| author | haftmann | 
| Tue, 10 Aug 2010 15:38:33 +0200 | |
| changeset 38318 | 1fade69519ab | 
| parent 37765 | 26bdfb7b680b | 
| child 41413 | 64cd30d6b0b8 | 
| permissions | -rw-r--r-- | 
| 27468 | 1 | (* Title: NSComplex.thy | 
| 2 | Author: Jacques D. Fleuriot | |
| 3 | Copyright: 2001 University of Edinburgh | |
| 4 | Conversion to Isar and new proofs by Lawrence C Paulson, 2003/4 | |
| 5 | *) | |
| 6 | ||
| 7 | header{*Nonstandard Complex Numbers*}
 | |
| 8 | ||
| 9 | theory NSComplex | |
| 10 | imports Complex "../Hyperreal/NSA" | |
| 11 | begin | |
| 12 | ||
| 13 | types hcomplex = "complex star" | |
| 14 | ||
| 15 | abbreviation | |
| 16 | hcomplex_of_complex :: "complex => complex star" where | |
| 17 | "hcomplex_of_complex == star_of" | |
| 18 | ||
| 19 | abbreviation | |
| 20 | hcmod :: "complex star => real star" where | |
| 21 | "hcmod == hnorm" | |
| 22 | ||
| 23 | ||
| 24 | (*--- real and Imaginary parts ---*) | |
| 25 | ||
| 26 | definition | |
| 27 | hRe :: "hcomplex => hypreal" where | |
| 37765 | 28 | "hRe = *f* Re" | 
| 27468 | 29 | |
| 30 | definition | |
| 31 | hIm :: "hcomplex => hypreal" where | |
| 37765 | 32 | "hIm = *f* Im" | 
| 27468 | 33 | |
| 34 | ||
| 35 | (*------ imaginary unit ----------*) | |
| 36 | ||
| 37 | definition | |
| 38 | iii :: hcomplex where | |
| 39 | "iii = star_of ii" | |
| 40 | ||
| 41 | (*------- complex conjugate ------*) | |
| 42 | ||
| 43 | definition | |
| 44 | hcnj :: "hcomplex => hcomplex" where | |
| 37765 | 45 | "hcnj = *f* cnj" | 
| 27468 | 46 | |
| 47 | (*------------ Argand -------------*) | |
| 48 | ||
| 49 | definition | |
| 50 | hsgn :: "hcomplex => hcomplex" where | |
| 37765 | 51 | "hsgn = *f* sgn" | 
| 27468 | 52 | |
| 53 | definition | |
| 54 | harg :: "hcomplex => hypreal" where | |
| 37765 | 55 | "harg = *f* arg" | 
| 27468 | 56 | |
| 57 | definition | |
| 58 | (* abbreviation for (cos a + i sin a) *) | |
| 59 | hcis :: "hypreal => hcomplex" where | |
| 37765 | 60 | "hcis = *f* cis" | 
| 27468 | 61 | |
| 62 | (*----- injection from hyperreals -----*) | |
| 63 | ||
| 64 | abbreviation | |
| 65 | hcomplex_of_hypreal :: "hypreal \<Rightarrow> hcomplex" where | |
| 66 | "hcomplex_of_hypreal \<equiv> of_hypreal" | |
| 67 | ||
| 68 | definition | |
| 69 | (* abbreviation for r*(cos a + i sin a) *) | |
| 70 | hrcis :: "[hypreal, hypreal] => hcomplex" where | |
| 37765 | 71 | "hrcis = *f2* rcis" | 
| 27468 | 72 | |
| 73 | (*------------ e ^ (x + iy) ------------*) | |
| 74 | definition | |
| 75 | hexpi :: "hcomplex => hcomplex" where | |
| 37765 | 76 | "hexpi = *f* expi" | 
| 27468 | 77 | |
| 78 | definition | |
| 79 | HComplex :: "[hypreal,hypreal] => hcomplex" where | |
| 37765 | 80 | "HComplex = *f2* Complex" | 
| 27468 | 81 | |
| 82 | lemmas hcomplex_defs [transfer_unfold] = | |
| 83 | hRe_def hIm_def iii_def hcnj_def hsgn_def harg_def hcis_def | |
| 84 | hrcis_def hexpi_def HComplex_def | |
| 85 | ||
| 86 | lemma Standard_hRe [simp]: "x \<in> Standard \<Longrightarrow> hRe x \<in> Standard" | |
| 87 | by (simp add: hcomplex_defs) | |
| 88 | ||
| 89 | lemma Standard_hIm [simp]: "x \<in> Standard \<Longrightarrow> hIm x \<in> Standard" | |
| 90 | by (simp add: hcomplex_defs) | |
| 91 | ||
| 92 | lemma Standard_iii [simp]: "iii \<in> Standard" | |
| 93 | by (simp add: hcomplex_defs) | |
| 94 | ||
| 95 | lemma Standard_hcnj [simp]: "x \<in> Standard \<Longrightarrow> hcnj x \<in> Standard" | |
| 96 | by (simp add: hcomplex_defs) | |
| 97 | ||
| 98 | lemma Standard_hsgn [simp]: "x \<in> Standard \<Longrightarrow> hsgn x \<in> Standard" | |
| 99 | by (simp add: hcomplex_defs) | |
| 100 | ||
| 101 | lemma Standard_harg [simp]: "x \<in> Standard \<Longrightarrow> harg x \<in> Standard" | |
| 102 | by (simp add: hcomplex_defs) | |
| 103 | ||
| 104 | lemma Standard_hcis [simp]: "r \<in> Standard \<Longrightarrow> hcis r \<in> Standard" | |
| 105 | by (simp add: hcomplex_defs) | |
| 106 | ||
| 107 | lemma Standard_hexpi [simp]: "x \<in> Standard \<Longrightarrow> hexpi x \<in> Standard" | |
| 108 | by (simp add: hcomplex_defs) | |
| 109 | ||
| 110 | lemma Standard_hrcis [simp]: | |
| 111 | "\<lbrakk>r \<in> Standard; s \<in> Standard\<rbrakk> \<Longrightarrow> hrcis r s \<in> Standard" | |
| 112 | by (simp add: hcomplex_defs) | |
| 113 | ||
| 114 | lemma Standard_HComplex [simp]: | |
| 115 | "\<lbrakk>r \<in> Standard; s \<in> Standard\<rbrakk> \<Longrightarrow> HComplex r s \<in> Standard" | |
| 116 | by (simp add: hcomplex_defs) | |
| 117 | ||
| 118 | lemma hcmod_def: "hcmod = *f* cmod" | |
| 119 | by (rule hnorm_def) | |
| 120 | ||
| 121 | ||
| 122 | subsection{*Properties of Nonstandard Real and Imaginary Parts*}
 | |
| 123 | ||
| 124 | lemma hcomplex_hRe_hIm_cancel_iff: | |
| 125 | "!!w z. (w=z) = (hRe(w) = hRe(z) & hIm(w) = hIm(z))" | |
| 126 | by transfer (rule complex_Re_Im_cancel_iff) | |
| 127 | ||
| 128 | lemma hcomplex_equality [intro?]: | |
| 129 | "!!z w. hRe z = hRe w ==> hIm z = hIm w ==> z = w" | |
| 130 | by transfer (rule complex_equality) | |
| 131 | ||
| 132 | lemma hcomplex_hRe_zero [simp]: "hRe 0 = 0" | |
| 133 | by transfer (rule complex_Re_zero) | |
| 134 | ||
| 135 | lemma hcomplex_hIm_zero [simp]: "hIm 0 = 0" | |
| 136 | by transfer (rule complex_Im_zero) | |
| 137 | ||
| 138 | lemma hcomplex_hRe_one [simp]: "hRe 1 = 1" | |
| 139 | by transfer (rule complex_Re_one) | |
| 140 | ||
| 141 | lemma hcomplex_hIm_one [simp]: "hIm 1 = 0" | |
| 142 | by transfer (rule complex_Im_one) | |
| 143 | ||
| 144 | ||
| 145 | subsection{*Addition for Nonstandard Complex Numbers*}
 | |
| 146 | ||
| 147 | lemma hRe_add: "!!x y. hRe(x + y) = hRe(x) + hRe(y)" | |
| 148 | by transfer (rule complex_Re_add) | |
| 149 | ||
| 150 | lemma hIm_add: "!!x y. hIm(x + y) = hIm(x) + hIm(y)" | |
| 151 | by transfer (rule complex_Im_add) | |
| 152 | ||
| 153 | subsection{*More Minus Laws*}
 | |
| 154 | ||
| 155 | lemma hRe_minus: "!!z. hRe(-z) = - hRe(z)" | |
| 156 | by transfer (rule complex_Re_minus) | |
| 157 | ||
| 158 | lemma hIm_minus: "!!z. hIm(-z) = - hIm(z)" | |
| 159 | by transfer (rule complex_Im_minus) | |
| 160 | ||
| 161 | lemma hcomplex_add_minus_eq_minus: | |
| 162 | "x + y = (0::hcomplex) ==> x = -y" | |
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
34146diff
changeset | 163 | apply (drule minus_unique) | 
| 27468 | 164 | apply (simp add: minus_equation_iff [of x y]) | 
| 165 | done | |
| 166 | ||
| 167 | lemma hcomplex_i_mult_eq [simp]: "iii * iii = - 1" | |
| 168 | by transfer (rule i_mult_eq2) | |
| 169 | ||
| 170 | lemma hcomplex_i_mult_left [simp]: "!!z. iii * (iii * z) = -z" | |
| 171 | by transfer (rule complex_i_mult_minus) | |
| 172 | ||
| 173 | lemma hcomplex_i_not_zero [simp]: "iii \<noteq> 0" | |
| 174 | by transfer (rule complex_i_not_zero) | |
| 175 | ||
| 176 | ||
| 177 | subsection{*More Multiplication Laws*}
 | |
| 178 | ||
| 179 | lemma hcomplex_mult_minus_one: "- 1 * (z::hcomplex) = -z" | |
| 180 | by simp | |
| 181 | ||
| 182 | lemma hcomplex_mult_minus_one_right: "(z::hcomplex) * - 1 = -z" | |
| 183 | by simp | |
| 184 | ||
| 185 | lemma hcomplex_mult_left_cancel: | |
| 186 | "(c::hcomplex) \<noteq> (0::hcomplex) ==> (c*a=c*b) = (a=b)" | |
| 187 | by simp | |
| 188 | ||
| 189 | lemma hcomplex_mult_right_cancel: | |
| 190 | "(c::hcomplex) \<noteq> (0::hcomplex) ==> (a*c=b*c) = (a=b)" | |
| 191 | by simp | |
| 192 | ||
| 193 | ||
| 194 | subsection{*Subraction and Division*}
 | |
| 195 | ||
| 196 | lemma hcomplex_diff_eq_eq [simp]: "((x::hcomplex) - y = z) = (x = z + y)" | |
| 197 | (* TODO: delete *) | |
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
34146diff
changeset | 198 | by (rule diff_eq_eq) | 
| 27468 | 199 | |
| 200 | ||
| 201 | subsection{*Embedding Properties for @{term hcomplex_of_hypreal} Map*}
 | |
| 202 | ||
| 203 | lemma hRe_hcomplex_of_hypreal [simp]: "!!z. hRe(hcomplex_of_hypreal z) = z" | |
| 204 | by transfer (rule Re_complex_of_real) | |
| 205 | ||
| 206 | lemma hIm_hcomplex_of_hypreal [simp]: "!!z. hIm(hcomplex_of_hypreal z) = 0" | |
| 207 | by transfer (rule Im_complex_of_real) | |
| 208 | ||
| 209 | lemma hcomplex_of_hypreal_epsilon_not_zero [simp]: | |
| 210 | "hcomplex_of_hypreal epsilon \<noteq> 0" | |
| 211 | by (simp add: hypreal_epsilon_not_zero) | |
| 212 | ||
| 213 | subsection{*HComplex theorems*}
 | |
| 214 | ||
| 215 | lemma hRe_HComplex [simp]: "!!x y. hRe (HComplex x y) = x" | |
| 216 | by transfer (rule Re) | |
| 217 | ||
| 218 | lemma hIm_HComplex [simp]: "!!x y. hIm (HComplex x y) = y" | |
| 219 | by transfer (rule Im) | |
| 220 | ||
| 221 | lemma hcomplex_surj [simp]: "!!z. HComplex (hRe z) (hIm z) = z" | |
| 222 | by transfer (rule complex_surj) | |
| 223 | ||
| 224 | lemma hcomplex_induct [case_names rect(*, induct type: hcomplex*)]: | |
| 225 | "(\<And>x y. P (HComplex x y)) ==> P z" | |
| 226 | by (rule hcomplex_surj [THEN subst], blast) | |
| 227 | ||
| 228 | ||
| 229 | subsection{*Modulus (Absolute Value) of Nonstandard Complex Number*}
 | |
| 230 | ||
| 231 | lemma hcomplex_of_hypreal_abs: | |
| 232 | "hcomplex_of_hypreal (abs x) = | |
| 233 | hcomplex_of_hypreal(hcmod(hcomplex_of_hypreal x))" | |
| 234 | by simp | |
| 235 | ||
| 236 | lemma HComplex_inject [simp]: | |
| 237 | "!!x y x' y'. HComplex x y = HComplex x' y' = (x=x' & y=y')" | |
| 238 | by transfer (rule complex.inject) | |
| 239 | ||
| 240 | lemma HComplex_add [simp]: | |
| 241 | "!!x1 y1 x2 y2. HComplex x1 y1 + HComplex x2 y2 = HComplex (x1+x2) (y1+y2)" | |
| 242 | by transfer (rule complex_add) | |
| 243 | ||
| 244 | lemma HComplex_minus [simp]: "!!x y. - HComplex x y = HComplex (-x) (-y)" | |
| 245 | by transfer (rule complex_minus) | |
| 246 | ||
| 247 | lemma HComplex_diff [simp]: | |
| 248 | "!!x1 y1 x2 y2. HComplex x1 y1 - HComplex x2 y2 = HComplex (x1-x2) (y1-y2)" | |
| 249 | by transfer (rule complex_diff) | |
| 250 | ||
| 251 | lemma HComplex_mult [simp]: | |
| 252 | "!!x1 y1 x2 y2. HComplex x1 y1 * HComplex x2 y2 = | |
| 253 | HComplex (x1*x2 - y1*y2) (x1*y2 + y1*x2)" | |
| 254 | by transfer (rule complex_mult) | |
| 255 | ||
| 256 | (*HComplex_inverse is proved below*) | |
| 257 | ||
| 258 | lemma hcomplex_of_hypreal_eq: "!!r. hcomplex_of_hypreal r = HComplex r 0" | |
| 259 | by transfer (rule complex_of_real_def) | |
| 260 | ||
| 261 | lemma HComplex_add_hcomplex_of_hypreal [simp]: | |
| 262 | "!!x y r. HComplex x y + hcomplex_of_hypreal r = HComplex (x+r) y" | |
| 263 | by transfer (rule Complex_add_complex_of_real) | |
| 264 | ||
| 265 | lemma hcomplex_of_hypreal_add_HComplex [simp]: | |
| 266 | "!!r x y. hcomplex_of_hypreal r + HComplex x y = HComplex (r+x) y" | |
| 267 | by transfer (rule complex_of_real_add_Complex) | |
| 268 | ||
| 269 | lemma HComplex_mult_hcomplex_of_hypreal: | |
| 270 | "!!x y r. HComplex x y * hcomplex_of_hypreal r = HComplex (x*r) (y*r)" | |
| 271 | by transfer (rule Complex_mult_complex_of_real) | |
| 272 | ||
| 273 | lemma hcomplex_of_hypreal_mult_HComplex: | |
| 274 | "!!r x y. hcomplex_of_hypreal r * HComplex x y = HComplex (r*x) (r*y)" | |
| 275 | by transfer (rule complex_of_real_mult_Complex) | |
| 276 | ||
| 277 | lemma i_hcomplex_of_hypreal [simp]: | |
| 278 | "!!r. iii * hcomplex_of_hypreal r = HComplex 0 r" | |
| 279 | by transfer (rule i_complex_of_real) | |
| 280 | ||
| 281 | lemma hcomplex_of_hypreal_i [simp]: | |
| 282 | "!!r. hcomplex_of_hypreal r * iii = HComplex 0 r" | |
| 283 | by transfer (rule complex_of_real_i) | |
| 284 | ||
| 285 | ||
| 286 | subsection{*Conjugation*}
 | |
| 287 | ||
| 288 | lemma hcomplex_hcnj_cancel_iff [iff]: "!!x y. (hcnj x = hcnj y) = (x = y)" | |
| 289 | by transfer (rule complex_cnj_cancel_iff) | |
| 290 | ||
| 291 | lemma hcomplex_hcnj_hcnj [simp]: "!!z. hcnj (hcnj z) = z" | |
| 292 | by transfer (rule complex_cnj_cnj) | |
| 293 | ||
| 294 | lemma hcomplex_hcnj_hcomplex_of_hypreal [simp]: | |
| 295 | "!!x. hcnj (hcomplex_of_hypreal x) = hcomplex_of_hypreal x" | |
| 296 | by transfer (rule complex_cnj_complex_of_real) | |
| 297 | ||
| 298 | lemma hcomplex_hmod_hcnj [simp]: "!!z. hcmod (hcnj z) = hcmod z" | |
| 299 | by transfer (rule complex_mod_cnj) | |
| 300 | ||
| 301 | lemma hcomplex_hcnj_minus: "!!z. hcnj (-z) = - hcnj z" | |
| 302 | by transfer (rule complex_cnj_minus) | |
| 303 | ||
| 304 | lemma hcomplex_hcnj_inverse: "!!z. hcnj(inverse z) = inverse(hcnj z)" | |
| 305 | by transfer (rule complex_cnj_inverse) | |
| 306 | ||
| 307 | lemma hcomplex_hcnj_add: "!!w z. hcnj(w + z) = hcnj(w) + hcnj(z)" | |
| 308 | by transfer (rule complex_cnj_add) | |
| 309 | ||
| 310 | lemma hcomplex_hcnj_diff: "!!w z. hcnj(w - z) = hcnj(w) - hcnj(z)" | |
| 311 | by transfer (rule complex_cnj_diff) | |
| 312 | ||
| 313 | lemma hcomplex_hcnj_mult: "!!w z. hcnj(w * z) = hcnj(w) * hcnj(z)" | |
| 314 | by transfer (rule complex_cnj_mult) | |
| 315 | ||
| 316 | lemma hcomplex_hcnj_divide: "!!w z. hcnj(w / z) = (hcnj w)/(hcnj z)" | |
| 317 | by transfer (rule complex_cnj_divide) | |
| 318 | ||
| 319 | lemma hcnj_one [simp]: "hcnj 1 = 1" | |
| 320 | by transfer (rule complex_cnj_one) | |
| 321 | ||
| 322 | lemma hcomplex_hcnj_zero [simp]: "hcnj 0 = 0" | |
| 323 | by transfer (rule complex_cnj_zero) | |
| 324 | ||
| 325 | lemma hcomplex_hcnj_zero_iff [iff]: "!!z. (hcnj z = 0) = (z = 0)" | |
| 326 | by transfer (rule complex_cnj_zero_iff) | |
| 327 | ||
| 328 | lemma hcomplex_mult_hcnj: | |
| 329 | "!!z. z * hcnj z = hcomplex_of_hypreal (hRe(z) ^ 2 + hIm(z) ^ 2)" | |
| 330 | by transfer (rule complex_mult_cnj) | |
| 331 | ||
| 332 | ||
| 333 | subsection{*More Theorems about the Function @{term hcmod}*}
 | |
| 334 | ||
| 335 | lemma hcmod_hcomplex_of_hypreal_of_nat [simp]: | |
| 336 | "hcmod (hcomplex_of_hypreal(hypreal_of_nat n)) = hypreal_of_nat n" | |
| 337 | by simp | |
| 338 | ||
| 339 | lemma hcmod_hcomplex_of_hypreal_of_hypnat [simp]: | |
| 340 | "hcmod (hcomplex_of_hypreal(hypreal_of_hypnat n)) = hypreal_of_hypnat n" | |
| 341 | by simp | |
| 342 | ||
| 343 | lemma hcmod_mult_hcnj: "!!z. hcmod(z * hcnj(z)) = hcmod(z) ^ 2" | |
| 344 | by transfer (rule complex_mod_mult_cnj) | |
| 345 | ||
| 346 | lemma hcmod_triangle_ineq2 [simp]: | |
| 347 | "!!a b. hcmod(b + a) - hcmod b \<le> hcmod a" | |
| 348 | by transfer (rule complex_mod_triangle_ineq2) | |
| 349 | ||
| 350 | lemma hcmod_diff_ineq [simp]: "!!a b. hcmod(a) - hcmod(b) \<le> hcmod(a + b)" | |
| 351 | by transfer (rule norm_diff_ineq) | |
| 352 | ||
| 353 | ||
| 354 | subsection{*Exponentiation*}
 | |
| 355 | ||
| 356 | lemma hcomplexpow_0 [simp]: "z ^ 0 = (1::hcomplex)" | |
| 357 | by (rule power_0) | |
| 358 | ||
| 359 | lemma hcomplexpow_Suc [simp]: "z ^ (Suc n) = (z::hcomplex) * (z ^ n)" | |
| 360 | by (rule power_Suc) | |
| 361 | ||
| 362 | lemma hcomplexpow_i_squared [simp]: "iii ^ 2 = -1" | |
| 363 | by transfer (rule power2_i) | |
| 364 | ||
| 365 | lemma hcomplex_of_hypreal_pow: | |
| 366 | "!!x. hcomplex_of_hypreal (x ^ n) = (hcomplex_of_hypreal x) ^ n" | |
| 367 | by transfer (rule of_real_power) | |
| 368 | ||
| 369 | lemma hcomplex_hcnj_pow: "!!z. hcnj(z ^ n) = hcnj(z) ^ n" | |
| 370 | by transfer (rule complex_cnj_power) | |
| 371 | ||
| 372 | lemma hcmod_hcomplexpow: "!!x. hcmod(x ^ n) = hcmod(x) ^ n" | |
| 373 | by transfer (rule norm_power) | |
| 374 | ||
| 375 | lemma hcpow_minus: | |
| 376 | "!!x n. (-x::hcomplex) pow n = | |
| 377 | (if ( *p* even) n then (x pow n) else -(x pow n))" | |
| 378 | by transfer (rule neg_power_if) | |
| 379 | ||
| 380 | lemma hcpow_mult: | |
| 381 | "!!r s n. ((r::hcomplex) * s) pow n = (r pow n) * (s pow n)" | |
| 382 | by transfer (rule power_mult_distrib) | |
| 383 | ||
| 384 | lemma hcpow_zero2 [simp]: | |
| 31019 | 385 |   "\<And>n. 0 pow (hSuc n) = (0::'a::{power,semiring_0} star)"
 | 
| 27468 | 386 | by transfer (rule power_0_Suc) | 
| 387 | ||
| 388 | lemma hcpow_not_zero [simp,intro]: | |
| 389 | "!!r n. r \<noteq> 0 ==> r pow n \<noteq> (0::hcomplex)" | |
| 390 | by (rule hyperpow_not_zero) | |
| 391 | ||
| 392 | lemma hcpow_zero_zero: "r pow n = (0::hcomplex) ==> r = 0" | |
| 393 | by (blast intro: ccontr dest: hcpow_not_zero) | |
| 394 | ||
| 395 | subsection{*The Function @{term hsgn}*}
 | |
| 396 | ||
| 397 | lemma hsgn_zero [simp]: "hsgn 0 = 0" | |
| 398 | by transfer (rule sgn_zero) | |
| 399 | ||
| 400 | lemma hsgn_one [simp]: "hsgn 1 = 1" | |
| 401 | by transfer (rule sgn_one) | |
| 402 | ||
| 403 | lemma hsgn_minus: "!!z. hsgn (-z) = - hsgn(z)" | |
| 404 | by transfer (rule sgn_minus) | |
| 405 | ||
| 406 | lemma hsgn_eq: "!!z. hsgn z = z / hcomplex_of_hypreal (hcmod z)" | |
| 407 | by transfer (rule sgn_eq) | |
| 408 | ||
| 409 | lemma hcmod_i: "!!x y. hcmod (HComplex x y) = ( *f* sqrt) (x ^ 2 + y ^ 2)" | |
| 410 | by transfer (rule complex_norm) | |
| 411 | ||
| 412 | lemma hcomplex_eq_cancel_iff1 [simp]: | |
| 413 | "(hcomplex_of_hypreal xa = HComplex x y) = (xa = x & y = 0)" | |
| 414 | by (simp add: hcomplex_of_hypreal_eq) | |
| 415 | ||
| 416 | lemma hcomplex_eq_cancel_iff2 [simp]: | |
| 417 | "(HComplex x y = hcomplex_of_hypreal xa) = (x = xa & y = 0)" | |
| 418 | by (simp add: hcomplex_of_hypreal_eq) | |
| 419 | ||
| 420 | lemma HComplex_eq_0 [simp]: "!!x y. (HComplex x y = 0) = (x = 0 & y = 0)" | |
| 421 | by transfer (rule Complex_eq_0) | |
| 422 | ||
| 423 | lemma HComplex_eq_1 [simp]: "!!x y. (HComplex x y = 1) = (x = 1 & y = 0)" | |
| 424 | by transfer (rule Complex_eq_1) | |
| 425 | ||
| 426 | lemma i_eq_HComplex_0_1: "iii = HComplex 0 1" | |
| 427 | by transfer (rule i_def [THEN meta_eq_to_obj_eq]) | |
| 428 | ||
| 429 | lemma HComplex_eq_i [simp]: "!!x y. (HComplex x y = iii) = (x = 0 & y = 1)" | |
| 430 | by transfer (rule Complex_eq_i) | |
| 431 | ||
| 432 | lemma hRe_hsgn [simp]: "!!z. hRe(hsgn z) = hRe(z)/hcmod z" | |
| 433 | by transfer (rule Re_sgn) | |
| 434 | ||
| 435 | lemma hIm_hsgn [simp]: "!!z. hIm(hsgn z) = hIm(z)/hcmod z" | |
| 436 | by transfer (rule Im_sgn) | |
| 437 | ||
| 438 | lemma hcomplex_inverse_complex_split: | |
| 439 | "!!x y. inverse(hcomplex_of_hypreal x + iii * hcomplex_of_hypreal y) = | |
| 440 | hcomplex_of_hypreal(x/(x ^ 2 + y ^ 2)) - | |
| 441 | iii * hcomplex_of_hypreal(y/(x ^ 2 + y ^ 2))" | |
| 442 | by transfer (rule complex_inverse_complex_split) | |
| 443 | ||
| 444 | lemma HComplex_inverse: | |
| 445 | "!!x y. inverse (HComplex x y) = | |
| 446 | HComplex (x/(x ^ 2 + y ^ 2)) (-y/(x ^ 2 + y ^ 2))" | |
| 447 | by transfer (rule complex_inverse) | |
| 448 | ||
| 449 | lemma hRe_mult_i_eq[simp]: | |
| 450 | "!!y. hRe (iii * hcomplex_of_hypreal y) = 0" | |
| 451 | by transfer simp | |
| 452 | ||
| 453 | lemma hIm_mult_i_eq [simp]: | |
| 454 | "!!y. hIm (iii * hcomplex_of_hypreal y) = y" | |
| 455 | by transfer simp | |
| 456 | ||
| 457 | lemma hcmod_mult_i [simp]: "!!y. hcmod (iii * hcomplex_of_hypreal y) = abs y" | |
| 458 | by transfer simp | |
| 459 | ||
| 460 | lemma hcmod_mult_i2 [simp]: "!!y. hcmod (hcomplex_of_hypreal y * iii) = abs y" | |
| 461 | by transfer simp | |
| 462 | ||
| 463 | (*---------------------------------------------------------------------------*) | |
| 464 | (* harg *) | |
| 465 | (*---------------------------------------------------------------------------*) | |
| 466 | ||
| 467 | lemma cos_harg_i_mult_zero_pos: | |
| 468 | "!!y. 0 < y ==> ( *f* cos) (harg(HComplex 0 y)) = 0" | |
| 469 | by transfer (rule cos_arg_i_mult_zero_pos) | |
| 470 | ||
| 471 | lemma cos_harg_i_mult_zero_neg: | |
| 472 | "!!y. y < 0 ==> ( *f* cos) (harg(HComplex 0 y)) = 0" | |
| 473 | by transfer (rule cos_arg_i_mult_zero_neg) | |
| 474 | ||
| 475 | lemma cos_harg_i_mult_zero [simp]: | |
| 476 | "!!y. y \<noteq> 0 ==> ( *f* cos) (harg(HComplex 0 y)) = 0" | |
| 477 | by transfer (rule cos_arg_i_mult_zero) | |
| 478 | ||
| 479 | lemma hcomplex_of_hypreal_zero_iff [simp]: | |
| 480 | "!!y. (hcomplex_of_hypreal y = 0) = (y = 0)" | |
| 481 | by transfer (rule of_real_eq_0_iff) | |
| 482 | ||
| 483 | ||
| 484 | subsection{*Polar Form for Nonstandard Complex Numbers*}
 | |
| 485 | ||
| 486 | lemma complex_split_polar2: | |
| 487 | "\<forall>n. \<exists>r a. (z n) = complex_of_real r * (Complex (cos a) (sin a))" | |
| 488 | by (blast intro: complex_split_polar) | |
| 489 | ||
| 490 | lemma hcomplex_split_polar: | |
| 491 | "!!z. \<exists>r a. z = hcomplex_of_hypreal r * (HComplex(( *f* cos) a)(( *f* sin) a))" | |
| 492 | by transfer (rule complex_split_polar) | |
| 493 | ||
| 494 | lemma hcis_eq: | |
| 495 | "!!a. hcis a = | |
| 496 | (hcomplex_of_hypreal(( *f* cos) a) + | |
| 497 | iii * hcomplex_of_hypreal(( *f* sin) a))" | |
| 498 | by transfer (simp add: cis_def) | |
| 499 | ||
| 500 | lemma hrcis_Ex: "!!z. \<exists>r a. z = hrcis r a" | |
| 501 | by transfer (rule rcis_Ex) | |
| 502 | ||
| 503 | lemma hRe_hcomplex_polar [simp]: | |
| 504 | "!!r a. hRe (hcomplex_of_hypreal r * HComplex (( *f* cos) a) (( *f* sin) a)) = | |
| 505 | r * ( *f* cos) a" | |
| 506 | by transfer simp | |
| 507 | ||
| 508 | lemma hRe_hrcis [simp]: "!!r a. hRe(hrcis r a) = r * ( *f* cos) a" | |
| 509 | by transfer (rule Re_rcis) | |
| 510 | ||
| 511 | lemma hIm_hcomplex_polar [simp]: | |
| 512 | "!!r a. hIm (hcomplex_of_hypreal r * HComplex (( *f* cos) a) (( *f* sin) a)) = | |
| 513 | r * ( *f* sin) a" | |
| 514 | by transfer simp | |
| 515 | ||
| 516 | lemma hIm_hrcis [simp]: "!!r a. hIm(hrcis r a) = r * ( *f* sin) a" | |
| 517 | by transfer (rule Im_rcis) | |
| 518 | ||
| 519 | lemma hcmod_unit_one [simp]: | |
| 520 | "!!a. hcmod (HComplex (( *f* cos) a) (( *f* sin) a)) = 1" | |
| 521 | by transfer (rule cmod_unit_one) | |
| 522 | ||
| 523 | lemma hcmod_complex_polar [simp]: | |
| 524 | "!!r a. hcmod (hcomplex_of_hypreal r * HComplex (( *f* cos) a) (( *f* sin) a)) = | |
| 525 | abs r" | |
| 526 | by transfer (rule cmod_complex_polar) | |
| 527 | ||
| 528 | lemma hcmod_hrcis [simp]: "!!r a. hcmod(hrcis r a) = abs r" | |
| 529 | by transfer (rule complex_mod_rcis) | |
| 530 | ||
| 531 | (*---------------------------------------------------------------------------*) | |
| 532 | (* (r1 * hrcis a) * (r2 * hrcis b) = r1 * r2 * hrcis (a + b) *) | |
| 533 | (*---------------------------------------------------------------------------*) | |
| 534 | ||
| 535 | lemma hcis_hrcis_eq: "!!a. hcis a = hrcis 1 a" | |
| 536 | by transfer (rule cis_rcis_eq) | |
| 537 | declare hcis_hrcis_eq [symmetric, simp] | |
| 538 | ||
| 539 | lemma hrcis_mult: | |
| 540 | "!!a b r1 r2. hrcis r1 a * hrcis r2 b = hrcis (r1*r2) (a + b)" | |
| 541 | by transfer (rule rcis_mult) | |
| 542 | ||
| 543 | lemma hcis_mult: "!!a b. hcis a * hcis b = hcis (a + b)" | |
| 544 | by transfer (rule cis_mult) | |
| 545 | ||
| 546 | lemma hcis_zero [simp]: "hcis 0 = 1" | |
| 547 | by transfer (rule cis_zero) | |
| 548 | ||
| 549 | lemma hrcis_zero_mod [simp]: "!!a. hrcis 0 a = 0" | |
| 550 | by transfer (rule rcis_zero_mod) | |
| 551 | ||
| 552 | lemma hrcis_zero_arg [simp]: "!!r. hrcis r 0 = hcomplex_of_hypreal r" | |
| 553 | by transfer (rule rcis_zero_arg) | |
| 554 | ||
| 555 | lemma hcomplex_i_mult_minus [simp]: "!!x. iii * (iii * x) = - x" | |
| 556 | by transfer (rule complex_i_mult_minus) | |
| 557 | ||
| 558 | lemma hcomplex_i_mult_minus2 [simp]: "iii * iii * x = - x" | |
| 559 | by simp | |
| 560 | ||
| 561 | lemma hcis_hypreal_of_nat_Suc_mult: | |
| 562 | "!!a. hcis (hypreal_of_nat (Suc n) * a) = | |
| 563 | hcis a * hcis (hypreal_of_nat n * a)" | |
| 564 | apply transfer | |
| 565 | apply (fold real_of_nat_def) | |
| 566 | apply (rule cis_real_of_nat_Suc_mult) | |
| 567 | done | |
| 568 | ||
| 569 | lemma NSDeMoivre: "!!a. (hcis a) ^ n = hcis (hypreal_of_nat n * a)" | |
| 570 | apply transfer | |
| 571 | apply (fold real_of_nat_def) | |
| 572 | apply (rule DeMoivre) | |
| 573 | done | |
| 574 | ||
| 575 | lemma hcis_hypreal_of_hypnat_Suc_mult: | |
| 576 | "!! a n. hcis (hypreal_of_hypnat (n + 1) * a) = | |
| 577 | hcis a * hcis (hypreal_of_hypnat n * a)" | |
| 578 | by transfer (fold real_of_nat_def, simp add: cis_real_of_nat_Suc_mult) | |
| 579 | ||
| 580 | lemma NSDeMoivre_ext: | |
| 581 | "!!a n. (hcis a) pow n = hcis (hypreal_of_hypnat n * a)" | |
| 582 | by transfer (fold real_of_nat_def, rule DeMoivre) | |
| 583 | ||
| 584 | lemma NSDeMoivre2: | |
| 585 | "!!a r. (hrcis r a) ^ n = hrcis (r ^ n) (hypreal_of_nat n * a)" | |
| 586 | by transfer (fold real_of_nat_def, rule DeMoivre2) | |
| 587 | ||
| 588 | lemma DeMoivre2_ext: | |
| 589 | "!! a r n. (hrcis r a) pow n = hrcis (r pow n) (hypreal_of_hypnat n * a)" | |
| 590 | by transfer (fold real_of_nat_def, rule DeMoivre2) | |
| 591 | ||
| 592 | lemma hcis_inverse [simp]: "!!a. inverse(hcis a) = hcis (-a)" | |
| 593 | by transfer (rule cis_inverse) | |
| 594 | ||
| 595 | lemma hrcis_inverse: "!!a r. inverse(hrcis r a) = hrcis (inverse r) (-a)" | |
| 596 | by transfer (simp add: rcis_inverse inverse_eq_divide [symmetric]) | |
| 597 | ||
| 598 | lemma hRe_hcis [simp]: "!!a. hRe(hcis a) = ( *f* cos) a" | |
| 599 | by transfer (rule Re_cis) | |
| 600 | ||
| 601 | lemma hIm_hcis [simp]: "!!a. hIm(hcis a) = ( *f* sin) a" | |
| 602 | by transfer (rule Im_cis) | |
| 603 | ||
| 604 | lemma cos_n_hRe_hcis_pow_n: "( *f* cos) (hypreal_of_nat n * a) = hRe(hcis a ^ n)" | |
| 605 | by (simp add: NSDeMoivre) | |
| 606 | ||
| 607 | lemma sin_n_hIm_hcis_pow_n: "( *f* sin) (hypreal_of_nat n * a) = hIm(hcis a ^ n)" | |
| 608 | by (simp add: NSDeMoivre) | |
| 609 | ||
| 610 | lemma cos_n_hRe_hcis_hcpow_n: "( *f* cos) (hypreal_of_hypnat n * a) = hRe(hcis a pow n)" | |
| 611 | by (simp add: NSDeMoivre_ext) | |
| 612 | ||
| 613 | lemma sin_n_hIm_hcis_hcpow_n: "( *f* sin) (hypreal_of_hypnat n * a) = hIm(hcis a pow n)" | |
| 614 | by (simp add: NSDeMoivre_ext) | |
| 615 | ||
| 616 | lemma hexpi_add: "!!a b. hexpi(a + b) = hexpi(a) * hexpi(b)" | |
| 617 | by transfer (rule expi_add) | |
| 618 | ||
| 619 | ||
| 620 | subsection{*@{term hcomplex_of_complex}: the Injection from
 | |
| 621 |   type @{typ complex} to to @{typ hcomplex}*}
 | |
| 622 | ||
| 623 | lemma inj_hcomplex_of_complex: "inj(hcomplex_of_complex)" | |
| 624 | (* TODO: delete *) | |
| 625 | by (rule inj_star_of) | |
| 626 | ||
| 627 | lemma hcomplex_of_complex_i: "iii = hcomplex_of_complex ii" | |
| 628 | by (rule iii_def) | |
| 629 | ||
| 630 | lemma hRe_hcomplex_of_complex: | |
| 631 | "hRe (hcomplex_of_complex z) = hypreal_of_real (Re z)" | |
| 632 | by transfer (rule refl) | |
| 633 | ||
| 634 | lemma hIm_hcomplex_of_complex: | |
| 635 | "hIm (hcomplex_of_complex z) = hypreal_of_real (Im z)" | |
| 636 | by transfer (rule refl) | |
| 637 | ||
| 638 | lemma hcmod_hcomplex_of_complex: | |
| 639 | "hcmod (hcomplex_of_complex x) = hypreal_of_real (cmod x)" | |
| 640 | by transfer (rule refl) | |
| 641 | ||
| 642 | ||
| 643 | subsection{*Numerals and Arithmetic*}
 | |
| 644 | ||
| 645 | lemma hcomplex_number_of_def: "(number_of w :: hcomplex) == of_int w" | |
| 646 | by transfer (rule number_of_eq [THEN eq_reflection]) | |
| 647 | ||
| 648 | lemma hcomplex_of_hypreal_eq_hcomplex_of_complex: | |
| 649 | "hcomplex_of_hypreal (hypreal_of_real x) = | |
| 650 | hcomplex_of_complex (complex_of_real x)" | |
| 651 | by transfer (rule refl) | |
| 652 | ||
| 653 | lemma hcomplex_hypreal_number_of: | |
| 654 | "hcomplex_of_complex (number_of w) = hcomplex_of_hypreal(number_of w)" | |
| 655 | by transfer (rule of_real_number_of_eq [symmetric]) | |
| 656 | ||
| 657 | lemma hcomplex_number_of_hcnj [simp]: | |
| 658 | "hcnj (number_of v :: hcomplex) = number_of v" | |
| 659 | by transfer (rule complex_cnj_number_of) | |
| 660 | ||
| 661 | lemma hcomplex_number_of_hcmod [simp]: | |
| 662 | "hcmod(number_of v :: hcomplex) = abs (number_of v :: hypreal)" | |
| 663 | by transfer (rule norm_number_of) | |
| 664 | ||
| 665 | lemma hcomplex_number_of_hRe [simp]: | |
| 666 | "hRe(number_of v :: hcomplex) = number_of v" | |
| 667 | by transfer (rule complex_Re_number_of) | |
| 668 | ||
| 669 | lemma hcomplex_number_of_hIm [simp]: | |
| 670 | "hIm(number_of v :: hcomplex) = 0" | |
| 671 | by transfer (rule complex_Im_number_of) | |
| 672 | ||
| 673 | end |