| author | paulson | 
| Sun, 29 Mar 2020 23:54:00 +0100 | |
| changeset 71628 | 1f957615cae6 | 
| parent 69597 | ff784d5a5bfb | 
| child 80914 | d97fdabd9e2b | 
| permissions | -rw-r--r-- | 
| 42151 | 1 | (* Title: HOL/HOLCF/Tr.thy | 
| 2640 | 2 | Author: Franz Regensburger | 
| 3 | *) | |
| 4 | ||
| 62175 | 5 | section \<open>The type of lifted booleans\<close> | 
| 15649 | 6 | |
| 7 | theory Tr | |
| 67312 | 8 | imports Lift | 
| 15649 | 9 | begin | 
| 2640 | 10 | |
| 62175 | 11 | subsection \<open>Type definition and constructors\<close> | 
| 16631 | 12 | |
| 67312 | 13 | type_synonym tr = "bool lift" | 
| 2782 | 14 | |
| 2766 | 15 | translations | 
| 67312 | 16 | (type) "tr" \<leftharpoondown> (type) "bool lift" | 
| 25135 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 17 | |
| 67312 | 18 | definition TT :: "tr" | 
| 19 | where "TT = Def True" | |
| 2640 | 20 | |
| 67312 | 21 | definition FF :: "tr" | 
| 22 | where "FF = Def False" | |
| 2640 | 23 | |
| 69597 | 24 | text \<open>Exhaustion and Elimination for type \<^typ>\<open>tr\<close>\<close> | 
| 27294 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 25 | |
| 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 26 | lemma Exh_tr: "t = \<bottom> \<or> t = TT \<or> t = FF" | 
| 67312 | 27 | by (induct t) (auto simp: FF_def TT_def) | 
| 27294 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 28 | |
| 48659 
40a87b4dac19
declare trE and tr_induct as default cases and induct rules for type tr
 huffman parents: 
42151diff
changeset | 29 | lemma trE [case_names bottom TT FF, cases type: tr]: | 
| 35783 | 30 | "\<lbrakk>p = \<bottom> \<Longrightarrow> Q; p = TT \<Longrightarrow> Q; p = FF \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q" | 
| 67312 | 31 | by (induct p) (auto simp: FF_def TT_def) | 
| 27294 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 32 | |
| 48659 
40a87b4dac19
declare trE and tr_induct as default cases and induct rules for type tr
 huffman parents: 
42151diff
changeset | 33 | lemma tr_induct [case_names bottom TT FF, induct type: tr]: | 
| 67312 | 34 | "P \<bottom> \<Longrightarrow> P TT \<Longrightarrow> P FF \<Longrightarrow> P x" | 
| 35 | by (cases x) simp_all | |
| 27294 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 36 | |
| 69597 | 37 | text \<open>distinctness for type \<^typ>\<open>tr\<close>\<close> | 
| 27294 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 38 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29138diff
changeset | 39 | lemma dist_below_tr [simp]: | 
| 41182 | 40 | "TT \<notsqsubseteq> \<bottom>" "FF \<notsqsubseteq> \<bottom>" "TT \<notsqsubseteq> FF" "FF \<notsqsubseteq> TT" | 
| 67312 | 41 | by (simp_all add: TT_def FF_def) | 
| 27294 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 42 | |
| 67312 | 43 | lemma dist_eq_tr [simp]: "TT \<noteq> \<bottom>" "FF \<noteq> \<bottom>" "TT \<noteq> FF" "\<bottom> \<noteq> TT" "\<bottom> \<noteq> FF" "FF \<noteq> TT" | 
| 44 | by (simp_all add: TT_def FF_def) | |
| 27294 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 45 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29138diff
changeset | 46 | lemma TT_below_iff [simp]: "TT \<sqsubseteq> x \<longleftrightarrow> x = TT" | 
| 67312 | 47 | by (induct x) simp_all | 
| 27294 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 48 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29138diff
changeset | 49 | lemma FF_below_iff [simp]: "FF \<sqsubseteq> x \<longleftrightarrow> x = FF" | 
| 67312 | 50 | by (induct x) simp_all | 
| 27294 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 51 | |
| 41182 | 52 | lemma not_below_TT_iff [simp]: "x \<notsqsubseteq> TT \<longleftrightarrow> x = FF" | 
| 67312 | 53 | by (induct x) simp_all | 
| 27294 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 54 | |
| 41182 | 55 | lemma not_below_FF_iff [simp]: "x \<notsqsubseteq> FF \<longleftrightarrow> x = TT" | 
| 67312 | 56 | by (induct x) simp_all | 
| 27294 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 57 | |
| 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 58 | |
| 62175 | 59 | subsection \<open>Case analysis\<close> | 
| 27294 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 60 | |
| 36452 | 61 | default_sort pcpo | 
| 27294 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 62 | |
| 67312 | 63 | definition tr_case :: "'a \<rightarrow> 'a \<rightarrow> tr \<rightarrow> 'a" | 
| 64 | where "tr_case = (\<Lambda> t e (Def b). if b then t else e)" | |
| 40322 
707eb30e8a53
make syntax of continuous if-then-else consistent with HOL if-then-else
 huffman parents: 
36452diff
changeset | 65 | |
| 67312 | 66 | abbreviation cifte_syn :: "[tr, 'c, 'c] \<Rightarrow> 'c"  ("(If (_)/ then (_)/ else (_))" [0, 0, 60] 60)
 | 
| 67 | where "If b then e1 else e2 \<equiv> tr_case\<cdot>e1\<cdot>e2\<cdot>b" | |
| 25131 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
18081diff
changeset | 68 | |
| 27294 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 69 | translations | 
| 67312 | 70 | "\<Lambda> (XCONST TT). t" \<rightleftharpoons> "CONST tr_case\<cdot>t\<cdot>\<bottom>" | 
| 71 | "\<Lambda> (XCONST FF). t" \<rightleftharpoons> "CONST tr_case\<cdot>\<bottom>\<cdot>t" | |
| 27294 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 72 | |
| 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 73 | lemma ifte_thms [simp]: | 
| 40322 
707eb30e8a53
make syntax of continuous if-then-else consistent with HOL if-then-else
 huffman parents: 
36452diff
changeset | 74 | "If \<bottom> then e1 else e2 = \<bottom>" | 
| 
707eb30e8a53
make syntax of continuous if-then-else consistent with HOL if-then-else
 huffman parents: 
36452diff
changeset | 75 | "If FF then e1 else e2 = e2" | 
| 
707eb30e8a53
make syntax of continuous if-then-else consistent with HOL if-then-else
 huffman parents: 
36452diff
changeset | 76 | "If TT then e1 else e2 = e1" | 
| 67312 | 77 | by (simp_all add: tr_case_def TT_def FF_def) | 
| 27294 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 78 | |
| 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 79 | |
| 62175 | 80 | subsection \<open>Boolean connectives\<close> | 
| 27294 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 81 | |
| 67312 | 82 | definition trand :: "tr \<rightarrow> tr \<rightarrow> tr" | 
| 83 | where andalso_def: "trand = (\<Lambda> x y. If x then y else FF)" | |
| 84 | ||
| 85 | abbreviation andalso_syn :: "tr \<Rightarrow> tr \<Rightarrow> tr"  ("_ andalso _" [36,35] 35)
 | |
| 86 | where "x andalso y \<equiv> trand\<cdot>x\<cdot>y" | |
| 87 | ||
| 88 | definition tror :: "tr \<rightarrow> tr \<rightarrow> tr" | |
| 89 | where orelse_def: "tror = (\<Lambda> x y. If x then TT else y)" | |
| 25131 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
18081diff
changeset | 90 | |
| 67312 | 91 | abbreviation orelse_syn :: "tr \<Rightarrow> tr \<Rightarrow> tr"  ("_ orelse _"  [31,30] 30)
 | 
| 92 | where "x orelse y \<equiv> tror\<cdot>x\<cdot>y" | |
| 25135 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 93 | |
| 67312 | 94 | definition neg :: "tr \<rightarrow> tr" | 
| 95 | where "neg = flift2 Not" | |
| 18070 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 96 | |
| 67312 | 97 | definition If2 :: "tr \<Rightarrow> 'c \<Rightarrow> 'c \<Rightarrow> 'c" | 
| 98 | where "If2 Q x y = (If Q then x else y)" | |
| 25135 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 99 | |
| 62175 | 100 | text \<open>tactic for tr-thms with case split\<close> | 
| 15649 | 101 | |
| 40324 | 102 | lemmas tr_defs = andalso_def orelse_def neg_def tr_case_def TT_def FF_def | 
| 27148 | 103 | |
| 62175 | 104 | text \<open>lemmas about andalso, orelse, neg and if\<close> | 
| 15649 | 105 | |
| 106 | lemma andalso_thms [simp]: | |
| 107 | "(TT andalso y) = y" | |
| 108 | "(FF andalso y) = FF" | |
| 18070 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 109 | "(\<bottom> andalso y) = \<bottom>" | 
| 15649 | 110 | "(y andalso TT) = y" | 
| 111 | "(y andalso y) = y" | |
| 67312 | 112 | apply (unfold andalso_def, simp_all) | 
| 113 | apply (cases y, simp_all) | |
| 114 | apply (cases y, simp_all) | |
| 115 | done | |
| 15649 | 116 | |
| 117 | lemma orelse_thms [simp]: | |
| 118 | "(TT orelse y) = TT" | |
| 119 | "(FF orelse y) = y" | |
| 18070 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 120 | "(\<bottom> orelse y) = \<bottom>" | 
| 15649 | 121 | "(y orelse FF) = y" | 
| 122 | "(y orelse y) = y" | |
| 67312 | 123 | apply (unfold orelse_def, simp_all) | 
| 124 | apply (cases y, simp_all) | |
| 125 | apply (cases y, simp_all) | |
| 126 | done | |
| 15649 | 127 | |
| 128 | lemma neg_thms [simp]: | |
| 18070 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 129 | "neg\<cdot>TT = FF" | 
| 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 130 | "neg\<cdot>FF = TT" | 
| 
b653e18f0a41
cleaned up; removed adm_tricks in favor of compactness theorems
 huffman parents: 
16756diff
changeset | 131 | "neg\<cdot>\<bottom> = \<bottom>" | 
| 67312 | 132 | by (simp_all add: neg_def TT_def FF_def) | 
| 15649 | 133 | |
| 62175 | 134 | text \<open>split-tac for If via If2 because the constant has to be a constant\<close> | 
| 25135 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 135 | |
| 67312 | 136 | lemma split_If2: "P (If2 Q x y) \<longleftrightarrow> ((Q = \<bottom> \<longrightarrow> P \<bottom>) \<and> (Q = TT \<longrightarrow> P x) \<and> (Q = FF \<longrightarrow> P y))" | 
| 137 | by (cases Q) (simp_all add: If2_def) | |
| 15649 | 138 | |
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
48659diff
changeset | 139 | (* FIXME unused!? *) | 
| 62175 | 140 | ML \<open> | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
48659diff
changeset | 141 | fun split_If_tac ctxt = | 
| 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
48659diff
changeset | 142 |   simp_tac (put_simpset HOL_basic_ss ctxt addsimps [@{thm If2_def} RS sym])
 | 
| 58956 
a816aa3ff391
proper context for compose_tac, Splitter.split_tac (relevant for unify trace options);
 wenzelm parents: 
58880diff
changeset | 143 |     THEN' (split_tac ctxt [@{thm split_If2}])
 | 
| 62175 | 144 | \<close> | 
| 15649 | 145 | |
| 146 | subsection "Rewriting of HOLCF operations to HOL functions" | |
| 147 | ||
| 67312 | 148 | lemma andalso_or: "t \<noteq> \<bottom> \<Longrightarrow> (t andalso s) = FF \<longleftrightarrow> t = FF \<or> s = FF" | 
| 149 | by (cases t) simp_all | |
| 15649 | 150 | |
| 67312 | 151 | lemma andalso_and: "t \<noteq> \<bottom> \<Longrightarrow> ((t andalso s) \<noteq> FF) \<longleftrightarrow> t \<noteq> FF \<and> s \<noteq> FF" | 
| 152 | by (cases t) simp_all | |
| 15649 | 153 | |
| 67312 | 154 | lemma Def_bool1 [simp]: "Def x \<noteq> FF \<longleftrightarrow> x" | 
| 155 | by (simp add: FF_def) | |
| 15649 | 156 | |
| 67312 | 157 | lemma Def_bool2 [simp]: "Def x = FF \<longleftrightarrow> \<not> x" | 
| 158 | by (simp add: FF_def) | |
| 15649 | 159 | |
| 67312 | 160 | lemma Def_bool3 [simp]: "Def x = TT \<longleftrightarrow> x" | 
| 161 | by (simp add: TT_def) | |
| 15649 | 162 | |
| 67312 | 163 | lemma Def_bool4 [simp]: "Def x \<noteq> TT \<longleftrightarrow> \<not> x" | 
| 164 | by (simp add: TT_def) | |
| 15649 | 165 | |
| 67312 | 166 | lemma If_and_if: "(If Def P then A else B) = (if P then A else B)" | 
| 167 | by (cases "Def P") (auto simp add: TT_def[symmetric] FF_def[symmetric]) | |
| 168 | ||
| 15649 | 169 | |
| 62175 | 170 | subsection \<open>Compactness\<close> | 
| 15649 | 171 | |
| 27294 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 172 | lemma compact_TT: "compact TT" | 
| 67312 | 173 | by (rule compact_chfin) | 
| 15649 | 174 | |
| 27294 
c11e716fafeb
added some lemmas; reorganized into sections; tuned proofs
 huffman parents: 
27148diff
changeset | 175 | lemma compact_FF: "compact FF" | 
| 67312 | 176 | by (rule compact_chfin) | 
| 2640 | 177 | |
| 178 | end |