| author | paulson | 
| Sun, 29 Mar 2020 23:54:00 +0100 | |
| changeset 71628 | 1f957615cae6 | 
| parent 68383 | 93a42bd62ede | 
| child 80914 | d97fdabd9e2b | 
| permissions | -rw-r--r-- | 
| 42151 | 1 | (* Title: HOL/HOLCF/Completion.thy | 
| 27404 | 2 | Author: Brian Huffman | 
| 3 | *) | |
| 4 | ||
| 62175 | 5 | section \<open>Defining algebraic domains by ideal completion\<close> | 
| 27404 | 6 | |
| 7 | theory Completion | |
| 65380 
ae93953746fc
eliminated Plain_HOLCF.thy (see also 8e92772bc0e8): it was modeled after HOL/Plain.thy which was discontinued later;
 wenzelm parents: 
65379diff
changeset | 8 | imports Cfun | 
| 27404 | 9 | begin | 
| 10 | ||
| 62175 | 11 | subsection \<open>Ideals over a preorder\<close> | 
| 27404 | 12 | |
| 13 | locale preorder = | |
| 14 | fixes r :: "'a::type \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<preceq>" 50) | |
| 15 | assumes r_refl: "x \<preceq> x" | |
| 16 | assumes r_trans: "\<lbrakk>x \<preceq> y; y \<preceq> z\<rbrakk> \<Longrightarrow> x \<preceq> z" | |
| 17 | begin | |
| 18 | ||
| 19 | definition | |
| 20 | ideal :: "'a set \<Rightarrow> bool" where | |
| 21 | "ideal A = ((\<exists>x. x \<in> A) \<and> (\<forall>x\<in>A. \<forall>y\<in>A. \<exists>z\<in>A. x \<preceq> z \<and> y \<preceq> z) \<and> | |
| 22 | (\<forall>x y. x \<preceq> y \<longrightarrow> y \<in> A \<longrightarrow> x \<in> A))" | |
| 23 | ||
| 24 | lemma idealI: | |
| 25 | assumes "\<exists>x. x \<in> A" | |
| 26 | assumes "\<And>x y. \<lbrakk>x \<in> A; y \<in> A\<rbrakk> \<Longrightarrow> \<exists>z\<in>A. x \<preceq> z \<and> y \<preceq> z" | |
| 27 | assumes "\<And>x y. \<lbrakk>x \<preceq> y; y \<in> A\<rbrakk> \<Longrightarrow> x \<in> A" | |
| 28 | shows "ideal A" | |
| 41529 | 29 | unfolding ideal_def using assms by fast | 
| 27404 | 30 | |
| 31 | lemma idealD1: | |
| 32 | "ideal A \<Longrightarrow> \<exists>x. x \<in> A" | |
| 33 | unfolding ideal_def by fast | |
| 34 | ||
| 35 | lemma idealD2: | |
| 36 | "\<lbrakk>ideal A; x \<in> A; y \<in> A\<rbrakk> \<Longrightarrow> \<exists>z\<in>A. x \<preceq> z \<and> y \<preceq> z" | |
| 37 | unfolding ideal_def by fast | |
| 38 | ||
| 39 | lemma idealD3: | |
| 40 | "\<lbrakk>ideal A; x \<preceq> y; y \<in> A\<rbrakk> \<Longrightarrow> x \<in> A" | |
| 41 | unfolding ideal_def by fast | |
| 42 | ||
| 43 | lemma ideal_principal: "ideal {x. x \<preceq> z}"
 | |
| 68383 | 44 | apply (rule idealI) | 
| 45 | apply (rule exI [where x = z]) | |
| 46 | apply (fast intro: r_refl) | |
| 47 | apply (rule bexI [where x = z], fast) | |
| 48 | apply (fast intro: r_refl) | |
| 49 | apply (fast intro: r_trans) | |
| 50 | done | |
| 27404 | 51 | |
| 40888 
28cd51cff70c
reformulate lemma preorder.ex_ideal, and use it for typedefs
 huffman parents: 
40774diff
changeset | 52 | lemma ex_ideal: "\<exists>A. A \<in> {A. ideal A}"
 | 
| 
28cd51cff70c
reformulate lemma preorder.ex_ideal, and use it for typedefs
 huffman parents: 
40774diff
changeset | 53 | by (fast intro: ideal_principal) | 
| 27404 | 54 | |
| 62175 | 55 | text \<open>The set of ideals is a cpo\<close> | 
| 27404 | 56 | |
| 57 | lemma ideal_UN: | |
| 58 | fixes A :: "nat \<Rightarrow> 'a set" | |
| 59 | assumes ideal_A: "\<And>i. ideal (A i)" | |
| 60 | assumes chain_A: "\<And>i j. i \<le> j \<Longrightarrow> A i \<subseteq> A j" | |
| 61 | shows "ideal (\<Union>i. A i)" | |
| 68383 | 62 | apply (rule idealI) | 
| 63 | using idealD1 [OF ideal_A] apply fast | |
| 64 | apply (clarify) | |
| 65 | subgoal for i j | |
| 66 | apply (drule subsetD [OF chain_A [OF max.cobounded1]]) | |
| 67 | apply (drule subsetD [OF chain_A [OF max.cobounded2]]) | |
| 68 | apply (drule (1) idealD2 [OF ideal_A]) | |
| 69 | apply blast | |
| 70 | done | |
| 71 | apply clarify | |
| 72 | apply (drule (1) idealD3 [OF ideal_A]) | |
| 73 | apply fast | |
| 74 | done | |
| 27404 | 75 | |
| 76 | lemma typedef_ideal_po: | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 77 | fixes Abs :: "'a set \<Rightarrow> 'b::below" | 
| 27404 | 78 |   assumes type: "type_definition Rep Abs {S. ideal S}"
 | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 79 | assumes below: "\<And>x y. x \<sqsubseteq> y \<longleftrightarrow> Rep x \<subseteq> Rep y" | 
| 27404 | 80 |   shows "OFCLASS('b, po_class)"
 | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 81 | apply (intro_classes, unfold below) | 
| 27404 | 82 | apply (rule subset_refl) | 
| 83 | apply (erule (1) subset_trans) | |
| 84 | apply (rule type_definition.Rep_inject [OF type, THEN iffD1]) | |
| 85 | apply (erule (1) subset_antisym) | |
| 86 | done | |
| 87 | ||
| 88 | lemma | |
| 89 | fixes Abs :: "'a set \<Rightarrow> 'b::po" | |
| 90 |   assumes type: "type_definition Rep Abs {S. ideal S}"
 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 91 | assumes below: "\<And>x y. x \<sqsubseteq> y \<longleftrightarrow> Rep x \<subseteq> Rep y" | 
| 27404 | 92 | assumes S: "chain S" | 
| 93 | shows typedef_ideal_lub: "range S <<| Abs (\<Union>i. Rep (S i))" | |
| 40769 | 94 | and typedef_ideal_rep_lub: "Rep (\<Squnion>i. S i) = (\<Union>i. Rep (S i))" | 
| 27404 | 95 | proof - | 
| 96 | have 1: "ideal (\<Union>i. Rep (S i))" | |
| 97 | apply (rule ideal_UN) | |
| 98 | apply (rule type_definition.Rep [OF type, unfolded mem_Collect_eq]) | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 99 | apply (subst below [symmetric]) | 
| 27404 | 100 | apply (erule chain_mono [OF S]) | 
| 101 | done | |
| 102 | hence 2: "Rep (Abs (\<Union>i. Rep (S i))) = (\<Union>i. Rep (S i))" | |
| 103 | by (simp add: type_definition.Abs_inverse [OF type]) | |
| 104 | show 3: "range S <<| Abs (\<Union>i. Rep (S i))" | |
| 105 | apply (rule is_lubI) | |
| 106 | apply (rule is_ubI) | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 107 | apply (simp add: below 2, fast) | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 108 | apply (simp add: below 2 is_ub_def, fast) | 
| 27404 | 109 | done | 
| 110 | hence 4: "(\<Squnion>i. S i) = Abs (\<Union>i. Rep (S i))" | |
| 40771 | 111 | by (rule lub_eqI) | 
| 27404 | 112 | show 5: "Rep (\<Squnion>i. S i) = (\<Union>i. Rep (S i))" | 
| 113 | by (simp add: 4 2) | |
| 114 | qed | |
| 115 | ||
| 116 | lemma typedef_ideal_cpo: | |
| 117 | fixes Abs :: "'a set \<Rightarrow> 'b::po" | |
| 118 |   assumes type: "type_definition Rep Abs {S. ideal S}"
 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 119 | assumes below: "\<And>x y. x \<sqsubseteq> y \<longleftrightarrow> Rep x \<subseteq> Rep y" | 
| 27404 | 120 |   shows "OFCLASS('b, cpo_class)"
 | 
| 61169 | 121 | by standard (rule exI, erule typedef_ideal_lub [OF type below]) | 
| 27404 | 122 | |
| 123 | end | |
| 124 | ||
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 125 | interpretation below: preorder "below :: 'a::po \<Rightarrow> 'a \<Rightarrow> bool" | 
| 27404 | 126 | apply unfold_locales | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 127 | apply (rule below_refl) | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 128 | apply (erule (1) below_trans) | 
| 27404 | 129 | done | 
| 130 | ||
| 62175 | 131 | subsection \<open>Lemmas about least upper bounds\<close> | 
| 27404 | 132 | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 133 | lemma is_ub_thelub_ex: "\<lbrakk>\<exists>u. S <<| u; x \<in> S\<rbrakk> \<Longrightarrow> x \<sqsubseteq> lub S" | 
| 40771 | 134 | apply (erule exE, drule is_lub_lub) | 
| 27404 | 135 | apply (drule is_lubD1) | 
| 136 | apply (erule (1) is_ubD) | |
| 137 | done | |
| 138 | ||
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 139 | lemma is_lub_thelub_ex: "\<lbrakk>\<exists>u. S <<| u; S <| x\<rbrakk> \<Longrightarrow> lub S \<sqsubseteq> x" | 
| 40771 | 140 | by (erule exE, drule is_lub_lub, erule is_lubD2) | 
| 27404 | 141 | |
| 65379 | 142 | |
| 62175 | 143 | subsection \<open>Locale for ideal completion\<close> | 
| 28133 | 144 | |
| 65379 | 145 | hide_const (open) Filter.principal | 
| 146 | ||
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 147 | locale ideal_completion = preorder + | 
| 27404 | 148 | fixes principal :: "'a::type \<Rightarrow> 'b::cpo" | 
| 149 | fixes rep :: "'b::cpo \<Rightarrow> 'a::type set" | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 150 | assumes ideal_rep: "\<And>x. ideal (rep x)" | 
| 40769 | 151 | assumes rep_lub: "\<And>Y. chain Y \<Longrightarrow> rep (\<Squnion>i. Y i) = (\<Union>i. rep (Y i))" | 
| 27404 | 152 |   assumes rep_principal: "\<And>a. rep (principal a) = {b. b \<preceq> a}"
 | 
| 41033 | 153 | assumes belowI: "\<And>x y. rep x \<subseteq> rep y \<Longrightarrow> x \<sqsubseteq> y" | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 154 | assumes countable: "\<exists>f::'a \<Rightarrow> nat. inj f" | 
| 27404 | 155 | begin | 
| 156 | ||
| 28133 | 157 | lemma rep_mono: "x \<sqsubseteq> y \<Longrightarrow> rep x \<subseteq> rep y" | 
| 158 | apply (frule bin_chain) | |
| 40769 | 159 | apply (drule rep_lub) | 
| 40771 | 160 | apply (simp only: lub_eqI [OF is_lub_bin_chain]) | 
| 28133 | 161 | apply (rule subsetI, rule UN_I [where a=0], simp_all) | 
| 162 | done | |
| 163 | ||
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 164 | lemma below_def: "x \<sqsubseteq> y \<longleftrightarrow> rep x \<subseteq> rep y" | 
| 41033 | 165 | by (rule iffI [OF rep_mono belowI]) | 
| 28133 | 166 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 167 | lemma principal_below_iff_mem_rep: "principal a \<sqsubseteq> x \<longleftrightarrow> a \<in> rep x" | 
| 41033 | 168 | unfolding below_def rep_principal | 
| 169 | by (auto intro: r_refl elim: idealD3 [OF ideal_rep]) | |
| 28133 | 170 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 171 | lemma principal_below_iff [simp]: "principal a \<sqsubseteq> principal b \<longleftrightarrow> a \<preceq> b" | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 172 | by (simp add: principal_below_iff_mem_rep rep_principal) | 
| 28133 | 173 | |
| 174 | lemma principal_eq_iff: "principal a = principal b \<longleftrightarrow> a \<preceq> b \<and> b \<preceq> a" | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 175 | unfolding po_eq_conv [where 'a='b] principal_below_iff .. | 
| 28133 | 176 | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 177 | lemma eq_iff: "x = y \<longleftrightarrow> rep x = rep y" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 178 | unfolding po_eq_conv below_def by auto | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 179 | |
| 28133 | 180 | lemma principal_mono: "a \<preceq> b \<Longrightarrow> principal a \<sqsubseteq> principal b" | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 181 | by (simp only: principal_below_iff) | 
| 28133 | 182 | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 183 | lemma ch2ch_principal [simp]: | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 184 | "\<forall>i. Y i \<preceq> Y (Suc i) \<Longrightarrow> chain (\<lambda>i. principal (Y i))" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 185 | by (simp add: chainI principal_mono) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 186 | |
| 62175 | 187 | subsubsection \<open>Principal ideals approximate all elements\<close> | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 188 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 189 | lemma compact_principal [simp]: "compact (principal a)" | 
| 40769 | 190 | by (rule compactI2, simp add: principal_below_iff_mem_rep rep_lub) | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 191 | |
| 62175 | 192 | text \<open>Construct a chain whose lub is the same as a given ideal\<close> | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 193 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 194 | lemma obtain_principal_chain: | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 195 | obtains Y where "\<forall>i. Y i \<preceq> Y (Suc i)" and "x = (\<Squnion>i. principal (Y i))" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 196 | proof - | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 197 | obtain count :: "'a \<Rightarrow> nat" where inj: "inj count" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 198 | using countable .. | 
| 63040 | 199 | define enum where "enum i = (THE a. count a = i)" for i | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 200 | have enum_count [simp]: "\<And>x. enum (count x) = x" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 201 | unfolding enum_def by (simp add: inj_eq [OF inj]) | 
| 63040 | 202 | define a where "a = (LEAST i. enum i \<in> rep x)" | 
| 203 | define b where "b i = (LEAST j. enum j \<in> rep x \<and> \<not> enum j \<preceq> enum i)" for i | |
| 204 | define c where "c i j = (LEAST k. enum k \<in> rep x \<and> enum i \<preceq> enum k \<and> enum j \<preceq> enum k)" for i j | |
| 205 | define P where "P i \<longleftrightarrow> (\<exists>j. enum j \<in> rep x \<and> \<not> enum j \<preceq> enum i)" for i | |
| 206 | define X where "X = rec_nat a (\<lambda>n i. if P i then c i (b i) else i)" | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 207 | have X_0: "X 0 = a" unfolding X_def by simp | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 208 | have X_Suc: "\<And>n. X (Suc n) = (if P (X n) then c (X n) (b (X n)) else X n)" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 209 | unfolding X_def by simp | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 210 | have a_mem: "enum a \<in> rep x" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 211 | unfolding a_def | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 212 | apply (rule LeastI_ex) | 
| 68383 | 213 | apply (insert ideal_rep [of x]) | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 214 | apply (drule idealD1) | 
| 68383 | 215 | apply (clarify) | 
| 216 | subgoal for a by (rule exI [where x="count a"]) simp | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 217 | done | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 218 | have b: "\<And>i. P i \<Longrightarrow> enum i \<in> rep x | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 219 | \<Longrightarrow> enum (b i) \<in> rep x \<and> \<not> enum (b i) \<preceq> enum i" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 220 | unfolding P_def b_def by (erule LeastI2_ex, simp) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 221 | have c: "\<And>i j. enum i \<in> rep x \<Longrightarrow> enum j \<in> rep x | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 222 | \<Longrightarrow> enum (c i j) \<in> rep x \<and> enum i \<preceq> enum (c i j) \<and> enum j \<preceq> enum (c i j)" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 223 | unfolding c_def | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 224 | apply (drule (1) idealD2 [OF ideal_rep], clarify) | 
| 68383 | 225 | subgoal for \<dots> z by (rule LeastI2 [where a="count z"], simp, simp) | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 226 | done | 
| 68383 | 227 | have X_mem: "enum (X n) \<in> rep x" for n | 
| 228 | proof (induct n) | |
| 229 | case 0 | |
| 230 | then show ?case by (simp add: X_0 a_mem) | |
| 231 | next | |
| 232 | case (Suc n) | |
| 233 | with b c show ?case by (auto simp: X_Suc) | |
| 234 | qed | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 235 | have X_chain: "\<And>n. enum (X n) \<preceq> enum (X (Suc n))" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 236 | apply (clarsimp simp add: X_Suc r_refl) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 237 | apply (simp add: b c X_mem) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 238 | done | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 239 | have less_b: "\<And>n i. n < b i \<Longrightarrow> enum n \<in> rep x \<Longrightarrow> enum n \<preceq> enum i" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 240 | unfolding b_def by (drule not_less_Least, simp) | 
| 68383 | 241 | have X_covers: "\<forall>k\<le>n. enum k \<in> rep x \<longrightarrow> enum k \<preceq> enum (X n)" for n | 
| 242 | proof (induct n) | |
| 243 | case 0 | |
| 244 | then show ?case | |
| 245 | apply (clarsimp simp add: X_0 a_def) | |
| 246 | apply (drule Least_le [where k=0], simp add: r_refl) | |
| 247 | done | |
| 248 | next | |
| 249 | case (Suc n) | |
| 250 | then show ?case | |
| 251 | apply clarsimp | |
| 252 | apply (erule le_SucE) | |
| 253 | apply (rule r_trans [OF _ X_chain], simp) | |
| 254 | apply (cases "P (X n)", simp add: X_Suc) | |
| 255 | apply (rule linorder_cases [where x="b (X n)" and y="Suc n"]) | |
| 256 | apply (simp only: less_Suc_eq_le) | |
| 257 | apply (drule spec, drule (1) mp, simp add: b X_mem) | |
| 258 | apply (simp add: c X_mem) | |
| 259 | apply (drule (1) less_b) | |
| 260 | apply (erule r_trans) | |
| 261 | apply (simp add: b c X_mem) | |
| 262 | apply (simp add: X_Suc) | |
| 263 | apply (simp add: P_def) | |
| 264 | done | |
| 265 | qed | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 266 | have 1: "\<forall>i. enum (X i) \<preceq> enum (X (Suc i))" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 267 | by (simp add: X_chain) | 
| 68383 | 268 | have "x = (\<Squnion>n. principal (enum (X n)))" | 
| 40769 | 269 | apply (simp add: eq_iff rep_lub 1 rep_principal) | 
| 68383 | 270 | apply auto | 
| 271 | subgoal for a | |
| 272 | apply (subgoal_tac "\<exists>i. a = enum i", erule exE) | |
| 273 | apply (rule_tac x=i in exI, simp add: X_covers) | |
| 274 | apply (rule_tac x="count a" in exI, simp) | |
| 275 | done | |
| 276 | subgoal | |
| 277 | apply (erule idealD3 [OF ideal_rep]) | |
| 278 | apply (rule X_mem) | |
| 279 | done | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 280 | done | 
| 68383 | 281 | with 1 show ?thesis .. | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 282 | qed | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 283 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 284 | lemma principal_induct: | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 285 | assumes adm: "adm P" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 286 | assumes P: "\<And>a. P (principal a)" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 287 | shows "P x" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 288 | apply (rule obtain_principal_chain [of x]) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 289 | apply (simp add: admD [OF adm] P) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 290 | done | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 291 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 292 | lemma compact_imp_principal: "compact x \<Longrightarrow> \<exists>a. x = principal a" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 293 | apply (rule obtain_principal_chain [of x]) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 294 | apply (drule adm_compact_neq [OF _ cont_id]) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 295 | apply (subgoal_tac "chain (\<lambda>i. principal (Y i))") | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 296 | apply (drule (2) admD2, fast, simp) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 297 | done | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 298 | |
| 62175 | 299 | subsection \<open>Defining functions in terms of basis elements\<close> | 
| 28133 | 300 | |
| 301 | definition | |
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41182diff
changeset | 302 |   extension :: "('a::type \<Rightarrow> 'c::cpo) \<Rightarrow> 'b \<rightarrow> 'c" where
 | 
| 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41182diff
changeset | 303 | "extension = (\<lambda>f. (\<Lambda> x. lub (f ` rep x)))" | 
| 28133 | 304 | |
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41182diff
changeset | 305 | lemma extension_lemma: | 
| 27404 | 306 | fixes f :: "'a::type \<Rightarrow> 'c::cpo" | 
| 307 | assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b" | |
| 308 | shows "\<exists>u. f ` rep x <<| u" | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 309 | proof - | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 310 | obtain Y where Y: "\<forall>i. Y i \<preceq> Y (Suc i)" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 311 | and x: "x = (\<Squnion>i. principal (Y i))" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 312 | by (rule obtain_principal_chain [of x]) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 313 | have chain: "chain (\<lambda>i. f (Y i))" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 314 | by (rule chainI, simp add: f_mono Y) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 315 |   have rep_x: "rep x = (\<Union>n. {a. a \<preceq> Y n})"
 | 
| 40769 | 316 | by (simp add: x rep_lub Y rep_principal) | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 317 | have "f ` rep x <<| (\<Squnion>n. f (Y n))" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 318 | apply (rule is_lubI) | 
| 68383 | 319 | apply (rule ub_imageI) | 
| 320 | subgoal for a | |
| 321 | apply (clarsimp simp add: rep_x) | |
| 322 | apply (drule f_mono) | |
| 323 | apply (erule below_lub [OF chain]) | |
| 324 | done | |
| 40500 
ee9c8d36318e
add lemmas lub_below, below_lub; simplify some proofs; remove some unused lemmas
 huffman parents: 
40002diff
changeset | 325 | apply (rule lub_below [OF chain]) | 
| 68383 | 326 | subgoal for \<dots> n | 
| 327 | apply (drule ub_imageD [where x="Y n"]) | |
| 328 | apply (simp add: rep_x, fast intro: r_refl) | |
| 329 | apply assumption | |
| 330 | done | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 331 | done | 
| 68383 | 332 | then show ?thesis .. | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 333 | qed | 
| 27404 | 334 | |
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41182diff
changeset | 335 | lemma extension_beta: | 
| 27404 | 336 | fixes f :: "'a::type \<Rightarrow> 'c::cpo" | 
| 337 | assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b" | |
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41182diff
changeset | 338 | shows "extension f\<cdot>x = lub (f ` rep x)" | 
| 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41182diff
changeset | 339 | unfolding extension_def | 
| 27404 | 340 | proof (rule beta_cfun) | 
| 341 | have lub: "\<And>x. \<exists>u. f ` rep x <<| u" | |
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41182diff
changeset | 342 | using f_mono by (rule extension_lemma) | 
| 27404 | 343 | show cont: "cont (\<lambda>x. lub (f ` rep x))" | 
| 344 | apply (rule contI2) | |
| 345 | apply (rule monofunI) | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 346 | apply (rule is_lub_thelub_ex [OF lub ub_imageI]) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 347 | apply (rule is_ub_thelub_ex [OF lub imageI]) | 
| 27404 | 348 | apply (erule (1) subsetD [OF rep_mono]) | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 349 | apply (rule is_lub_thelub_ex [OF lub ub_imageI]) | 
| 40769 | 350 | apply (simp add: rep_lub, clarify) | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 351 | apply (erule rev_below_trans [OF is_ub_thelub]) | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
39967diff
changeset | 352 | apply (erule is_ub_thelub_ex [OF lub imageI]) | 
| 27404 | 353 | done | 
| 354 | qed | |
| 355 | ||
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41182diff
changeset | 356 | lemma extension_principal: | 
| 27404 | 357 | fixes f :: "'a::type \<Rightarrow> 'c::cpo" | 
| 358 | assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b" | |
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41182diff
changeset | 359 | shows "extension f\<cdot>(principal a) = f a" | 
| 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41182diff
changeset | 360 | apply (subst extension_beta, erule f_mono) | 
| 27404 | 361 | apply (subst rep_principal) | 
| 41033 | 362 | apply (rule lub_eqI) | 
| 363 | apply (rule is_lub_maximal) | |
| 364 | apply (rule ub_imageI) | |
| 365 | apply (simp add: f_mono) | |
| 366 | apply (rule imageI) | |
| 367 | apply (simp add: r_refl) | |
| 27404 | 368 | done | 
| 369 | ||
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41182diff
changeset | 370 | lemma extension_mono: | 
| 27404 | 371 | assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b" | 
| 372 | assumes g_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> g a \<sqsubseteq> g b" | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 373 | assumes below: "\<And>a. f a \<sqsubseteq> g a" | 
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41182diff
changeset | 374 | shows "extension f \<sqsubseteq> extension g" | 
| 68383 | 375 | apply (rule cfun_belowI) | 
| 376 | apply (simp only: extension_beta f_mono g_mono) | |
| 377 | apply (rule is_lub_thelub_ex) | |
| 378 | apply (rule extension_lemma, erule f_mono) | |
| 379 | apply (rule ub_imageI) | |
| 380 | subgoal for x a | |
| 381 | apply (rule below_trans [OF below]) | |
| 382 | apply (rule is_ub_thelub_ex) | |
| 383 | apply (rule extension_lemma, erule g_mono) | |
| 384 | apply (erule imageI) | |
| 385 | done | |
| 386 | done | |
| 27404 | 387 | |
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41182diff
changeset | 388 | lemma cont_extension: | 
| 41182 | 389 | assumes f_mono: "\<And>a b x. a \<preceq> b \<Longrightarrow> f x a \<sqsubseteq> f x b" | 
| 390 | assumes f_cont: "\<And>a. cont (\<lambda>x. f x a)" | |
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41182diff
changeset | 391 | shows "cont (\<lambda>x. extension (\<lambda>a. f x a))" | 
| 41182 | 392 | apply (rule contI2) | 
| 393 | apply (rule monofunI) | |
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41182diff
changeset | 394 | apply (rule extension_mono, erule f_mono, erule f_mono) | 
| 41182 | 395 | apply (erule cont2monofunE [OF f_cont]) | 
| 396 | apply (rule cfun_belowI) | |
| 397 | apply (rule principal_induct, simp) | |
| 398 | apply (simp only: contlub_cfun_fun) | |
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41182diff
changeset | 399 | apply (simp only: extension_principal f_mono) | 
| 41182 | 400 | apply (simp add: cont2contlubE [OF f_cont]) | 
| 401 | done | |
| 402 | ||
| 27404 | 403 | end | 
| 404 | ||
| 39984 | 405 | lemma (in preorder) typedef_ideal_completion: | 
| 406 | fixes Abs :: "'a set \<Rightarrow> 'b::cpo" | |
| 407 |   assumes type: "type_definition Rep Abs {S. ideal S}"
 | |
| 408 | assumes below: "\<And>x y. x \<sqsubseteq> y \<longleftrightarrow> Rep x \<subseteq> Rep y" | |
| 409 |   assumes principal: "\<And>a. principal a = Abs {b. b \<preceq> a}"
 | |
| 410 | assumes countable: "\<exists>f::'a \<Rightarrow> nat. inj f" | |
| 411 | shows "ideal_completion r principal Rep" | |
| 412 | proof | |
| 413 |   interpret type_definition Rep Abs "{S. ideal S}" by fact
 | |
| 414 | fix a b :: 'a and x y :: 'b and Y :: "nat \<Rightarrow> 'b" | |
| 415 | show "ideal (Rep x)" | |
| 416 | using Rep [of x] by simp | |
| 417 | show "chain Y \<Longrightarrow> Rep (\<Squnion>i. Y i) = (\<Union>i. Rep (Y i))" | |
| 40769 | 418 | using type below by (rule typedef_ideal_rep_lub) | 
| 39984 | 419 |   show "Rep (principal a) = {b. b \<preceq> a}"
 | 
| 420 | by (simp add: principal Abs_inverse ideal_principal) | |
| 421 | show "Rep x \<subseteq> Rep y \<Longrightarrow> x \<sqsubseteq> y" | |
| 422 | by (simp only: below) | |
| 423 | show "\<exists>f::'a \<Rightarrow> nat. inj f" | |
| 424 | by (rule countable) | |
| 425 | qed | |
| 426 | ||
| 27404 | 427 | end |