done |
|
959 |
||
960 |
lemma melem_imp_eq_diff_union [simp]: "[| a \<in> mset_of(M); multiset(M) |] ==> M -# {#a#} +# {#a#} = M" |
|
961 |
by (simp add: multiset_equality mcount_elem [THEN succ_pred_eq_self]) |
|
962 |
||
963 |
lemma msize_eq_succ_imp_eq_union: |
|
964 |
"[| msize(M)=$# succ(n); M \<in> Mult(A); n \<in> nat |] |
|
965 |
==> \<exists>a N. M = N +# {#a#} & N \<in> Mult(A) & a \<in> A" |
|
966 |
apply (drule msize_eq_succ_imp_elem, auto) |
|
967 |
apply (rule_tac x = a in exI) |
|
968 |
apply (rule_tac x = "M -# {#a#}" in exI) |
|
969 |
apply (frule Mult_into_multiset) |
|
970 |
apply (simp (no_asm_simp)) |
|
971 |
apply (auto simp add: Mult_iff_multiset) |
|
972 |
done |
|
973 |
||
974 |
(* The second direction *) |
|
975 |
||
976 |
lemma one_step_implies_multirel_lemma [rule_format (no_asm)]: |
|
977 |
"n \<in> nat ==> |
|
978 |
(\<forall>I J K. |
|
979 |
I \<in> Mult(A) & J \<in> Mult(A) & K \<in> Mult(A) & |
|
980 |
(msize(J) = $# n & J \<noteq>0 & (\<forall>k \<in> mset_of(K). \<exists>j \<in> mset_of(J). <k, j> \<in> r)) |
|
981 |
--> <I +# K, I +# J> \<in> multirel(A, r))" |
|
982 |
apply (simp add: Mult_iff_multiset) |
|
983 |
apply (erule nat_induct, clarify) |
|
984 |
apply (drule_tac M = J in msize_eq_0_iff, auto) |
|
985 |
(* one subgoal remains *) |
|
986 |
apply (subgoal_tac "msize (J) =$# succ (x) ") |
|
987 |
prefer 2 apply simp |
|
988 |
apply (frule_tac A = A in msize_eq_succ_imp_eq_union) |
|
989 |
apply (simp_all add: Mult_iff_multiset, clarify) |
|
990 |
apply (rename_tac "J'", simp) |
|
991 |
apply (case_tac "J' = 0") |
|
992 |
apply (simp add: multirel_def) |
|
993 |
apply (rule r_into_trancl, clarify) |
|
994 |
apply (simp add: multirel1_iff Mult_iff_multiset, force) |
|
995 |
(*Now we know J' \<noteq> 0*) |
|
996 |
apply (drule sym, rotate_tac -1, simp) |
|
997 |
apply (erule_tac V = "$# x = msize (J') " in thin_rl) |
|
998 |
apply (frule_tac M = K and P = "%x. <x,a> \<in> r" in multiset_partition) |
|
999 |
apply (erule_tac P = "\<forall>k \<in> mset_of (K) . ?P (k) " in rev_mp) |
|
1000 |
apply (erule ssubst) |
|
1001 |
apply (simp add: Ball_def, auto) |
|
15481 | 1002 |
apply (subgoal_tac "< (I +# {# x \<in> K. <x, a> \<in> r#}) +# {# x \<in> K. <x, a> \<notin> r#}, (I +# {# x \<in> K. <x, a> \<in> r#}) +# J'> \<in> multirel(A, r) ") |
15201 | 1003 |
prefer 2 |
1004 |
apply (drule_tac x = "I +# {# x \<in> K. <x, a> \<in> r#}" in spec) |
|
1005 |
apply (rotate_tac -1) |
|
1006 |
apply (drule_tac x = "J'" in spec) |
|
1007 |
apply (rotate_tac -1) |
|
1008 |
apply (drule_tac x = "{# x \<in> K. <x, a> \<notin> r#}" in spec, simp) apply blast |
|
1009 |
apply (simp add: munion_assoc [symmetric] multirel_def) |
|
1010 |
apply (rule_tac b = "I +# {# x \<in> K. <x, a> \<in> r#} +# J'" in trancl_trans, blast) |
|
1011 |
apply (rule r_into_trancl) |
|
1012 |
apply (simp add: multirel1_iff Mult_iff_multiset) |
|
1013 |
apply (rule_tac x = a in exI) |
|
1014 |
apply (simp (no_asm_simp)) |
|
1015 |
apply (rule_tac x = "I +# J'" in exI) |
|
1016 |
apply (auto simp add: munion_ac Un_subset_iff) |
|
1017 |
done |
|
1018 |
||
1019 |
lemma one_step_implies_multirel: |
|
1020 |
"[| J \<noteq> 0; \<forall>k \<in> mset_of(K). \<exists>j \<in> mset_of(J). <k,j> \<in> r; |
|
1021 |
I \<in> Mult(A); J \<in> Mult(A); K \<in> Mult(A) |] |
|
1022 |
==> <I+#K, I+#J> \<in> multirel(A, r)" |
|
1023 |
apply (subgoal_tac "multiset (J) ") |
|
1024 |
prefer 2 apply (simp add: Mult_iff_multiset) |
|
1025 |
apply (frule_tac M = J in msize_int_of_nat) |
|
1026 |
apply (auto intro: one_step_implies_multirel_lemma) |
|
1027 |
done |
|
1028 |
||
1029 |
(** Proving that multisets are partially ordered **) |
|
1030 |
||
1031 |
(*irreflexivity*) |
|
1032 |
||
1033 |
lemma multirel_irrefl_lemma: |
|
1034 |
"Finite(A) ==> part_ord(A, r) --> (\<forall>x \<in> A. \<exists>y \<in> A. <x,y> \<in> r) -->A=0" |
|
1035 |
apply (erule Finite_induct) |
|
1036 |
apply (auto dest: subset_consI [THEN [2] part_ord_subset]) |
|
1037 |
apply (auto simp add: part_ord_def irrefl_def) |
|
1038 |
apply (drule_tac x = xa in bspec) |
|
1039 |
apply (drule_tac [2] a = xa and b = x in trans_onD, auto) |
|
1040 |
done |
|
1041 |
||
1042 |
lemma irrefl_on_multirel: |
|
1043 |
"part_ord(A, r) ==> irrefl(Mult(A), multirel(A, r))" |
|
1044 |
apply (simp add: irrefl_def) |
|
1045 |
apply (subgoal_tac "trans[A](r) ") |
|
1046 |
prefer 2 apply (simp add: part_ord_def, clarify) |
|
1047 |
apply (drule multirel_implies_one_step, clarify) |
|
1048 |
apply (simp add: Mult_iff_multiset, clarify) |
|
1049 |
apply (subgoal_tac "Finite (mset_of (K))") |
|
1050 |
apply (frule_tac r = r in multirel_irrefl_lemma) |
|
1051 |
apply (frule_tac B = "mset_of (K) " in part_ord_subset) |
|
1052 |
apply simp_all |
|
1053 |
apply (auto simp add: multiset_def mset_of_def) |
|
1054 |
done |
|
1055 |
||
1056 |
lemma trans_on_multirel: "trans[Mult(A)](multirel(A, r))" |
|
1057 |
apply (simp add: multirel_def trans_on_def) |
|
1058 |
apply (blast intro: trancl_trans) |
|
1059 |
done |
|
1060 |
||
1061 |
lemma multirel_trans: |
|
1062 |
"[| <M, N> \<in> multirel(A, r); <N, K> \<in> multirel(A, r) |] ==> <M, K> \<in> multirel(A,r)" |
|
1063 |
apply (simp add: multirel_def) |
|
1064 |
apply (blast intro: trancl_trans) |
|
1065 |
done |
|
1066 |
||
1067 |
lemma trans_multirel: "trans(multirel(A,r))" |
|
1068 |
apply (simp add: multirel_def) |
|
1069 |
apply (rule trans_trancl) |
|
1070 |
done |
|
1071 |
||
1072 |
lemma part_ord_multirel: "part_ord(A,r) ==> part_ord(Mult(A), multirel(A, r))" |
|
1073 |
apply (simp (no_asm) add: part_ord_def) |
|
1074 |
apply (blast intro: irrefl_on_multirel trans_on_multirel) |
|
1075 |
done |
|
1076 |
||
1077 |
(** Monotonicity of multiset union **) |
|
1078 |
||
1079 |
lemma munion_multirel1_mono: |
|
1080 |
"[|<M,N> \<in> multirel1(A, r); K \<in> Mult(A) |] ==> <K +# M, K +# N> \<in> multirel1(A, r)" |
|
1081 |
apply (frule multirel1_type [THEN subsetD]) |
|
1082 |
apply (auto simp add: multirel1_iff Mult_iff_multiset) |
|
1083 |
apply (rule_tac x = a in exI) |
|
1084 |
apply (simp (no_asm_simp)) |
|
1085 |
apply (rule_tac x = "K+#M0" in exI) |
|
1086 |
apply (simp (no_asm_simp) add: Un_subset_iff) |
|
1087 |
apply (rule_tac x = Ka in exI) |
|
1088 |
apply (simp (no_asm_simp) add: munion_assoc) |
|
1089 |
done |
|
1090 |
||
1091 |
lemma munion_multirel_mono2: |
|
1092 |
"[| <M, N> \<in> multirel(A, r); K \<in> Mult(A) |]==><K +# M, K +# N> \<in> multirel(A, r)" |
|
1093 |
apply (frule multirel_type [THEN subsetD]) |
|
1094 |
apply (simp (no_asm_use) add: multirel_def) |
|
1095 |
apply clarify |
|
1096 |
apply (drule_tac psi = "<M,N> \<in> multirel1 (A, r) ^+" in asm_rl) |
|
1097 |
apply (erule rev_mp) |
|
1098 |
apply (erule rev_mp) |
|
1099 |
apply (erule rev_mp) |
|
1100 |
apply (erule trancl_induct, clarify) |
|
1101 |
apply (blast intro: munion_multirel1_mono r_into_trancl, clarify) |
|
15481 | 1102 |
apply (subgoal_tac "y \<in> Mult(A) ") |
15201 | 1103 |
prefer 2 |
1104 |
apply (blast dest: multirel_type [unfolded multirel_def, THEN subsetD]) |
|
1105 |
apply (subgoal_tac "<K +# y, K +# z> \<in> multirel1 (A, r) ") |
|
1106 |
prefer 2 apply (blast intro: munion_multirel1_mono) |
|
1107 |
apply (blast intro: r_into_trancl trancl_trans) |
|
1108 |
done |
|
1109 |
||
1110 |
lemma munion_multirel_mono1: |
|
1111 |
"[|<M, N> \<in> multirel(A, r); K \<in> Mult(A)|] ==> <M +# K, N +# K> \<in> multirel(A, r)" |
|
1112 |
apply (frule multirel_type [THEN subsetD]) |
|
15481 | 1113 |
apply (rule_tac P = "%x. <x,?u> \<in> multirel(A, r) " in munion_commute [THEN subst]) |
1114 |
apply (subst munion_commute [of N]) |
|
15201 | 1115 |
apply (rule munion_multirel_mono2) |
1116 |
apply (auto simp add: Mult_iff_multiset) |
|
1117 |
done |
|
1118 |
||
1119 |
lemma munion_multirel_mono: |
|
1120 |
"[|<M,K> \<in> multirel(A, r); <N,L> \<in> multirel(A, r)|] |
|
1121 |
==> <M +# N, K +# L> \<in> multirel(A, r)" |
|
15481 | 1122 |
apply (subgoal_tac "M \<in> Mult(A) & N \<in> Mult(A) & K \<in> Mult(A) & L \<in> Mult(A) ") |
15201 | 1123 |
prefer 2 apply (blast dest: multirel_type [THEN subsetD]) |
1124 |
apply (blast intro: munion_multirel_mono1 multirel_trans munion_multirel_mono2) |
|
1125 |
done |
|
1126 |
||
1127 |
||
1128 |
subsection{*Ordinal Multisets*} |
|
1129 |
||
1130 |
(* A \<subseteq> B ==> field(Memrel(A)) \<subseteq> field(Memrel(B)) *) |
|
1131 |
lemmas field_Memrel_mono = Memrel_mono [THEN field_mono, standard] |
|
1132 |
||
1133 |
(* |
|
1134 |
[| Aa \<subseteq> Ba; A \<subseteq> B |] ==> |
|
1135 |
multirel(field(Memrel(Aa)), Memrel(A))\<subseteq> multirel(field(Memrel(Ba)), Memrel(B)) |
|
1136 |
*) |
|
1137 |
||
1138 |
lemmas multirel_Memrel_mono = multirel_mono [OF field_Memrel_mono Memrel_mono] |
|
1139 |
||
1140 |
lemma omultiset_is_multiset [simp]: "omultiset(M) ==> multiset(M)" |
|
1141 |
apply (simp add: omultiset_def) |
|
1142 |
apply (auto simp add: Mult_iff_multiset) |
|
1143 |
done |
|
1144 |
||
1145 |
lemma munion_omultiset [simp]: "[| omultiset(M); omultiset(N) |] ==> omultiset(M +# N)" |
|
1146 |
apply (simp add: omultiset_def, clarify) |
|
1147 |
apply (rule_tac x = "i Un ia" in exI) |
|
1148 |
apply (simp add: Mult_iff_multiset Ord_Un Un_subset_iff) |
|
1149 |
apply (blast intro: field_Memrel_mono) |
|
1150 |
done |
|
1151 |
||
1152 |
lemma mdiff_omultiset [simp]: "omultiset(M) ==> omultiset(M -# N)" |
|
1153 |
apply (simp add: omultiset_def, clarify) |
|
1154 |
apply (simp add: Mult_iff_multiset) |
|
1155 |
apply (rule_tac x = i in exI) |
|
1156 |
apply (simp (no_asm_simp)) |
|
1157 |
done |
|
1158 |
||
1159 |
(** Proving that Memrel is a partial order **) |
|
1160 |
||
1161 |
lemma irrefl_Memrel: "Ord(i) ==> irrefl(field(Memrel(i)), Memrel(i))" |
|
1162 |
apply (rule irreflI, clarify) |
|
1163 |
apply (subgoal_tac "Ord (x) ") |
|
1164 |
prefer 2 apply (blast intro: Ord_in_Ord) |
|
1165 |
apply (drule_tac i = x in ltI [THEN lt_irrefl], auto) |
|
1166 |
done |
|
1167 |
||
1168 |
lemma trans_iff_trans_on: "trans(r) <-> trans[field(r)](r)" |
|
1169 |
by (simp add: trans_on_def trans_def, auto) |
|
1170 |
||
1171 |
lemma part_ord_Memrel: "Ord(i) ==>part_ord(field(Memrel(i)), Memrel(i))" |
|
1172 |
apply (simp add: part_ord_def) |
|
1173 |
apply (simp (no_asm) add: trans_iff_trans_on [THEN iff_sym]) |
|
1174 |
apply (blast intro: trans_Memrel irrefl_Memrel) |
|
1175 |
done |
|
1176 |
||
1177 |
(* |
|
1178 |
Ord(i) ==> |
|
1179 |
part_ord(field(Memrel(i))-||>nat-{0}, multirel(field(Memrel(i)), Memrel(i))) |
|
1180 |
*) |
|
1181 |
||
1182 |
lemmas part_ord_mless = part_ord_Memrel [THEN part_ord_multirel, standard] |
|
1183 |
||
1184 |
(*irreflexivity*) |
|
1185 |
||
1186 |
lemma mless_not_refl: "~(M <# M)" |
|
1187 |
apply (simp add: mless_def, clarify) |
|
1188 |
apply (frule multirel_type [THEN subsetD]) |
|
1189 |
apply (drule part_ord_mless) |
|
1190 |
apply (simp add: part_ord_def irrefl_def) |
|
1191 |
done |
|
1192 |
||
1193 |
(* N<N ==> R *) |
|
1194 |
lemmas mless_irrefl = mless_not_refl [THEN notE, standard, elim!] |
|
1195 |
||
1196 |
(*transitivity*) |
|
1197 |
lemma mless_trans: "[| K <# M; M <# N |] ==> K <# N" |
|
1198 |
apply (simp add: mless_def, clarify) |
|
1199 |
apply (rule_tac x = "i Un ia" in exI) |
|
1200 |
apply (blast dest: multirel_Memrel_mono [OF Un_upper1 Un_upper1, THEN subsetD] |
|
1201 |
multirel_Memrel_mono [OF Un_upper2 Un_upper2, THEN subsetD] |
|
1202 |
intro: multirel_trans Ord_Un) |
|
1203 |
done |
|
1204 |
||
1205 |
(*asymmetry*) |
|
1206 |
lemma mless_not_sym: "M <# N ==> ~ N <# M" |
|
1207 |
apply clarify |
|
1208 |
apply (rule mless_not_refl [THEN notE]) |
|
1209 |
apply (erule mless_trans, assumption) |
|
1210 |
done |
|
1211 |
||
1212 |
lemma mless_asym: "[| M <# N; ~P ==> N <# M |] ==> P" |
|
1213 |
by (blast dest: mless_not_sym) |
|
1214 |
||
1215 |
lemma mle_refl [simp]: "omultiset(M) ==> M <#= M" |
|
1216 |
by (simp add: mle_def) |
|
1217 |
||
1218 |
(*anti-symmetry*) |
|
1219 |
lemma mle_antisym: |
|
1220 |
"[| M <#= N; N <#= M |] ==> M = N" |
|
1221 |
apply (simp add: mle_def) |
|
1222 |
apply (blast dest: mless_not_sym) |
|
1223 |
done |
|
1224 |
||
1225 |
(*transitivity*) |
|
1226 |
lemma mle_trans: "[| K <#= M; M <#= N |] ==> K <#= N" |
|
1227 |
apply (simp add: mle_def) |
|
1228 |
apply (blast intro: mless_trans) |
|
1229 |
done |
|
1230 |
||
1231 |
lemma mless_le_iff: "M <# N <-> (M <#= N & M \<noteq> N)" |
|
1232 |
by (simp add: mle_def, auto) |
|
1233 |
||
1234 |
(** Monotonicity of mless **) |
|
1235 |
||
1236 |
lemma munion_less_mono2: "[| M <# N; omultiset(K) |] ==> K +# M <# K +# N" |
|
1237 |
apply (simp add: mless_def omultiset_def, clarify) |
|
1238 |
apply (rule_tac x = "i Un ia" in exI) |
|
1239 |
apply (simp add: Mult_iff_multiset Ord_Un Un_subset_iff) |
|
1240 |
apply (rule munion_multirel_mono2) |
|
1241 |
apply (blast intro: multirel_Memrel_mono [THEN subsetD]) |
|
1242 |
apply (simp add: Mult_iff_multiset) |
|
1243 |
apply (blast intro: field_Memrel_mono [THEN subsetD]) |
|
1244 |
done |
|
1245 |
||
1246 |
lemma munion_less_mono1: "[| M <# N; omultiset(K) |] ==> M +# K <# N +# K" |
|
1247 |
by (force dest: munion_less_mono2 simp add: munion_commute) |
|
1248 |
||
1249 |
lemma mless_imp_omultiset: "M <# N ==> omultiset(M) & omultiset(N)" |
|
1250 |
by (auto simp add: mless_def omultiset_def dest: multirel_type [THEN subsetD]) |
|
1251 |
||
1252 |
lemma munion_less_mono: "[| M <# K; N <# L |] ==> M +# N <# K +# L" |
|
1253 |
apply (frule_tac M = M in mless_imp_omultiset) |
|
1254 |
apply (frule_tac M = N in mless_imp_omultiset) |
|
1255 |
apply (blast intro: munion_less_mono1 munion_less_mono2 mless_trans) |
|
1256 |
done |
|
1257 |
||
1258 |
(* <#= *) |
|
1259 |
||
1260 |
lemma mle_imp_omultiset: "M <#= N ==> omultiset(M) & omultiset(N)" |
|
1261 |
by (auto simp add: mle_def mless_imp_omultiset) |
|
1262 |
||
1263 |
lemma mle_mono: "[| M <#= K; N <#= L |] ==> M +# N <#= K +# L" |
|
1264 |
apply (frule_tac M = M in mle_imp_omultiset) |
|
1265 |
apply (frule_tac M = N in mle_imp_omultiset) |
|
1266 |
apply (auto simp add: mle_def intro: munion_less_mono1 munion_less_mono2 munion_less_mono) |
|
1267 |
done |
|
1268 |
||
1269 |
lemma omultiset_0 [iff]: "omultiset(0)" |
|
1270 |
by (auto simp add: omultiset_def Mult_iff_multiset) |
|
1271 |
||
1272 |
lemma empty_leI [simp]: "omultiset(M) ==> 0 <#= M" |
|
1273 |
apply (simp add: mle_def mless_def) |
|
15481 | 1274 |
apply (subgoal_tac "\<exists>i. Ord (i) & M \<in> Mult(field(Memrel(i))) ") |
15201 | 1275 |
prefer 2 apply (simp add: omultiset_def) |
1276 |
apply (case_tac "M=0", simp_all, clarify) |
|
15481 | 1277 |
apply (subgoal_tac "<0 +# 0, 0 +# M> \<in> multirel(field (Memrel(i)), Memrel(i))") |
15201 | 1278 |
apply (rule_tac [2] one_step_implies_multirel) |
1279 |
apply (auto simp add: Mult_iff_multiset) |
|
1280 |
done |
|
1281 |
||
1282 |
lemma munion_upper1: "[| omultiset(M); omultiset(N) |] ==> M <#= M +# N" |
|
1283 |
apply (subgoal_tac "M +# 0 <#= M +# N") |
|
1284 |
apply (rule_tac [2] mle_mono, auto) |
|
1285 |
done |
|
1286 |
||
1287 |
ML |
|
1288 |
{* |
|
1289 |
val munion_ac = thms "munion_ac"; |
|
1290 |
val funrestrict_subset = thm "funrestrict_subset"; |
|
1291 |
val funrestrict_type = thm "funrestrict_type"; |
|
1292 |
val funrestrict_type2 = thm "funrestrict_type2"; |
|
1293 |
val funrestrict = thm "funrestrict"; |
|
1294 |
val funrestrict_empty = thm "funrestrict_empty"; |
|
1295 |
val domain_funrestrict = thm "domain_funrestrict"; |
|
1296 |
val fun_cons_funrestrict_eq = thm "fun_cons_funrestrict_eq"; |
|
1297 |
val multiset_fun_iff = thm "multiset_fun_iff"; |
|
1298 |
val multiset_into_Mult = thm "multiset_into_Mult"; |
|
1299 |
val Mult_into_multiset = thm "Mult_into_multiset"; |
|
1300 |
val Mult_iff_multiset = thm "Mult_iff_multiset"; |
|
1301 |
val multiset_iff_Mult_mset_of = thm "multiset_iff_Mult_mset_of"; |
|
1302 |
val multiset_0 = thm "multiset_0"; |
|
1303 |
val multiset_set_of_Finite = thm "multiset_set_of_Finite"; |
|
1304 |
val mset_of_0 = thm "mset_of_0"; |
|
1305 |
val mset_is_0_iff = thm "mset_is_0_iff"; |
|
1306 |
val mset_of_single = thm "mset_of_single"; |
|
1307 |
val mset_of_union = thm "mset_of_union"; |
|
1308 |
val mset_of_diff = thm "mset_of_diff"; |
|
1309 |
val msingle_not_0 = thm "msingle_not_0"; |
|
1310 |
val msingle_eq_iff = thm "msingle_eq_iff"; |
|
1311 |
val msingle_multiset = thm "msingle_multiset"; |
|
1312 |
val Collect_Finite = thms "Collect_Finite"; |
|
1313 |
val normalize_idem = thm "normalize_idem"; |
|
1314 |
val normalize_multiset = thm "normalize_multiset"; |
|
1315 |
val multiset_normalize = thm "multiset_normalize"; |
|
1316 |
val munion_multiset = thm "munion_multiset"; |
|
1317 |
val mdiff_multiset = thm "mdiff_multiset"; |
|
1318 |
val munion_0 = thm "munion_0"; |
|
1319 |
val munion_commute = thm "munion_commute"; |
|
1320 |
val munion_assoc = thm "munion_assoc"; |
|
1321 |
val munion_lcommute = thm "munion_lcommute"; |
|
1322 |
val mdiff_self_eq_0 = thm "mdiff_self_eq_0"; |
|
1323 |
val mdiff_0 = thm "mdiff_0"; |
|
1324 |
val mdiff_0_right = thm "mdiff_0_right"; |
|
1325 |
val mdiff_union_inverse2 = thm "mdiff_union_inverse2"; |
|
1326 |
val mcount_type = thm "mcount_type"; |
|
1327 |
val mcount_0 = thm "mcount_0"; |
|
1328 |
val mcount_single = thm "mcount_single"; |
|
1329 |
val mcount_union = thm "mcount_union"; |
|
1330 |
val mcount_diff = thm "mcount_diff"; |
|
1331 |
val mcount_elem = thm "mcount_elem"; |
|
1332 |
val msize_0 = thm "msize_0"; |
|
1333 |
val msize_single = thm "msize_single"; |
|
1334 |
val msize_type = thm "msize_type"; |
|
1335 |
val msize_zpositive = thm "msize_zpositive"; |
|
1336 |
val msize_int_of_nat = thm "msize_int_of_nat"; |
|
1337 |
val not_empty_multiset_imp_exist = thm "not_empty_multiset_imp_exist"; |
|
1338 |
val msize_eq_0_iff = thm "msize_eq_0_iff"; |
|
1339 |
val setsum_mcount_Int = thm "setsum_mcount_Int"; |
|
1340 |
val msize_union = thm "msize_union"; |
|
1341 |
val msize_eq_succ_imp_elem = thm "msize_eq_succ_imp_elem"; |
|
1342 |
val multiset_equality = thm "multiset_equality"; |
|
1343 |
val munion_eq_0_iff = thm "munion_eq_0_iff"; |
|
1344 |
val empty_eq_munion_iff = thm "empty_eq_munion_iff"; |
|
1345 |
val munion_right_cancel = thm "munion_right_cancel"; |
|
1346 |
val munion_left_cancel = thm "munion_left_cancel"; |
|
1347 |
val nat_add_eq_1_cases = thm "nat_add_eq_1_cases"; |
|
1348 |
val munion_is_single = thm "munion_is_single"; |
|
1349 |
val msingle_is_union = thm "msingle_is_union"; |
|
1350 |
val setsum_decr = thm "setsum_decr"; |
|
1351 |
val setsum_decr2 = thm "setsum_decr2"; |
|
1352 |
val setsum_decr3 = thm "setsum_decr3"; |
|
1353 |
val nat_le_1_cases = thm "nat_le_1_cases"; |
|
1354 |
val succ_pred_eq_self = thm "succ_pred_eq_self"; |
|
1355 |
val multiset_funrestict = thm "multiset_funrestict"; |
|
1356 |
val multiset_induct_aux = thm "multiset_induct_aux"; |
|
1357 |
val multiset_induct2 = thm "multiset_induct2"; |
|
1358 |
val munion_single_case1 = thm "munion_single_case1"; |
|
1359 |
val munion_single_case2 = thm "munion_single_case2"; |
|
1360 |
val multiset_induct = thm "multiset_induct"; |
|
1361 |
val MCollect_multiset = thm "MCollect_multiset"; |
|
1362 |
val mset_of_MCollect = thm "mset_of_MCollect"; |
|
1363 |
val MCollect_mem_iff = thm "MCollect_mem_iff"; |
|
1364 |
val mcount_MCollect = thm "mcount_MCollect"; |
|
1365 |
val multiset_partition = thm "multiset_partition"; |
|
1366 |
val natify_elem_is_self = thm "natify_elem_is_self"; |
|
1367 |
val munion_eq_conv_diff = thm "munion_eq_conv_diff"; |
|
1368 |
val melem_diff_single = thm "melem_diff_single"; |
|
1369 |
val munion_eq_conv_exist = thm "munion_eq_conv_exist"; |
|
1370 |
val multirel1_type = thm "multirel1_type"; |
|
1371 |
val multirel1_0 = thm "multirel1_0"; |
|
1372 |
val multirel1_iff = thm "multirel1_iff"; |
|
1373 |
val multirel1_mono1 = thm "multirel1_mono1"; |
|
1374 |
val multirel1_mono2 = thm "multirel1_mono2"; |
|
1375 |
val multirel1_mono = thm "multirel1_mono"; |
|
1376 |
val not_less_0 = thm "not_less_0"; |
|
1377 |
val less_munion = thm "less_munion"; |
|
1378 |
val multirel1_base = thm "multirel1_base"; |
|
1379 |
val acc_0 = thm "acc_0"; |
|
1380 |
val all_accessible = thm "all_accessible"; |
|
1381 |
val wf_on_multirel1 = thm "wf_on_multirel1"; |
|
1382 |
val wf_multirel1 = thm "wf_multirel1"; |
|
1383 |
val multirel_type = thm "multirel_type"; |
|
1384 |
val multirel_mono = thm "multirel_mono"; |
|
1385 |
val add_diff_eq = thm "add_diff_eq"; |
|
1386 |
val mdiff_union_single_conv = thm "mdiff_union_single_conv"; |
|
1387 |
val diff_add_commute = thm "diff_add_commute"; |
|
1388 |
val multirel_implies_one_step = thm "multirel_implies_one_step"; |
|
1389 |
val melem_imp_eq_diff_union = thm "melem_imp_eq_diff_union"; |
|
1390 |
val msize_eq_succ_imp_eq_union = thm "msize_eq_succ_imp_eq_union"; |
|
1391 |
val one_step_implies_multirel = thm "one_step_implies_multirel"; |
|
1392 |
val irrefl_on_multirel = thm "irrefl_on_multirel"; |
|
1393 |
val trans_on_multirel = thm "trans_on_multirel"; |
|
1394 |
val multirel_trans = thm "multirel_trans"; |
|
1395 |
val trans_multirel = thm "trans_multirel"; |
|
1396 |
val part_ord_multirel = thm "part_ord_multirel"; |
|
1397 |
val munion_multirel1_mono = thm "munion_multirel1_mono"; |
|
1398 |
val munion_multirel_mono2 = thm "munion_multirel_mono2"; |
|
1399 |
val munion_multirel_mono1 = thm "munion_multirel_mono1"; |
|
1400 |
val munion_multirel_mono = thm "munion_multirel_mono"; |
|
1401 |
val field_Memrel_mono = thms "field_Memrel_mono"; |
|
1402 |
val multirel_Memrel_mono = thms "multirel_Memrel_mono"; |
|
1403 |
val omultiset_is_multiset = thm "omultiset_is_multiset"; |
|
1404 |
val munion_omultiset = thm "munion_omultiset"; |
|
1405 |
val mdiff_omultiset = thm "mdiff_omultiset"; |
|
1406 |
val irrefl_Memrel = thm "irrefl_Memrel"; |
|
1407 |
val trans_iff_trans_on = thm "trans_iff_trans_on"; |
|
1408 |
val part_ord_Memrel = thm "part_ord_Memrel"; |
|
1409 |
val part_ord_mless = thms "part_ord_mless"; |
|
1410 |
val mless_not_refl = thm "mless_not_refl"; |
|
1411 |
val mless_irrefl = thms "mless_irrefl"; |
|
1412 |
val mless_trans = thm "mless_trans"; |
|
1413 |
val mless_not_sym = thm "mless_not_sym"; |
|
1414 |
val mless_asym = thm "mless_asym"; |
|
1415 |
val mle_refl = thm "mle_refl"; |
|
1416 |
val mle_antisym = thm "mle_antisym"; |
|
1417 |
val mle_trans = thm "mle_trans"; |
|
1418 |
val mless_le_iff = thm "mless_le_iff"; |
|
1419 |
val munion_less_mono2 = thm "munion_less_mono2"; |
|
1420 |
val munion_less_mono1 = thm "munion_less_mono1"; |
|
1421 |
val mless_imp_omultiset = thm "mless_imp_omultiset"; |
|
1422 |
val munion_less_mono = thm "munion_less_mono"; |
|
1423 |
val mle_imp_omultiset = thm "mle_imp_omultiset"; |
|
1424 |
val mle_mono = thm "mle_mono"; |
|
1425 |
val omultiset_0 = thm "omultiset_0"; |
|
1426 |
val empty_leI = thm "empty_leI"; |
|
1427 |
val munion_upper1 = thm "munion_upper1"; |
|
1428 |
*} |
|
1429 |
||
12089
34e7693271a9
Sidi Ehmety's port of the fold_set operator and multisets to ZF.
paulson
parents:
diff
changeset
|
1430 |
end |