| author | haftmann | 
| Tue, 10 Aug 2010 15:38:33 +0200 | |
| changeset 38318 | 1fade69519ab | 
| parent 35175 | 61255c81da01 | 
| child 40077 | c8a9eaaa2f59 | 
| permissions | -rw-r--r-- | 
| 19944 | 1 | (* Title: HOL/Library/Ramsey.thy | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30738diff
changeset | 2 | Author: Tom Ridge. Converted to structured Isar by L C Paulson | 
| 19944 | 3 | *) | 
| 4 | ||
| 5 | header "Ramsey's Theorem" | |
| 6 | ||
| 25594 | 7 | theory Ramsey | 
| 30738 | 8 | imports Main Infinite_Set | 
| 25594 | 9 | begin | 
| 19944 | 10 | |
| 22665 | 11 | subsection {* Preliminaries *}
 | 
| 19944 | 12 | |
| 22665 | 13 | subsubsection {* ``Axiom'' of Dependent Choice *}
 | 
| 19944 | 14 | |
| 34941 | 15 | primrec choice :: "('a => bool) => ('a * 'a) set => nat => 'a" where
 | 
| 19944 | 16 |   --{*An integer-indexed chain of choices*}
 | 
| 34941 | 17 | choice_0: "choice P r 0 = (SOME x. P x)" | 
| 18 | | choice_Suc: "choice P r (Suc n) = (SOME y. P y & (choice P r n, y) \<in> r)" | |
| 19944 | 19 | |
| 20 | lemma choice_n: | |
| 21 | assumes P0: "P x0" | |
| 22 | and Pstep: "!!x. P x ==> \<exists>y. P y & (x,y) \<in> r" | |
| 23 | shows "P (choice P r n)" | |
| 19948 | 24 | proof (induct n) | 
| 25 | case 0 show ?case by (force intro: someI P0) | |
| 26 | next | |
| 27 | case Suc thus ?case by (auto intro: someI2_ex [OF Pstep]) | |
| 28 | qed | |
| 19944 | 29 | |
| 30 | lemma dependent_choice: | |
| 31 | assumes trans: "trans r" | |
| 32 | and P0: "P x0" | |
| 33 | and Pstep: "!!x. P x ==> \<exists>y. P y & (x,y) \<in> r" | |
| 19954 | 34 | obtains f :: "nat => 'a" where | 
| 35 | "!!n. P (f n)" and "!!n m. n < m ==> (f n, f m) \<in> r" | |
| 36 | proof | |
| 37 | fix n | |
| 38 | show "P (choice P r n)" by (blast intro: choice_n [OF P0 Pstep]) | |
| 19944 | 39 | next | 
| 40 | have PSuc: "\<forall>n. (choice P r n, choice P r (Suc n)) \<in> r" | |
| 41 | using Pstep [OF choice_n [OF P0 Pstep]] | |
| 42 | by (auto intro: someI2_ex) | |
| 19954 | 43 | fix n m :: nat | 
| 44 | assume less: "n < m" | |
| 45 | show "(choice P r n, choice P r m) \<in> r" using PSuc | |
| 46 | by (auto intro: less_Suc_induct [OF less] transD [OF trans]) | |
| 47 | qed | |
| 19944 | 48 | |
| 49 | ||
| 22665 | 50 | subsubsection {* Partitions of a Set *}
 | 
| 19944 | 51 | |
| 19948 | 52 | definition | 
| 53 |   part :: "nat => nat => 'a set => ('a set => nat) => bool"
 | |
| 19944 | 54 |   --{*the function @{term f} partitions the @{term r}-subsets of the typically
 | 
| 55 |        infinite set @{term Y} into @{term s} distinct categories.*}
 | |
| 21634 | 56 | where | 
| 19948 | 57 | "part r s Y f = (\<forall>X. X \<subseteq> Y & finite X & card X = r --> f X < s)" | 
| 19944 | 58 | |
| 59 | text{*For induction, we decrease the value of @{term r} in partitions.*}
 | |
| 60 | lemma part_Suc_imp_part: | |
| 61 | "[| infinite Y; part (Suc r) s Y f; y \<in> Y |] | |
| 62 |       ==> part r s (Y - {y}) (%u. f (insert y u))"
 | |
| 63 | apply(simp add: part_def, clarify) | |
| 64 | apply(drule_tac x="insert y X" in spec) | |
| 24853 | 65 | apply(force) | 
| 19944 | 66 | done | 
| 67 | ||
| 68 | lemma part_subset: "part r s YY f ==> Y \<subseteq> YY ==> part r s Y f" | |
| 19948 | 69 | unfolding part_def by blast | 
| 19944 | 70 | |
| 71 | ||
| 22665 | 72 | subsection {* Ramsey's Theorem: Infinitary Version *}
 | 
| 19944 | 73 | |
| 19954 | 74 | lemma Ramsey_induction: | 
| 75 | fixes s and r::nat | |
| 19944 | 76 | shows | 
| 77 | "!!(YY::'a set) (f::'a set => nat). | |
| 78 | [|infinite YY; part r s YY f|] | |
| 79 | ==> \<exists>Y' t'. Y' \<subseteq> YY & infinite Y' & t' < s & | |
| 80 | (\<forall>X. X \<subseteq> Y' & finite X & card X = r --> f X = t')" | |
| 81 | proof (induct r) | |
| 82 | case 0 | |
| 24853 | 83 | thus ?case by (auto simp add: part_def card_eq_0_iff cong: conj_cong) | 
| 19944 | 84 | next | 
| 85 | case (Suc r) | |
| 86 | show ?case | |
| 87 | proof - | |
| 88 | from Suc.prems infinite_imp_nonempty obtain yy where yy: "yy \<in> YY" by blast | |
| 89 |     let ?ramr = "{((y,Y,t),(y',Y',t')). y' \<in> Y & Y' \<subseteq> Y}"
 | |
| 90 | let ?propr = "%(y,Y,t). | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30738diff
changeset | 91 | y \<in> YY & y \<notin> Y & Y \<subseteq> YY & infinite Y & t < s | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30738diff
changeset | 92 | & (\<forall>X. X\<subseteq>Y & finite X & card X = r --> (f o insert y) X = t)" | 
| 19944 | 93 |     have infYY': "infinite (YY-{yy})" using Suc.prems by auto
 | 
| 94 |     have partf': "part r s (YY - {yy}) (f \<circ> insert yy)"
 | |
| 95 | by (simp add: o_def part_Suc_imp_part yy Suc.prems) | |
| 96 | have transr: "trans ?ramr" by (force simp add: trans_def) | |
| 97 | from Suc.hyps [OF infYY' partf'] | |
| 98 | obtain Y0 and t0 | |
| 99 |     where "Y0 \<subseteq> YY - {yy}"  "infinite Y0"  "t0 < s"
 | |
| 100 | "\<forall>X. X\<subseteq>Y0 \<and> finite X \<and> card X = r \<longrightarrow> (f \<circ> insert yy) X = t0" | |
| 101 | by blast | |
| 102 | with yy have propr0: "?propr(yy,Y0,t0)" by blast | |
| 103 | have proprstep: "\<And>x. ?propr x \<Longrightarrow> \<exists>y. ?propr y \<and> (x, y) \<in> ?ramr" | |
| 104 | proof - | |
| 105 | fix x | |
| 106 | assume px: "?propr x" thus "?thesis x" | |
| 107 | proof (cases x) | |
| 108 | case (fields yx Yx tx) | |
| 109 | then obtain yx' where yx': "yx' \<in> Yx" using px | |
| 110 | by (blast dest: infinite_imp_nonempty) | |
| 111 |         have infYx': "infinite (Yx-{yx'})" using fields px by auto
 | |
| 112 | with fields px yx' Suc.prems | |
| 113 |         have partfx': "part r s (Yx - {yx'}) (f \<circ> insert yx')"
 | |
| 35175 | 114 | by (simp add: o_def part_Suc_imp_part part_subset [where YY=YY and Y=Yx]) | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30738diff
changeset | 115 | from Suc.hyps [OF infYx' partfx'] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30738diff
changeset | 116 | obtain Y' and t' | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30738diff
changeset | 117 |         where Y': "Y' \<subseteq> Yx - {yx'}"  "infinite Y'"  "t' < s"
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30738diff
changeset | 118 | "\<forall>X. X\<subseteq>Y' \<and> finite X \<and> card X = r \<longrightarrow> (f \<circ> insert yx') X = t'" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30738diff
changeset | 119 | by blast | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30738diff
changeset | 120 | show ?thesis | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30738diff
changeset | 121 | proof | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30738diff
changeset | 122 | show "?propr (yx',Y',t') & (x, (yx',Y',t')) \<in> ?ramr" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30738diff
changeset | 123 | using fields Y' yx' px by blast | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30738diff
changeset | 124 | qed | 
| 19944 | 125 | qed | 
| 126 | qed | |
| 127 | from dependent_choice [OF transr propr0 proprstep] | |
| 19946 | 128 | obtain g where pg: "!!n::nat. ?propr (g n)" | 
| 19954 | 129 | and rg: "!!n m. n<m ==> (g n, g m) \<in> ?ramr" by blast | 
| 28741 | 130 | let ?gy = "fst o g" | 
| 131 | let ?gt = "snd o snd o g" | |
| 19944 | 132 |     have rangeg: "\<exists>k. range ?gt \<subseteq> {..<k}"
 | 
| 133 | proof (intro exI subsetI) | |
| 134 | fix x | |
| 135 | assume "x \<in> range ?gt" | |
| 136 | then obtain n where "x = ?gt n" .. | |
| 137 |       with pg [of n] show "x \<in> {..<s}" by (cases "g n") auto
 | |
| 138 | qed | |
| 20810 | 139 | have "finite (range ?gt)" | 
| 140 | by (simp add: finite_nat_iff_bounded rangeg) | |
| 19944 | 141 | then obtain s' and n' | 
| 20810 | 142 | where s': "s' = ?gt n'" | 
| 143 |         and infeqs': "infinite {n. ?gt n = s'}"
 | |
| 144 | by (rule inf_img_fin_domE) (auto simp add: vimage_def intro: nat_infinite) | |
| 19944 | 145 | with pg [of n'] have less': "s'<s" by (cases "g n'") auto | 
| 146 | have inj_gy: "inj ?gy" | |
| 147 | proof (rule linorder_injI) | |
| 19949 | 148 | fix m m' :: nat assume less: "m < m'" show "?gy m \<noteq> ?gy m'" | 
| 19948 | 149 | using rg [OF less] pg [of m] by (cases "g m", cases "g m'") auto | 
| 19944 | 150 | qed | 
| 151 | show ?thesis | |
| 152 | proof (intro exI conjI) | |
| 153 |       show "?gy ` {n. ?gt n = s'} \<subseteq> YY" using pg
 | |
| 154 | by (auto simp add: Let_def split_beta) | |
| 155 |       show "infinite (?gy ` {n. ?gt n = s'})" using infeqs'
 | |
| 156 | by (blast intro: inj_gy [THEN subset_inj_on] dest: finite_imageD) | |
| 157 | show "s' < s" by (rule less') | |
| 158 |       show "\<forall>X. X \<subseteq> ?gy ` {n. ?gt n = s'} & finite X & card X = Suc r 
 | |
| 159 | --> f X = s'" | |
| 160 | proof - | |
| 161 |         {fix X 
 | |
| 162 |          assume "X \<subseteq> ?gy ` {n. ?gt n = s'}"
 | |
| 163 | and cardX: "finite X" "card X = Suc r" | |
| 164 |          then obtain AA where AA: "AA \<subseteq> {n. ?gt n = s'}" and Xeq: "X = ?gy`AA" 
 | |
| 165 | by (auto simp add: subset_image_iff) | |
| 166 |          with cardX have "AA\<noteq>{}" by auto
 | |
| 167 | hence AAleast: "(LEAST x. x \<in> AA) \<in> AA" by (auto intro: LeastI_ex) | |
| 168 | have "f X = s'" | |
| 169 | proof (cases "g (LEAST x. x \<in> AA)") | |
| 170 | case (fields ya Ya ta) | |
| 171 | with AAleast Xeq | |
| 172 | have ya: "ya \<in> X" by (force intro!: rev_image_eqI) | |
| 173 |            hence "f X = f (insert ya (X - {ya}))" by (simp add: insert_absorb)
 | |
| 174 | also have "... = ta" | |
| 175 | proof - | |
| 176 |              have "X - {ya} \<subseteq> Ya"
 | |
| 177 | proof | |
| 19954 | 178 |                fix x assume x: "x \<in> X - {ya}"
 | 
| 19944 | 179 | then obtain a' where xeq: "x = ?gy a'" and a': "a' \<in> AA" | 
| 180 | by (auto simp add: Xeq) | |
| 181 | hence "a' \<noteq> (LEAST x. x \<in> AA)" using x fields by auto | |
| 182 | hence lessa': "(LEAST x. x \<in> AA) < a'" | |
| 183 | using Least_le [of "%x. x \<in> AA", OF a'] by arith | |
| 184 | show "x \<in> Ya" using xeq fields rg [OF lessa'] by auto | |
| 185 | qed | |
| 186 | moreover | |
| 187 |              have "card (X - {ya}) = r"
 | |
| 24853 | 188 | by (simp add: cardX ya) | 
| 19944 | 189 | ultimately show ?thesis | 
| 190 | using pg [of "LEAST x. x \<in> AA"] fields cardX | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30738diff
changeset | 191 | by (clarsimp simp del:insert_Diff_single) | 
| 19944 | 192 | qed | 
| 193 | also have "... = s'" using AA AAleast fields by auto | |
| 194 | finally show ?thesis . | |
| 195 | qed} | |
| 196 | thus ?thesis by blast | |
| 197 | qed | |
| 198 | qed | |
| 199 | qed | |
| 200 | qed | |
| 201 | ||
| 202 | ||
| 203 | theorem Ramsey: | |
| 19949 | 204 | fixes s r :: nat and Z::"'a set" and f::"'a set => nat" | 
| 19944 | 205 | shows | 
| 206 | "[|infinite Z; | |
| 207 | \<forall>X. X \<subseteq> Z & finite X & card X = r --> f X < s|] | |
| 208 | ==> \<exists>Y t. Y \<subseteq> Z & infinite Y & t < s | |
| 209 | & (\<forall>X. X \<subseteq> Y & finite X & card X = r --> f X = t)" | |
| 19954 | 210 | by (blast intro: Ramsey_induction [unfolded part_def]) | 
| 211 | ||
| 212 | ||
| 213 | corollary Ramsey2: | |
| 214 | fixes s::nat and Z::"'a set" and f::"'a set => nat" | |
| 215 | assumes infZ: "infinite Z" | |
| 216 |       and part: "\<forall>x\<in>Z. \<forall>y\<in>Z. x\<noteq>y --> f{x,y} < s"
 | |
| 217 | shows | |
| 218 |    "\<exists>Y t. Y \<subseteq> Z & infinite Y & t < s & (\<forall>x\<in>Y. \<forall>y\<in>Y. x\<noteq>y --> f{x,y} = t)"
 | |
| 219 | proof - | |
| 220 | have part2: "\<forall>X. X \<subseteq> Z & finite X & card X = 2 --> f X < s" | |
| 24853 | 221 | using part by (fastsimp simp add: nat_number card_Suc_eq) | 
| 19954 | 222 | obtain Y t | 
| 223 | where "Y \<subseteq> Z" "infinite Y" "t < s" | |
| 224 | "(\<forall>X. X \<subseteq> Y & finite X & card X = 2 --> f X = t)" | |
| 225 | by (insert Ramsey [OF infZ part2]) auto | |
| 226 |   moreover from this have  "\<forall>x\<in>Y. \<forall>y\<in>Y. x \<noteq> y \<longrightarrow> f {x, y} = t" by auto
 | |
| 227 | ultimately show ?thesis by iprover | |
| 228 | qed | |
| 229 | ||
| 230 | ||
| 22665 | 231 | subsection {* Disjunctive Well-Foundedness *}
 | 
| 19954 | 232 | |
| 22367 | 233 | text {*
 | 
| 234 | An application of Ramsey's theorem to program termination. See | |
| 235 |   \cite{Podelski-Rybalchenko}.
 | |
| 19954 | 236 | *} | 
| 237 | ||
| 20810 | 238 | definition | 
| 19954 | 239 |   disj_wf         :: "('a * 'a)set => bool"
 | 
| 21634 | 240 | where | 
| 20810 | 241 | "disj_wf r = (\<exists>T. \<exists>n::nat. (\<forall>i<n. wf(T i)) & r = (\<Union>i<n. T i))" | 
| 19954 | 242 | |
| 21634 | 243 | definition | 
| 19954 | 244 |   transition_idx :: "[nat => 'a, nat => ('a*'a)set, nat set] => nat"
 | 
| 21634 | 245 | where | 
| 20810 | 246 | "transition_idx s T A = | 
| 247 |     (LEAST k. \<exists>i j. A = {i,j} & i<j & (s j, s i) \<in> T k)"
 | |
| 19954 | 248 | |
| 249 | ||
| 250 | lemma transition_idx_less: | |
| 251 |     "[|i<j; (s j, s i) \<in> T k; k<n|] ==> transition_idx s T {i,j} < n"
 | |
| 252 | apply (subgoal_tac "transition_idx s T {i, j} \<le> k", simp) 
 | |
| 253 | apply (simp add: transition_idx_def, blast intro: Least_le) | |
| 254 | done | |
| 255 | ||
| 256 | lemma transition_idx_in: | |
| 257 |     "[|i<j; (s j, s i) \<in> T k|] ==> (s j, s i) \<in> T (transition_idx s T {i,j})"
 | |
| 258 | apply (simp add: transition_idx_def doubleton_eq_iff conj_disj_distribR | |
| 259 | cong: conj_cong) | |
| 260 | apply (erule LeastI) | |
| 261 | done | |
| 262 | ||
| 263 | text{*To be equal to the union of some well-founded relations is equivalent
 | |
| 264 | to being the subset of such a union.*} | |
| 265 | lemma disj_wf: | |
| 266 | "disj_wf(r) = (\<exists>T. \<exists>n::nat. (\<forall>i<n. wf(T i)) & r \<subseteq> (\<Union>i<n. T i))" | |
| 267 | apply (auto simp add: disj_wf_def) | |
| 268 | apply (rule_tac x="%i. T i Int r" in exI) | |
| 269 | apply (rule_tac x=n in exI) | |
| 270 | apply (force simp add: wf_Int1) | |
| 271 | done | |
| 272 | ||
| 273 | theorem trans_disj_wf_implies_wf: | |
| 274 | assumes transr: "trans r" | |
| 275 | and dwf: "disj_wf(r)" | |
| 276 | shows "wf r" | |
| 277 | proof (simp only: wf_iff_no_infinite_down_chain, rule notI) | |
| 278 | assume "\<exists>s. \<forall>i. (s (Suc i), s i) \<in> r" | |
| 279 | then obtain s where sSuc: "\<forall>i. (s (Suc i), s i) \<in> r" .. | |
| 280 | have s: "!!i j. i < j ==> (s j, s i) \<in> r" | |
| 281 | proof - | |
| 282 | fix i and j::nat | |
| 283 | assume less: "i<j" | |
| 284 | thus "(s j, s i) \<in> r" | |
| 285 | proof (rule less_Suc_induct) | |
| 286 | show "\<And>i. (s (Suc i), s i) \<in> r" by (simp add: sSuc) | |
| 287 | show "\<And>i j k. \<lbrakk>(s j, s i) \<in> r; (s k, s j) \<in> r\<rbrakk> \<Longrightarrow> (s k, s i) \<in> r" | |
| 288 | using transr by (unfold trans_def, blast) | |
| 289 | qed | |
| 290 | qed | |
| 291 | from dwf | |
| 292 | obtain T and n::nat where wfT: "\<forall>k<n. wf(T k)" and r: "r = (\<Union>k<n. T k)" | |
| 293 | by (auto simp add: disj_wf_def) | |
| 294 | have s_in_T: "\<And>i j. i<j ==> \<exists>k. (s j, s i) \<in> T k & k<n" | |
| 295 | proof - | |
| 296 | fix i and j::nat | |
| 297 | assume less: "i<j" | |
| 298 | hence "(s j, s i) \<in> r" by (rule s [of i j]) | |
| 299 | thus "\<exists>k. (s j, s i) \<in> T k & k<n" by (auto simp add: r) | |
| 300 | qed | |
| 301 |   have trless: "!!i j. i\<noteq>j ==> transition_idx s T {i,j} < n"
 | |
| 302 | apply (auto simp add: linorder_neq_iff) | |
| 303 | apply (blast dest: s_in_T transition_idx_less) | |
| 304 | apply (subst insert_commute) | |
| 305 | apply (blast dest: s_in_T transition_idx_less) | |
| 306 | done | |
| 307 | have | |
| 308 | "\<exists>K k. K \<subseteq> UNIV & infinite K & k < n & | |
| 309 |           (\<forall>i\<in>K. \<forall>j\<in>K. i\<noteq>j --> transition_idx s T {i,j} = k)"
 | |
| 310 | by (rule Ramsey2) (auto intro: trless nat_infinite) | |
| 311 | then obtain K and k | |
| 312 | where infK: "infinite K" and less: "k < n" and | |
| 313 |           allk: "\<forall>i\<in>K. \<forall>j\<in>K. i\<noteq>j --> transition_idx s T {i,j} = k"
 | |
| 314 | by auto | |
| 315 | have "\<forall>m. (s (enumerate K (Suc m)), s(enumerate K m)) \<in> T k" | |
| 316 | proof | |
| 317 | fix m::nat | |
| 318 | let ?j = "enumerate K (Suc m)" | |
| 319 | let ?i = "enumerate K m" | |
| 320 | have jK: "?j \<in> K" by (simp add: enumerate_in_set infK) | |
| 321 | have iK: "?i \<in> K" by (simp add: enumerate_in_set infK) | |
| 322 | have ij: "?i < ?j" by (simp add: enumerate_step infK) | |
| 323 |     have ijk: "transition_idx s T {?i,?j} = k" using iK jK ij 
 | |
| 324 | by (simp add: allk) | |
| 325 | obtain k' where "(s ?j, s ?i) \<in> T k'" "k'<n" | |
| 326 | using s_in_T [OF ij] by blast | |
| 327 | thus "(s ?j, s ?i) \<in> T k" | |
| 328 | by (simp add: ijk [symmetric] transition_idx_in ij) | |
| 329 | qed | |
| 330 | hence "~ wf(T k)" by (force simp add: wf_iff_no_infinite_down_chain) | |
| 331 | thus False using wfT less by blast | |
| 332 | qed | |
| 333 | ||
| 19944 | 334 | end |