| author | blanchet | 
| Tue, 03 May 2011 08:52:32 +0200 | |
| changeset 42649 | 1f45340b1e91 | 
| parent 38642 | 8fa437809c67 | 
| child 43337 | 57a1c19f8e3b | 
| permissions | -rw-r--r-- | 
| 36648 | 1 | (* Title: HOL/Library/Convex.thy | 
| 2 | Author: Armin Heller, TU Muenchen | |
| 3 | Author: Johannes Hoelzl, TU Muenchen | |
| 4 | *) | |
| 5 | ||
| 6 | header {* Convexity in real vector spaces *}
 | |
| 7 | ||
| 36623 | 8 | theory Convex | 
| 9 | imports Product_Vector | |
| 10 | begin | |
| 11 | ||
| 12 | subsection {* Convexity. *}
 | |
| 13 | ||
| 14 | definition | |
| 15 | convex :: "'a::real_vector set \<Rightarrow> bool" where | |
| 16 | "convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s)" | |
| 17 | ||
| 18 | lemma convex_alt: | |
| 19 | "convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u. 0 \<le> u \<and> u \<le> 1 \<longrightarrow> ((1 - u) *\<^sub>R x + u *\<^sub>R y) \<in> s)" | |
| 20 | (is "_ \<longleftrightarrow> ?alt") | |
| 21 | proof | |
| 22 | assume alt[rule_format]: ?alt | |
| 23 |   { fix x y and u v :: real assume mem: "x \<in> s" "y \<in> s"
 | |
| 24 | assume "0 \<le> u" "0 \<le> v" "u + v = 1" | |
| 25 | moreover hence "u = 1 - v" by auto | |
| 26 | ultimately have "u *\<^sub>R x + v *\<^sub>R y \<in> s" using alt[OF mem] by auto } | |
| 27 | thus "convex s" unfolding convex_def by auto | |
| 28 | qed (auto simp: convex_def) | |
| 29 | ||
| 30 | lemma mem_convex: | |
| 31 | assumes "convex s" "a \<in> s" "b \<in> s" "0 \<le> u" "u \<le> 1" | |
| 32 | shows "((1 - u) *\<^sub>R a + u *\<^sub>R b) \<in> s" | |
| 33 | using assms unfolding convex_alt by auto | |
| 34 | ||
| 35 | lemma convex_empty[intro]: "convex {}"
 | |
| 36 | unfolding convex_def by simp | |
| 37 | ||
| 38 | lemma convex_singleton[intro]: "convex {a}"
 | |
| 39 | unfolding convex_def by (auto simp: scaleR_left_distrib[symmetric]) | |
| 40 | ||
| 41 | lemma convex_UNIV[intro]: "convex UNIV" | |
| 42 | unfolding convex_def by auto | |
| 43 | ||
| 44 | lemma convex_Inter: "(\<forall>s\<in>f. convex s) ==> convex(\<Inter> f)" | |
| 45 | unfolding convex_def by auto | |
| 46 | ||
| 47 | lemma convex_Int: "convex s \<Longrightarrow> convex t \<Longrightarrow> convex (s \<inter> t)" | |
| 48 | unfolding convex_def by auto | |
| 49 | ||
| 50 | lemma convex_halfspace_le: "convex {x. inner a x \<le> b}"
 | |
| 51 | unfolding convex_def | |
| 52 | by (auto simp: inner_add inner_scaleR intro!: convex_bound_le) | |
| 53 | ||
| 54 | lemma convex_halfspace_ge: "convex {x. inner a x \<ge> b}"
 | |
| 55 | proof - | |
| 56 |   have *:"{x. inner a x \<ge> b} = {x. inner (-a) x \<le> -b}" by auto
 | |
| 57 | show ?thesis unfolding * using convex_halfspace_le[of "-a" "-b"] by auto | |
| 58 | qed | |
| 59 | ||
| 60 | lemma convex_hyperplane: "convex {x. inner a x = b}"
 | |
| 61 | proof- | |
| 62 |   have *:"{x. inner a x = b} = {x. inner a x \<le> b} \<inter> {x. inner a x \<ge> b}" by auto
 | |
| 63 | show ?thesis using convex_halfspace_le convex_halfspace_ge | |
| 64 | by (auto intro!: convex_Int simp: *) | |
| 65 | qed | |
| 66 | ||
| 67 | lemma convex_halfspace_lt: "convex {x. inner a x < b}"
 | |
| 68 | unfolding convex_def | |
| 69 | by (auto simp: convex_bound_lt inner_add) | |
| 70 | ||
| 71 | lemma convex_halfspace_gt: "convex {x. inner a x > b}"
 | |
| 72 | using convex_halfspace_lt[of "-a" "-b"] by auto | |
| 73 | ||
| 74 | lemma convex_real_interval: | |
| 75 | fixes a b :: "real" | |
| 76 |   shows "convex {a..}" and "convex {..b}"
 | |
| 77 |   and "convex {a<..}" and "convex {..<b}"
 | |
| 78 |   and "convex {a..b}" and "convex {a<..b}"
 | |
| 79 |   and "convex {a..<b}" and "convex {a<..<b}"
 | |
| 80 | proof - | |
| 81 |   have "{a..} = {x. a \<le> inner 1 x}" by auto
 | |
| 82 |   thus 1: "convex {a..}" by (simp only: convex_halfspace_ge)
 | |
| 83 |   have "{..b} = {x. inner 1 x \<le> b}" by auto
 | |
| 84 |   thus 2: "convex {..b}" by (simp only: convex_halfspace_le)
 | |
| 85 |   have "{a<..} = {x. a < inner 1 x}" by auto
 | |
| 86 |   thus 3: "convex {a<..}" by (simp only: convex_halfspace_gt)
 | |
| 87 |   have "{..<b} = {x. inner 1 x < b}" by auto
 | |
| 88 |   thus 4: "convex {..<b}" by (simp only: convex_halfspace_lt)
 | |
| 89 |   have "{a..b} = {a..} \<inter> {..b}" by auto
 | |
| 90 |   thus "convex {a..b}" by (simp only: convex_Int 1 2)
 | |
| 91 |   have "{a<..b} = {a<..} \<inter> {..b}" by auto
 | |
| 92 |   thus "convex {a<..b}" by (simp only: convex_Int 3 2)
 | |
| 93 |   have "{a..<b} = {a..} \<inter> {..<b}" by auto
 | |
| 94 |   thus "convex {a..<b}" by (simp only: convex_Int 1 4)
 | |
| 95 |   have "{a<..<b} = {a<..} \<inter> {..<b}" by auto
 | |
| 96 |   thus "convex {a<..<b}" by (simp only: convex_Int 3 4)
 | |
| 97 | qed | |
| 98 | ||
| 99 | subsection {* Explicit expressions for convexity in terms of arbitrary sums. *}
 | |
| 100 | ||
| 101 | lemma convex_setsum: | |
| 102 | fixes C :: "'a::real_vector set" | |
| 103 | assumes "finite s" and "convex C" and "(\<Sum> i \<in> s. a i) = 1" | |
| 104 | assumes "\<And> i. i \<in> s \<Longrightarrow> a i \<ge> 0" and "\<And> i. i \<in> s \<Longrightarrow> y i \<in> C" | |
| 105 | shows "(\<Sum> j \<in> s. a j *\<^sub>R y j) \<in> C" | |
| 106 | using assms | |
| 107 | proof (induct s arbitrary:a rule:finite_induct) | |
| 108 | case empty thus ?case by auto | |
| 109 | next | |
| 110 | case (insert i s) note asms = this | |
| 111 |   { assume "a i = 1"
 | |
| 112 | hence "(\<Sum> j \<in> s. a j) = 0" | |
| 113 | using asms by auto | |
| 114 | hence "\<And> j. j \<in> s \<Longrightarrow> a j = 0" | |
| 115 | using setsum_nonneg_0[where 'b=real] asms by fastsimp | |
| 116 | hence ?case using asms by auto } | |
| 117 | moreover | |
| 118 |   { assume asm: "a i \<noteq> 1"
 | |
| 119 | from asms have yai: "y i \<in> C" "a i \<ge> 0" by auto | |
| 120 | have fis: "finite (insert i s)" using asms by auto | |
| 121 | hence ai1: "a i \<le> 1" using setsum_nonneg_leq_bound[of "insert i s" a 1] asms by simp | |
| 122 | hence "a i < 1" using asm by auto | |
| 123 | hence i0: "1 - a i > 0" by auto | |
| 124 | let "?a j" = "a j / (1 - a i)" | |
| 125 |     { fix j assume "j \<in> s"
 | |
| 126 | hence "?a j \<ge> 0" | |
| 127 | using i0 asms divide_nonneg_pos | |
| 128 | by fastsimp } note a_nonneg = this | |
| 129 | have "(\<Sum> j \<in> insert i s. a j) = 1" using asms by auto | |
| 130 | hence "(\<Sum> j \<in> s. a j) = 1 - a i" using setsum.insert asms by fastsimp | |
| 131 | hence "(\<Sum> j \<in> s. a j) / (1 - a i) = 1" using i0 by auto | |
| 132 | hence a1: "(\<Sum> j \<in> s. ?a j) = 1" unfolding divide.setsum by simp | |
| 133 | from this asms | |
| 134 | have "(\<Sum>j\<in>s. ?a j *\<^sub>R y j) \<in> C" using a_nonneg by fastsimp | |
| 135 | hence "a i *\<^sub>R y i + (1 - a i) *\<^sub>R (\<Sum> j \<in> s. ?a j *\<^sub>R y j) \<in> C" | |
| 136 | using asms[unfolded convex_def, rule_format] yai ai1 by auto | |
| 137 | hence "a i *\<^sub>R y i + (\<Sum> j \<in> s. (1 - a i) *\<^sub>R (?a j *\<^sub>R y j)) \<in> C" | |
| 138 | using scaleR_right.setsum[of "(1 - a i)" "\<lambda> j. ?a j *\<^sub>R y j" s] by auto | |
| 139 | hence "a i *\<^sub>R y i + (\<Sum> j \<in> s. a j *\<^sub>R y j) \<in> C" using i0 by auto | |
| 140 | hence ?case using setsum.insert asms by auto } | |
| 141 | ultimately show ?case by auto | |
| 142 | qed | |
| 143 | ||
| 144 | lemma convex: | |
| 145 |   shows "convex s \<longleftrightarrow> (\<forall>(k::nat) u x. (\<forall>i. 1\<le>i \<and> i\<le>k \<longrightarrow> 0 \<le> u i \<and> x i \<in>s) \<and> (setsum u {1..k} = 1)
 | |
| 146 |            \<longrightarrow> setsum (\<lambda>i. u i *\<^sub>R x i) {1..k} \<in> s)"
 | |
| 147 | proof safe | |
| 148 | fix k :: nat fix u :: "nat \<Rightarrow> real" fix x | |
| 149 | assume "convex s" | |
| 150 | "\<forall>i. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s" | |
| 151 |     "setsum u {1..k} = 1"
 | |
| 152 |   from this convex_setsum[of "{1 .. k}" s]
 | |
| 153 |   show "(\<Sum>j\<in>{1 .. k}. u j *\<^sub>R x j) \<in> s" by auto
 | |
| 154 | next | |
| 155 |   assume asm: "\<forall>k u x. (\<forall> i :: nat. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s) \<and> setsum u {1..k} = 1
 | |
| 156 | \<longrightarrow> (\<Sum>i = 1..k. u i *\<^sub>R (x i :: 'a)) \<in> s" | |
| 157 |   { fix \<mu> :: real fix x y :: 'a assume xy: "x \<in> s" "y \<in> s" assume mu: "\<mu> \<ge> 0" "\<mu> \<le> 1"
 | |
| 158 | let "?u i" = "if (i :: nat) = 1 then \<mu> else 1 - \<mu>" | |
| 159 | let "?x i" = "if (i :: nat) = 1 then x else y" | |
| 160 |     have "{1 :: nat .. 2} \<inter> - {x. x = 1} = {2}" by auto
 | |
| 161 |     hence card: "card ({1 :: nat .. 2} \<inter> - {x. x = 1}) = 1" by simp
 | |
| 162 |     hence "setsum ?u {1 .. 2} = 1"
 | |
| 163 |       using setsum_cases[of "{(1 :: nat) .. 2}" "\<lambda> x. x = 1" "\<lambda> x. \<mu>" "\<lambda> x. 1 - \<mu>"]
 | |
| 164 | by auto | |
| 165 | from this asm[rule_format, of "2" ?u ?x] | |
| 166 |     have s: "(\<Sum>j \<in> {1..2}. ?u j *\<^sub>R ?x j) \<in> s"
 | |
| 167 | using mu xy by auto | |
| 168 |     have grarr: "(\<Sum>j \<in> {Suc (Suc 0)..2}. ?u j *\<^sub>R ?x j) = (1 - \<mu>) *\<^sub>R y"
 | |
| 169 | using setsum_head_Suc[of "Suc (Suc 0)" 2 "\<lambda> j. (1 - \<mu>) *\<^sub>R y"] by auto | |
| 170 | from setsum_head_Suc[of "Suc 0" 2 "\<lambda> j. ?u j *\<^sub>R ?x j", simplified this] | |
| 171 |     have "(\<Sum>j \<in> {1..2}. ?u j *\<^sub>R ?x j) = \<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y" by auto
 | |
| 172 | hence "(1 - \<mu>) *\<^sub>R y + \<mu> *\<^sub>R x \<in> s" using s by (auto simp:add_commute) } | |
| 173 | thus "convex s" unfolding convex_alt by auto | |
| 174 | qed | |
| 175 | ||
| 176 | ||
| 177 | lemma convex_explicit: | |
| 178 | fixes s :: "'a::real_vector set" | |
| 179 | shows "convex s \<longleftrightarrow> | |
| 180 | (\<forall>t u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> setsum (\<lambda>x. u x *\<^sub>R x) t \<in> s)" | |
| 181 | proof safe | |
| 182 | fix t fix u :: "'a \<Rightarrow> real" | |
| 183 | assume "convex s" "finite t" | |
| 184 | "t \<subseteq> s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = 1" | |
| 185 | thus "(\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" | |
| 186 | using convex_setsum[of t s u "\<lambda> x. x"] by auto | |
| 187 | next | |
| 188 | assume asm0: "\<forall>t. \<forall> u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) | |
| 189 | \<and> setsum u t = 1 \<longrightarrow> (\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" | |
| 190 | show "convex s" | |
| 191 | unfolding convex_alt | |
| 192 | proof safe | |
| 193 | fix x y fix \<mu> :: real | |
| 194 | assume asm: "x \<in> s" "y \<in> s" "0 \<le> \<mu>" "\<mu> \<le> 1" | |
| 195 |     { assume "x \<noteq> y"
 | |
| 196 | hence "(1 - \<mu>) *\<^sub>R x + \<mu> *\<^sub>R y \<in> s" | |
| 197 |         using asm0[rule_format, of "{x, y}" "\<lambda> z. if z = x then 1 - \<mu> else \<mu>"]
 | |
| 198 | asm by auto } | |
| 199 | moreover | |
| 200 |     { assume "x = y"
 | |
| 201 | hence "(1 - \<mu>) *\<^sub>R x + \<mu> *\<^sub>R y \<in> s" | |
| 202 |         using asm0[rule_format, of "{x, y}" "\<lambda> z. 1"]
 | |
| 203 | asm by (auto simp:field_simps real_vector.scale_left_diff_distrib) } | |
| 204 | ultimately show "(1 - \<mu>) *\<^sub>R x + \<mu> *\<^sub>R y \<in> s" by blast | |
| 205 | qed | |
| 206 | qed | |
| 207 | ||
| 208 | lemma convex_finite: assumes "finite s" | |
| 209 | shows "convex s \<longleftrightarrow> (\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 | |
| 210 | \<longrightarrow> setsum (\<lambda>x. u x *\<^sub>R x) s \<in> s)" | |
| 211 | unfolding convex_explicit | |
| 212 | proof (safe elim!: conjE) | |
| 213 | fix t u assume sum: "\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<longrightarrow> (\<Sum>x\<in>s. u x *\<^sub>R x) \<in> s" | |
| 214 | and as: "finite t" "t \<subseteq> s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = (1::real)" | |
| 215 | have *:"s \<inter> t = t" using as(2) by auto | |
| 216 | have if_distrib_arg: "\<And>P f g x. (if P then f else g) x = (if P then f x else g x)" by simp | |
| 217 | show "(\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" | |
| 218 | using sum[THEN spec[where x="\<lambda>x. if x\<in>t then u x else 0"]] as * | |
| 219 | by (auto simp: assms setsum_cases if_distrib if_distrib_arg) | |
| 220 | qed (erule_tac x=s in allE, erule_tac x=u in allE, auto) | |
| 221 | ||
| 222 | definition | |
| 223 |   convex_on :: "'a::real_vector set \<Rightarrow> ('a \<Rightarrow> real) \<Rightarrow> bool" where
 | |
| 224 | "convex_on s f \<longleftrightarrow> | |
| 225 | (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y)" | |
| 226 | ||
| 227 | lemma convex_on_subset: "convex_on t f \<Longrightarrow> s \<subseteq> t \<Longrightarrow> convex_on s f" | |
| 228 | unfolding convex_on_def by auto | |
| 229 | ||
| 230 | lemma convex_add[intro]: | |
| 231 | assumes "convex_on s f" "convex_on s g" | |
| 232 | shows "convex_on s (\<lambda>x. f x + g x)" | |
| 233 | proof- | |
| 234 |   { fix x y assume "x\<in>s" "y\<in>s" moreover
 | |
| 235 | fix u v ::real assume "0 \<le> u" "0 \<le> v" "u + v = 1" | |
| 236 | ultimately have "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> (u * f x + v * f y) + (u * g x + v * g y)" | |
| 237 | using assms unfolding convex_on_def by (auto simp add:add_mono) | |
| 238 | hence "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> u * (f x + g x) + v * (f y + g y)" by (simp add: field_simps) } | |
| 239 | thus ?thesis unfolding convex_on_def by auto | |
| 240 | qed | |
| 241 | ||
| 242 | lemma convex_cmul[intro]: | |
| 243 | assumes "0 \<le> (c::real)" "convex_on s f" | |
| 244 | shows "convex_on s (\<lambda>x. c * f x)" | |
| 245 | proof- | |
| 246 | have *:"\<And>u c fx v fy ::real. u * (c * fx) + v * (c * fy) = c * (u * fx + v * fy)" by (simp add: field_simps) | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
36778diff
changeset | 247 | show ?thesis using assms(2) and mult_left_mono [OF _ assms(1)] unfolding convex_on_def and * by auto | 
| 36623 | 248 | qed | 
| 249 | ||
| 250 | lemma convex_lower: | |
| 251 | assumes "convex_on s f" "x\<in>s" "y \<in> s" "0 \<le> u" "0 \<le> v" "u + v = 1" | |
| 252 | shows "f (u *\<^sub>R x + v *\<^sub>R y) \<le> max (f x) (f y)" | |
| 253 | proof- | |
| 254 | let ?m = "max (f x) (f y)" | |
| 255 | have "u * f x + v * f y \<le> u * max (f x) (f y) + v * max (f x) (f y)" | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
36778diff
changeset | 256 | using assms(4,5) by (auto simp add: mult_left_mono add_mono) | 
| 36623 | 257 | also have "\<dots> = max (f x) (f y)" using assms(6) unfolding distrib[THEN sym] by auto | 
| 258 | finally show ?thesis | |
| 259 | using assms unfolding convex_on_def by fastsimp | |
| 260 | qed | |
| 261 | ||
| 262 | lemma convex_distance[intro]: | |
| 263 | fixes s :: "'a::real_normed_vector set" | |
| 264 | shows "convex_on s (\<lambda>x. dist a x)" | |
| 265 | proof(auto simp add: convex_on_def dist_norm) | |
| 266 | fix x y assume "x\<in>s" "y\<in>s" | |
| 267 | fix u v ::real assume "0 \<le> u" "0 \<le> v" "u + v = 1" | |
| 268 | have "a = u *\<^sub>R a + v *\<^sub>R a" unfolding scaleR_left_distrib[THEN sym] and `u+v=1` by simp | |
| 269 | hence *:"a - (u *\<^sub>R x + v *\<^sub>R y) = (u *\<^sub>R (a - x)) + (v *\<^sub>R (a - y))" | |
| 270 | by (auto simp add: algebra_simps) | |
| 271 | show "norm (a - (u *\<^sub>R x + v *\<^sub>R y)) \<le> u * norm (a - x) + v * norm (a - y)" | |
| 272 | unfolding * using norm_triangle_ineq[of "u *\<^sub>R (a - x)" "v *\<^sub>R (a - y)"] | |
| 273 | using `0 \<le> u` `0 \<le> v` by auto | |
| 274 | qed | |
| 275 | ||
| 276 | subsection {* Arithmetic operations on sets preserve convexity. *}
 | |
| 277 | lemma convex_scaling: | |
| 278 | assumes "convex s" | |
| 279 | shows"convex ((\<lambda>x. c *\<^sub>R x) ` s)" | |
| 280 | using assms unfolding convex_def image_iff | |
| 281 | proof safe | |
| 282 | fix x xa y xb :: "'a::real_vector" fix u v :: real | |
| 283 | assume asm: "\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s" | |
| 284 | "xa \<in> s" "xb \<in> s" "0 \<le> u" "0 \<le> v" "u + v = 1" | |
| 285 | show "\<exists>x\<in>s. u *\<^sub>R c *\<^sub>R xa + v *\<^sub>R c *\<^sub>R xb = c *\<^sub>R x" | |
| 286 | using bexI[of _ "u *\<^sub>R xa +v *\<^sub>R xb"] asm by (auto simp add: algebra_simps) | |
| 287 | qed | |
| 288 | ||
| 289 | lemma convex_negations: "convex s \<Longrightarrow> convex ((\<lambda>x. -x)` s)" | |
| 290 | using assms unfolding convex_def image_iff | |
| 291 | proof safe | |
| 292 | fix x xa y xb :: "'a::real_vector" fix u v :: real | |
| 293 | assume asm: "\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s" | |
| 294 | "xa \<in> s" "xb \<in> s" "0 \<le> u" "0 \<le> v" "u + v = 1" | |
| 295 | show "\<exists>x\<in>s. u *\<^sub>R - xa + v *\<^sub>R - xb = - x" | |
| 296 | using bexI[of _ "u *\<^sub>R xa +v *\<^sub>R xb"] asm by auto | |
| 297 | qed | |
| 298 | ||
| 299 | lemma convex_sums: | |
| 300 | assumes "convex s" "convex t" | |
| 301 |   shows "convex {x + y| x y. x \<in> s \<and> y \<in> t}"
 | |
| 302 | using assms unfolding convex_def image_iff | |
| 303 | proof safe | |
| 304 | fix xa xb ya yb assume xy:"xa\<in>s" "xb\<in>s" "ya\<in>t" "yb\<in>t" | |
| 305 | fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1" | |
| 306 | show "\<exists>x y. u *\<^sub>R (xa + ya) + v *\<^sub>R (xb + yb) = x + y \<and> x \<in> s \<and> y \<in> t" | |
| 307 | using exI[of _ "u *\<^sub>R xa + v *\<^sub>R xb"] exI[of _ "u *\<^sub>R ya + v *\<^sub>R yb"] | |
| 308 | assms[unfolded convex_def] uv xy by (auto simp add:scaleR_right_distrib) | |
| 309 | qed | |
| 310 | ||
| 311 | lemma convex_differences: | |
| 312 | assumes "convex s" "convex t" | |
| 313 |   shows "convex {x - y| x y. x \<in> s \<and> y \<in> t}"
 | |
| 314 | proof - | |
| 315 |   have "{x - y| x y. x \<in> s \<and> y \<in> t} = {x + y |x y. x \<in> s \<and> y \<in> uminus ` t}"
 | |
| 316 | proof safe | |
| 317 | fix x x' y assume "x' \<in> s" "y \<in> t" | |
| 318 | thus "\<exists>x y'. x' - y = x + y' \<and> x \<in> s \<and> y' \<in> uminus ` t" | |
| 319 | using exI[of _ x'] exI[of _ "-y"] by auto | |
| 320 | next | |
| 321 | fix x x' y y' assume "x' \<in> s" "y' \<in> t" | |
| 322 | thus "\<exists>x y. x' + - y' = x - y \<and> x \<in> s \<and> y \<in> t" | |
| 323 | using exI[of _ x'] exI[of _ y'] by auto | |
| 324 | qed | |
| 325 | thus ?thesis using convex_sums[OF assms(1) convex_negations[OF assms(2)]] by auto | |
| 326 | qed | |
| 327 | ||
| 328 | lemma convex_translation: assumes "convex s" shows "convex ((\<lambda>x. a + x) ` s)" | |
| 329 | proof- have "{a + y |y. y \<in> s} = (\<lambda>x. a + x) ` s" by auto
 | |
| 330 | thus ?thesis using convex_sums[OF convex_singleton[of a] assms] by auto qed | |
| 331 | ||
| 332 | lemma convex_affinity: assumes "convex s" shows "convex ((\<lambda>x. a + c *\<^sub>R x) ` s)" | |
| 333 | proof- have "(\<lambda>x. a + c *\<^sub>R x) ` s = op + a ` op *\<^sub>R c ` s" by auto | |
| 334 | thus ?thesis using convex_translation[OF convex_scaling[OF assms], of a c] by auto qed | |
| 335 | ||
| 336 | lemma convex_linear_image: | |
| 337 | assumes c:"convex s" and l:"bounded_linear f" | |
| 338 | shows "convex(f ` s)" | |
| 339 | proof(auto simp add: convex_def) | |
| 340 | interpret f: bounded_linear f by fact | |
| 341 | fix x y assume xy:"x \<in> s" "y \<in> s" | |
| 342 | fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1" | |
| 343 | show "u *\<^sub>R f x + v *\<^sub>R f y \<in> f ` s" unfolding image_iff | |
| 344 | using bexI[of _ "u *\<^sub>R x + v *\<^sub>R y"] f.add f.scaleR | |
| 345 | c[unfolded convex_def] xy uv by auto | |
| 346 | qed | |
| 347 | ||
| 348 | ||
| 349 | lemma pos_is_convex: | |
| 350 |   shows "convex {0 :: real <..}"
 | |
| 351 | unfolding convex_alt | |
| 352 | proof safe | |
| 353 | fix y x \<mu> :: real | |
| 354 | assume asms: "y > 0" "x > 0" "\<mu> \<ge> 0" "\<mu> \<le> 1" | |
| 355 |   { assume "\<mu> = 0"
 | |
| 356 | hence "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y = y" by simp | |
| 357 | hence "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" using asms by simp } | |
| 358 | moreover | |
| 359 |   { assume "\<mu> = 1"
 | |
| 360 | hence "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" using asms by simp } | |
| 361 | moreover | |
| 362 |   { assume "\<mu> \<noteq> 1" "\<mu> \<noteq> 0"
 | |
| 363 | hence "\<mu> > 0" "(1 - \<mu>) > 0" using asms by auto | |
| 364 | hence "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y > 0" using asms | |
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36648diff
changeset | 365 | by (auto simp add: add_pos_pos mult_pos_pos) } | 
| 36623 | 366 | ultimately show "(1 - \<mu>) *\<^sub>R y + \<mu> *\<^sub>R x > 0" using assms by fastsimp | 
| 367 | qed | |
| 368 | ||
| 369 | lemma convex_on_setsum: | |
| 370 | fixes a :: "'a \<Rightarrow> real" | |
| 371 | fixes y :: "'a \<Rightarrow> 'b::real_vector" | |
| 372 | fixes f :: "'b \<Rightarrow> real" | |
| 373 |   assumes "finite s" "s \<noteq> {}"
 | |
| 374 | assumes "convex_on C f" | |
| 375 | assumes "convex C" | |
| 376 | assumes "(\<Sum> i \<in> s. a i) = 1" | |
| 377 | assumes "\<And> i. i \<in> s \<Longrightarrow> a i \<ge> 0" | |
| 378 | assumes "\<And> i. i \<in> s \<Longrightarrow> y i \<in> C" | |
| 379 | shows "f (\<Sum> i \<in> s. a i *\<^sub>R y i) \<le> (\<Sum> i \<in> s. a i * f (y i))" | |
| 380 | using assms | |
| 381 | proof (induct s arbitrary:a rule:finite_ne_induct) | |
| 382 | case (singleton i) | |
| 383 | hence ai: "a i = 1" by auto | |
| 384 | thus ?case by auto | |
| 385 | next | |
| 386 | case (insert i s) note asms = this | |
| 387 | hence "convex_on C f" by simp | |
| 388 | from this[unfolded convex_on_def, rule_format] | |
| 389 | have conv: "\<And> x y \<mu>. \<lbrakk>x \<in> C; y \<in> C; 0 \<le> \<mu>; \<mu> \<le> 1\<rbrakk> | |
| 390 | \<Longrightarrow> f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y" | |
| 391 | by simp | |
| 392 |   { assume "a i = 1"
 | |
| 393 | hence "(\<Sum> j \<in> s. a j) = 0" | |
| 394 | using asms by auto | |
| 395 | hence "\<And> j. j \<in> s \<Longrightarrow> a j = 0" | |
| 396 | using setsum_nonneg_0[where 'b=real] asms by fastsimp | |
| 397 | hence ?case using asms by auto } | |
| 398 | moreover | |
| 399 |   { assume asm: "a i \<noteq> 1"
 | |
| 400 | from asms have yai: "y i \<in> C" "a i \<ge> 0" by auto | |
| 401 | have fis: "finite (insert i s)" using asms by auto | |
| 402 | hence ai1: "a i \<le> 1" using setsum_nonneg_leq_bound[of "insert i s" a] asms by simp | |
| 403 | hence "a i < 1" using asm by auto | |
| 404 | hence i0: "1 - a i > 0" by auto | |
| 405 | let "?a j" = "a j / (1 - a i)" | |
| 406 |     { fix j assume "j \<in> s"
 | |
| 407 | hence "?a j \<ge> 0" | |
| 408 | using i0 asms divide_nonneg_pos | |
| 409 | by fastsimp } note a_nonneg = this | |
| 410 | have "(\<Sum> j \<in> insert i s. a j) = 1" using asms by auto | |
| 411 | hence "(\<Sum> j \<in> s. a j) = 1 - a i" using setsum.insert asms by fastsimp | |
| 412 | hence "(\<Sum> j \<in> s. a j) / (1 - a i) = 1" using i0 by auto | |
| 413 | hence a1: "(\<Sum> j \<in> s. ?a j) = 1" unfolding divide.setsum by simp | |
| 414 | have "convex C" using asms by auto | |
| 415 | hence asum: "(\<Sum> j \<in> s. ?a j *\<^sub>R y j) \<in> C" | |
| 416 | using asms convex_setsum[OF `finite s` | |
| 417 | `convex C` a1 a_nonneg] by auto | |
| 418 | have asum_le: "f (\<Sum> j \<in> s. ?a j *\<^sub>R y j) \<le> (\<Sum> j \<in> s. ?a j * f (y j))" | |
| 419 | using a_nonneg a1 asms by blast | |
| 420 | have "f (\<Sum> j \<in> insert i s. a j *\<^sub>R y j) = f ((\<Sum> j \<in> s. a j *\<^sub>R y j) + a i *\<^sub>R y i)" | |
| 421 | using setsum.insert[of s i "\<lambda> j. a j *\<^sub>R y j", OF `finite s` `i \<notin> s`] asms | |
| 422 | by (auto simp only:add_commute) | |
| 423 | also have "\<dots> = f (((1 - a i) * inverse (1 - a i)) *\<^sub>R (\<Sum> j \<in> s. a j *\<^sub>R y j) + a i *\<^sub>R y i)" | |
| 424 | using i0 by auto | |
| 425 | also have "\<dots> = f ((1 - a i) *\<^sub>R (\<Sum> j \<in> s. (a j * inverse (1 - a i)) *\<^sub>R y j) + a i *\<^sub>R y i)" | |
| 426 | using scaleR_right.setsum[of "inverse (1 - a i)" "\<lambda> j. a j *\<^sub>R y j" s, symmetric] by (auto simp:algebra_simps) | |
| 427 | also have "\<dots> = f ((1 - a i) *\<^sub>R (\<Sum> j \<in> s. ?a j *\<^sub>R y j) + a i *\<^sub>R y i)" | |
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36648diff
changeset | 428 | by (auto simp: divide_inverse) | 
| 36623 | 429 | also have "\<dots> \<le> (1 - a i) *\<^sub>R f ((\<Sum> j \<in> s. ?a j *\<^sub>R y j)) + a i * f (y i)" | 
| 430 | using conv[of "y i" "(\<Sum> j \<in> s. ?a j *\<^sub>R y j)" "a i", OF yai(1) asum yai(2) ai1] | |
| 431 | by (auto simp add:add_commute) | |
| 432 | also have "\<dots> \<le> (1 - a i) * (\<Sum> j \<in> s. ?a j * f (y j)) + a i * f (y i)" | |
| 433 | using add_right_mono[OF mult_left_mono[of _ _ "1 - a i", | |
| 434 | OF asum_le less_imp_le[OF i0]], of "a i * f (y i)"] by simp | |
| 435 | also have "\<dots> = (\<Sum> j \<in> s. (1 - a i) * ?a j * f (y j)) + a i * f (y i)" | |
| 436 | unfolding mult_right.setsum[of "1 - a i" "\<lambda> j. ?a j * f (y j)"] using i0 by auto | |
| 437 | also have "\<dots> = (\<Sum> j \<in> s. a j * f (y j)) + a i * f (y i)" using i0 by auto | |
| 438 | also have "\<dots> = (\<Sum> j \<in> insert i s. a j * f (y j))" using asms by auto | |
| 439 | finally have "f (\<Sum> j \<in> insert i s. a j *\<^sub>R y j) \<le> (\<Sum> j \<in> insert i s. a j * f (y j))" | |
| 440 | by simp } | |
| 441 | ultimately show ?case by auto | |
| 442 | qed | |
| 443 | ||
| 444 | lemma convex_on_alt: | |
| 445 | fixes C :: "'a::real_vector set" | |
| 446 | assumes "convex C" | |
| 447 | shows "convex_on C f = | |
| 448 | (\<forall> x \<in> C. \<forall> y \<in> C. \<forall> \<mu> :: real. \<mu> \<ge> 0 \<and> \<mu> \<le> 1 | |
| 449 | \<longrightarrow> f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y)" | |
| 450 | proof safe | |
| 451 | fix x y fix \<mu> :: real | |
| 452 | assume asms: "convex_on C f" "x \<in> C" "y \<in> C" "0 \<le> \<mu>" "\<mu> \<le> 1" | |
| 453 | from this[unfolded convex_on_def, rule_format] | |
| 454 | have "\<And> u v. \<lbrakk>0 \<le> u; 0 \<le> v; u + v = 1\<rbrakk> \<Longrightarrow> f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y" by auto | |
| 455 | from this[of "\<mu>" "1 - \<mu>", simplified] asms | |
| 456 | show "f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) | |
| 457 | \<le> \<mu> * f x + (1 - \<mu>) * f y" by auto | |
| 458 | next | |
| 459 | assume asm: "\<forall>x\<in>C. \<forall>y\<in>C. \<forall>\<mu>. 0 \<le> \<mu> \<and> \<mu> \<le> 1 \<longrightarrow> f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y" | |
| 460 |   {fix x y fix u v :: real
 | |
| 461 | assume lasm: "x \<in> C" "y \<in> C" "u \<ge> 0" "v \<ge> 0" "u + v = 1" | |
| 462 | hence[simp]: "1 - u = v" by auto | |
| 463 | from asm[rule_format, of x y u] | |
| 464 | have "f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y" using lasm by auto } | |
| 465 | thus "convex_on C f" unfolding convex_on_def by auto | |
| 466 | qed | |
| 467 | ||
| 468 | ||
| 469 | lemma pos_convex_function: | |
| 470 | fixes f :: "real \<Rightarrow> real" | |
| 471 | assumes "convex C" | |
| 472 | assumes leq: "\<And> x y. \<lbrakk>x \<in> C ; y \<in> C\<rbrakk> \<Longrightarrow> f' x * (y - x) \<le> f y - f x" | |
| 473 | shows "convex_on C f" | |
| 474 | unfolding convex_on_alt[OF assms(1)] | |
| 475 | using assms | |
| 476 | proof safe | |
| 477 | fix x y \<mu> :: real | |
| 478 | let ?x = "\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y" | |
| 479 | assume asm: "convex C" "x \<in> C" "y \<in> C" "\<mu> \<ge> 0" "\<mu> \<le> 1" | |
| 480 | hence "1 - \<mu> \<ge> 0" by auto | |
| 481 | hence xpos: "?x \<in> C" using asm unfolding convex_alt by fastsimp | |
| 482 | have geq: "\<mu> * (f x - f ?x) + (1 - \<mu>) * (f y - f ?x) | |
| 483 | \<ge> \<mu> * f' ?x * (x - ?x) + (1 - \<mu>) * f' ?x * (y - ?x)" | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
36778diff
changeset | 484 | using add_mono[OF mult_left_mono[OF leq[OF xpos asm(2)] `\<mu> \<ge> 0`] | 
| 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
36778diff
changeset | 485 | mult_left_mono[OF leq[OF xpos asm(3)] `1 - \<mu> \<ge> 0`]] by auto | 
| 36623 | 486 | hence "\<mu> * f x + (1 - \<mu>) * f y - f ?x \<ge> 0" | 
| 487 | by (auto simp add:field_simps) | |
| 488 | thus "f (\<mu> *\<^sub>R x + (1 - \<mu>) *\<^sub>R y) \<le> \<mu> * f x + (1 - \<mu>) * f y" | |
| 489 | using convex_on_alt by auto | |
| 490 | qed | |
| 491 | ||
| 492 | lemma atMostAtLeast_subset_convex: | |
| 493 | fixes C :: "real set" | |
| 494 | assumes "convex C" | |
| 495 | assumes "x \<in> C" "y \<in> C" "x < y" | |
| 496 |   shows "{x .. y} \<subseteq> C"
 | |
| 497 | proof safe | |
| 498 |   fix z assume zasm: "z \<in> {x .. y}"
 | |
| 499 |   { assume asm: "x < z" "z < y"
 | |
| 500 | let "?\<mu>" = "(y - z) / (y - x)" | |
| 501 | have "0 \<le> ?\<mu>" "?\<mu> \<le> 1" using assms asm by (auto simp add:field_simps) | |
| 502 | hence comb: "?\<mu> * x + (1 - ?\<mu>) * y \<in> C" | |
| 503 | using assms iffD1[OF convex_alt, rule_format, of C y x ?\<mu>] by (simp add:algebra_simps) | |
| 504 | have "?\<mu> * x + (1 - ?\<mu>) * y = (y - z) * x / (y - x) + (1 - (y - z) / (y - x)) * y" | |
| 505 | by (auto simp add:field_simps) | |
| 506 | also have "\<dots> = ((y - z) * x + (y - x - (y - z)) * y) / (y - x)" | |
| 507 | using assms unfolding add_divide_distrib by (auto simp:field_simps) | |
| 508 | also have "\<dots> = z" | |
| 509 | using assms by (auto simp:field_simps) | |
| 510 | finally have "z \<in> C" | |
| 511 | using comb by auto } note less = this | |
| 512 | show "z \<in> C" using zasm less assms | |
| 513 | unfolding atLeastAtMost_iff le_less by auto | |
| 514 | qed | |
| 515 | ||
| 516 | lemma f''_imp_f': | |
| 517 | fixes f :: "real \<Rightarrow> real" | |
| 518 | assumes "convex C" | |
| 519 | assumes f': "\<And> x. x \<in> C \<Longrightarrow> DERIV f x :> (f' x)" | |
| 520 | assumes f'': "\<And> x. x \<in> C \<Longrightarrow> DERIV f' x :> (f'' x)" | |
| 521 | assumes pos: "\<And> x. x \<in> C \<Longrightarrow> f'' x \<ge> 0" | |
| 522 | assumes "x \<in> C" "y \<in> C" | |
| 523 | shows "f' x * (y - x) \<le> f y - f x" | |
| 524 | using assms | |
| 525 | proof - | |
| 526 |   { fix x y :: real assume asm: "x \<in> C" "y \<in> C" "y > x"
 | |
| 527 | hence ge: "y - x > 0" "y - x \<ge> 0" by auto | |
| 528 | from asm have le: "x - y < 0" "x - y \<le> 0" by auto | |
| 529 | then obtain z1 where z1: "z1 > x" "z1 < y" "f y - f x = (y - x) * f' z1" | |
| 530 | using subsetD[OF atMostAtLeast_subset_convex[OF `convex C` `x \<in> C` `y \<in> C` `x < y`], | |
| 531 | THEN f', THEN MVT2[OF `x < y`, rule_format, unfolded atLeastAtMost_iff[symmetric]]] | |
| 532 | by auto | |
| 533 | hence "z1 \<in> C" using atMostAtLeast_subset_convex | |
| 534 | `convex C` `x \<in> C` `y \<in> C` `x < y` by fastsimp | |
| 535 | from z1 have z1': "f x - f y = (x - y) * f' z1" | |
| 536 | by (simp add:field_simps) | |
| 537 | obtain z2 where z2: "z2 > x" "z2 < z1" "f' z1 - f' x = (z1 - x) * f'' z2" | |
| 538 | using subsetD[OF atMostAtLeast_subset_convex[OF `convex C` `x \<in> C` `z1 \<in> C` `x < z1`], | |
| 539 | THEN f'', THEN MVT2[OF `x < z1`, rule_format, unfolded atLeastAtMost_iff[symmetric]]] z1 | |
| 540 | by auto | |
| 541 | obtain z3 where z3: "z3 > z1" "z3 < y" "f' y - f' z1 = (y - z1) * f'' z3" | |
| 542 | using subsetD[OF atMostAtLeast_subset_convex[OF `convex C` `z1 \<in> C` `y \<in> C` `z1 < y`], | |
| 543 | THEN f'', THEN MVT2[OF `z1 < y`, rule_format, unfolded atLeastAtMost_iff[symmetric]]] z1 | |
| 544 | by auto | |
| 545 | have "f' y - (f x - f y) / (x - y) = f' y - f' z1" | |
| 546 | using asm z1' by auto | |
| 547 | also have "\<dots> = (y - z1) * f'' z3" using z3 by auto | |
| 548 | finally have cool': "f' y - (f x - f y) / (x - y) = (y - z1) * f'' z3" by simp | |
| 549 | have A': "y - z1 \<ge> 0" using z1 by auto | |
| 550 | have "z3 \<in> C" using z3 asm atMostAtLeast_subset_convex | |
| 551 | `convex C` `x \<in> C` `z1 \<in> C` `x < z1` by fastsimp | |
| 552 | hence B': "f'' z3 \<ge> 0" using assms by auto | |
| 553 | from A' B' have "(y - z1) * f'' z3 \<ge> 0" using mult_nonneg_nonneg by auto | |
| 554 | from cool' this have "f' y - (f x - f y) / (x - y) \<ge> 0" by auto | |
| 555 | from mult_right_mono_neg[OF this le(2)] | |
| 556 | have "f' y * (x - y) - (f x - f y) / (x - y) * (x - y) \<le> 0 * (x - y)" | |
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36648diff
changeset | 557 | by (simp add: algebra_simps) | 
| 36623 | 558 | hence "f' y * (x - y) - (f x - f y) \<le> 0" using le by auto | 
| 559 | hence res: "f' y * (x - y) \<le> f x - f y" by auto | |
| 560 | have "(f y - f x) / (y - x) - f' x = f' z1 - f' x" | |
| 561 | using asm z1 by auto | |
| 562 | also have "\<dots> = (z1 - x) * f'' z2" using z2 by auto | |
| 563 | finally have cool: "(f y - f x) / (y - x) - f' x = (z1 - x) * f'' z2" by simp | |
| 564 | have A: "z1 - x \<ge> 0" using z1 by auto | |
| 565 | have "z2 \<in> C" using z2 z1 asm atMostAtLeast_subset_convex | |
| 566 | `convex C` `z1 \<in> C` `y \<in> C` `z1 < y` by fastsimp | |
| 567 | hence B: "f'' z2 \<ge> 0" using assms by auto | |
| 568 | from A B have "(z1 - x) * f'' z2 \<ge> 0" using mult_nonneg_nonneg by auto | |
| 569 | from cool this have "(f y - f x) / (y - x) - f' x \<ge> 0" by auto | |
| 570 | from mult_right_mono[OF this ge(2)] | |
| 571 | have "(f y - f x) / (y - x) * (y - x) - f' x * (y - x) \<ge> 0 * (y - x)" | |
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36648diff
changeset | 572 | by (simp add: algebra_simps) | 
| 36623 | 573 | hence "f y - f x - f' x * (y - x) \<ge> 0" using ge by auto | 
| 574 | hence "f y - f x \<ge> f' x * (y - x)" "f' y * (x - y) \<le> f x - f y" | |
| 575 | using res by auto } note less_imp = this | |
| 576 |   { fix x y :: real assume "x \<in> C" "y \<in> C" "x \<noteq> y"
 | |
| 577 | hence"f y - f x \<ge> f' x * (y - x)" | |
| 578 | unfolding neq_iff using less_imp by auto } note neq_imp = this | |
| 579 | moreover | |
| 580 |   { fix x y :: real assume asm: "x \<in> C" "y \<in> C" "x = y"
 | |
| 581 | hence "f y - f x \<ge> f' x * (y - x)" by auto } | |
| 582 | ultimately show ?thesis using assms by blast | |
| 583 | qed | |
| 584 | ||
| 585 | lemma f''_ge0_imp_convex: | |
| 586 | fixes f :: "real \<Rightarrow> real" | |
| 587 | assumes conv: "convex C" | |
| 588 | assumes f': "\<And> x. x \<in> C \<Longrightarrow> DERIV f x :> (f' x)" | |
| 589 | assumes f'': "\<And> x. x \<in> C \<Longrightarrow> DERIV f' x :> (f'' x)" | |
| 590 | assumes pos: "\<And> x. x \<in> C \<Longrightarrow> f'' x \<ge> 0" | |
| 591 | shows "convex_on C f" | |
| 592 | using f''_imp_f'[OF conv f' f'' pos] assms pos_convex_function by fastsimp | |
| 593 | ||
| 594 | lemma minus_log_convex: | |
| 595 | fixes b :: real | |
| 596 | assumes "b > 1" | |
| 597 |   shows "convex_on {0 <..} (\<lambda> x. - log b x)"
 | |
| 598 | proof - | |
| 599 | have "\<And> z. z > 0 \<Longrightarrow> DERIV (log b) z :> 1 / (ln b * z)" using DERIV_log by auto | |
| 600 | hence f': "\<And> z. z > 0 \<Longrightarrow> DERIV (\<lambda> z. - log b z) z :> - 1 / (ln b * z)" | |
| 601 | using DERIV_minus by auto | |
| 602 | have "\<And> z :: real. z > 0 \<Longrightarrow> DERIV inverse z :> - (inverse z ^ Suc (Suc 0))" | |
| 603 | using less_imp_neq[THEN not_sym, THEN DERIV_inverse] by auto | |
| 604 | from this[THEN DERIV_cmult, of _ "- 1 / ln b"] | |
| 605 | have "\<And> z :: real. z > 0 \<Longrightarrow> DERIV (\<lambda> z. (- 1 / ln b) * inverse z) z :> (- 1 / ln b) * (- (inverse z ^ Suc (Suc 0)))" | |
| 606 | by auto | |
| 607 | hence f''0: "\<And> z :: real. z > 0 \<Longrightarrow> DERIV (\<lambda> z. - 1 / (ln b * z)) z :> 1 / (ln b * z * z)" | |
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36648diff
changeset | 608 | unfolding inverse_eq_divide by (auto simp add: mult_assoc) | 
| 36623 | 609 | have f''_ge0: "\<And> z :: real. z > 0 \<Longrightarrow> 1 / (ln b * z * z) \<ge> 0" | 
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36648diff
changeset | 610 | using `b > 1` by (auto intro!:less_imp_le simp add:divide_pos_pos[of 1] mult_pos_pos) | 
| 36623 | 611 | from f''_ge0_imp_convex[OF pos_is_convex, | 
| 612 | unfolded greaterThan_iff, OF f' f''0 f''_ge0] | |
| 613 | show ?thesis by auto | |
| 614 | qed | |
| 615 | ||
| 616 | end |