|
2525
|
1 |
(* Title: HOL/MiniML/Instance.thy
|
|
|
2 |
ID: $Id$
|
|
|
3 |
Author: Wolfgang Naraschewski and Tobias Nipkow
|
|
|
4 |
Copyright 1996 TU Muenchen
|
|
|
5 |
|
|
|
6 |
Instances of type schemes
|
|
|
7 |
*)
|
|
|
8 |
|
|
14422
|
9 |
theory Instance = Type:
|
|
2525
|
10 |
|
|
|
11 |
|
|
|
12 |
(* generic instances of a type scheme *)
|
|
|
13 |
|
|
|
14 |
consts
|
|
14422
|
15 |
bound_typ_inst :: "[subst, type_scheme] => typ"
|
|
2525
|
16 |
|
|
5184
|
17 |
primrec
|
|
2525
|
18 |
"bound_typ_inst S (FVar n) = (TVar n)"
|
|
|
19 |
"bound_typ_inst S (BVar n) = (S n)"
|
|
|
20 |
"bound_typ_inst S (sch1 =-> sch2) = ((bound_typ_inst S sch1) -> (bound_typ_inst S sch2))"
|
|
|
21 |
|
|
|
22 |
consts
|
|
14422
|
23 |
bound_scheme_inst :: "[nat => type_scheme, type_scheme] => type_scheme"
|
|
2525
|
24 |
|
|
5184
|
25 |
primrec
|
|
2525
|
26 |
"bound_scheme_inst S (FVar n) = (FVar n)"
|
|
|
27 |
"bound_scheme_inst S (BVar n) = (S n)"
|
|
|
28 |
"bound_scheme_inst S (sch1 =-> sch2) = ((bound_scheme_inst S sch1) =-> (bound_scheme_inst S sch2))"
|
|
|
29 |
|
|
|
30 |
consts
|
|
14422
|
31 |
"<|" :: "[typ, type_scheme] => bool" (infixr 70)
|
|
2525
|
32 |
defs
|
|
14422
|
33 |
is_bound_typ_instance: "t <| sch == ? S. t = (bound_typ_inst S sch)"
|
|
2525
|
34 |
|
|
14422
|
35 |
instance type_scheme :: ord ..
|
|
|
36 |
defs le_type_scheme_def: "sch' <= (sch::type_scheme) == !t. t <| sch' --> t <| sch"
|
|
2525
|
37 |
|
|
|
38 |
consts
|
|
14422
|
39 |
subst_to_scheme :: "[nat => type_scheme, typ] => type_scheme"
|
|
2525
|
40 |
|
|
5184
|
41 |
primrec
|
|
2525
|
42 |
"subst_to_scheme B (TVar n) = (B n)"
|
|
|
43 |
"subst_to_scheme B (t1 -> t2) = ((subst_to_scheme B t1) =-> (subst_to_scheme B t2))"
|
|
|
44 |
|
|
14422
|
45 |
instance list :: (ord)ord ..
|
|
|
46 |
defs le_env_def:
|
|
4502
|
47 |
"A <= B == length B = length A & (!i. i < length A --> A!i <= B!i)"
|
|
2525
|
48 |
|
|
14422
|
49 |
|
|
|
50 |
(* lemmatas for instatiation *)
|
|
|
51 |
|
|
|
52 |
|
|
|
53 |
(* lemmatas for bound_typ_inst *)
|
|
|
54 |
|
|
|
55 |
lemma bound_typ_inst_mk_scheme: "bound_typ_inst S (mk_scheme t) = t"
|
|
|
56 |
apply (induct_tac "t")
|
|
|
57 |
apply (simp_all (no_asm_simp))
|
|
|
58 |
done
|
|
|
59 |
|
|
|
60 |
declare bound_typ_inst_mk_scheme [simp]
|
|
|
61 |
|
|
|
62 |
lemma bound_typ_inst_composed_subst: "bound_typ_inst ($S o R) ($S sch) = $S (bound_typ_inst R sch)"
|
|
|
63 |
apply (induct_tac "sch")
|
|
|
64 |
apply simp_all
|
|
|
65 |
done
|
|
|
66 |
|
|
|
67 |
declare bound_typ_inst_composed_subst [simp]
|
|
|
68 |
|
|
|
69 |
lemma bound_typ_inst_eq: "S = S' ==> sch = sch' ==> bound_typ_inst S sch = bound_typ_inst S' sch'"
|
|
|
70 |
apply simp
|
|
|
71 |
done
|
|
|
72 |
|
|
|
73 |
|
|
|
74 |
|
|
|
75 |
(* lemmatas for bound_scheme_inst *)
|
|
|
76 |
|
|
|
77 |
lemma bound_scheme_inst_mk_scheme: "bound_scheme_inst B (mk_scheme t) = mk_scheme t"
|
|
|
78 |
apply (induct_tac "t")
|
|
|
79 |
apply (simp (no_asm))
|
|
|
80 |
apply (simp (no_asm_simp))
|
|
|
81 |
done
|
|
|
82 |
|
|
|
83 |
declare bound_scheme_inst_mk_scheme [simp]
|
|
|
84 |
|
|
|
85 |
lemma substitution_lemma: "$S (bound_scheme_inst B sch) = (bound_scheme_inst ($S o B) ($ S sch))"
|
|
|
86 |
apply (induct_tac "sch")
|
|
|
87 |
apply (simp (no_asm))
|
|
|
88 |
apply (simp (no_asm))
|
|
|
89 |
apply (simp (no_asm_simp))
|
|
|
90 |
done
|
|
|
91 |
|
|
|
92 |
lemma bound_scheme_inst_type [rule_format (no_asm)]: "!t. mk_scheme t = bound_scheme_inst B sch -->
|
|
|
93 |
(? S. !x:bound_tv sch. B x = mk_scheme (S x))"
|
|
|
94 |
apply (induct_tac "sch")
|
|
|
95 |
apply (simp (no_asm))
|
|
|
96 |
apply safe
|
|
|
97 |
apply (rule exI)
|
|
|
98 |
apply (rule ballI)
|
|
|
99 |
apply (rule sym)
|
|
|
100 |
apply simp
|
|
|
101 |
apply simp
|
|
|
102 |
apply (drule mk_scheme_Fun)
|
|
|
103 |
apply (erule exE)+
|
|
|
104 |
apply (erule conjE)
|
|
|
105 |
apply (drule sym)
|
|
|
106 |
apply (drule sym)
|
|
|
107 |
apply (drule mp, fast)+
|
|
|
108 |
apply safe
|
|
|
109 |
apply (rename_tac S1 S2)
|
|
|
110 |
apply (rule_tac x = "%x. if x:bound_tv type_scheme1 then (S1 x) else (S2 x) " in exI)
|
|
|
111 |
apply auto
|
|
|
112 |
done
|
|
|
113 |
|
|
|
114 |
|
|
|
115 |
(* lemmas for subst_to_scheme *)
|
|
|
116 |
|
|
|
117 |
lemma subst_to_scheme_inverse [rule_format (no_asm)]: "new_tv n sch --> subst_to_scheme (%k. if n <= k then BVar (k - n) else FVar k)
|
|
|
118 |
(bound_typ_inst (%k. TVar (k + n)) sch) = sch"
|
|
|
119 |
apply (induct_tac "sch")
|
|
|
120 |
apply (simp (no_asm) add: le_def)
|
|
|
121 |
apply (simp (no_asm) add: le_add2 diff_add_inverse2)
|
|
|
122 |
apply (simp (no_asm_simp))
|
|
|
123 |
done
|
|
|
124 |
|
|
|
125 |
lemma aux: "t = t' ==>
|
|
|
126 |
subst_to_scheme (%k. if n <= k then BVar (k - n) else FVar k) t =
|
|
|
127 |
subst_to_scheme (%k. if n <= k then BVar (k - n) else FVar k) t'"
|
|
|
128 |
apply fast
|
|
|
129 |
done
|
|
|
130 |
|
|
|
131 |
lemma aux2 [rule_format]: "new_tv n sch -->
|
|
|
132 |
subst_to_scheme (%k. if n <= k then BVar (k - n) else FVar k) (bound_typ_inst S sch) =
|
|
|
133 |
bound_scheme_inst ((subst_to_scheme (%k. if n <= k then BVar (k - n) else FVar k)) o S) sch"
|
|
|
134 |
apply (induct_tac "sch")
|
|
|
135 |
apply auto
|
|
|
136 |
done
|
|
|
137 |
|
|
|
138 |
|
|
|
139 |
(* lemmata for <= *)
|
|
|
140 |
|
|
|
141 |
lemma le_type_scheme_def2:
|
|
|
142 |
"!!(sch::type_scheme) sch'.
|
|
|
143 |
(sch' <= sch) = (? B. sch' = bound_scheme_inst B sch)"
|
|
|
144 |
|
|
|
145 |
apply (unfold le_type_scheme_def is_bound_typ_instance)
|
|
|
146 |
apply (rule iffI)
|
|
|
147 |
apply (cut_tac sch = "sch" in fresh_variable_type_schemes)
|
|
|
148 |
apply (cut_tac sch = "sch'" in fresh_variable_type_schemes)
|
|
|
149 |
apply (drule make_one_new_out_of_two)
|
|
|
150 |
apply assumption
|
|
|
151 |
apply (erule_tac V = "? n. new_tv n sch'" in thin_rl)
|
|
|
152 |
apply (erule exE)
|
|
|
153 |
apply (erule allE)
|
|
|
154 |
apply (drule mp)
|
|
|
155 |
apply (rule_tac x = " (%k. TVar (k + n))" in exI)
|
|
|
156 |
apply (rule refl)
|
|
|
157 |
apply (erule exE)
|
|
|
158 |
apply (erule conjE)+
|
|
|
159 |
apply (drule_tac n = "n" in aux)
|
|
|
160 |
apply (simp add: subst_to_scheme_inverse)
|
|
|
161 |
apply (rule_tac x = " (subst_to_scheme (%k. if n <= k then BVar (k - n) else FVar k)) o S" in exI)
|
|
|
162 |
apply (simp (no_asm_simp) add: aux2)
|
|
|
163 |
apply safe
|
|
|
164 |
apply (rule_tac x = "%n. bound_typ_inst S (B n) " in exI)
|
|
|
165 |
apply (induct_tac "sch")
|
|
|
166 |
apply (simp (no_asm))
|
|
|
167 |
apply (simp (no_asm))
|
|
|
168 |
apply (simp (no_asm_simp))
|
|
|
169 |
done
|
|
|
170 |
|
|
|
171 |
lemma le_type_eq_is_bound_typ_instance [rule_format (no_asm)]: "(mk_scheme t) <= sch = t <| sch"
|
|
|
172 |
apply (unfold is_bound_typ_instance)
|
|
|
173 |
apply (simp (no_asm) add: le_type_scheme_def2)
|
|
|
174 |
apply (rule iffI)
|
|
|
175 |
apply (erule exE)
|
|
|
176 |
apply (frule bound_scheme_inst_type)
|
|
|
177 |
apply (erule exE)
|
|
|
178 |
apply (rule exI)
|
|
|
179 |
apply (rule mk_scheme_injective)
|
|
|
180 |
apply simp
|
|
|
181 |
apply (rotate_tac 1)
|
|
|
182 |
apply (rule mp)
|
|
|
183 |
prefer 2 apply (assumption)
|
|
|
184 |
apply (induct_tac "sch")
|
|
|
185 |
apply (simp (no_asm))
|
|
|
186 |
apply simp
|
|
|
187 |
apply fast
|
|
|
188 |
apply (intro strip)
|
|
|
189 |
apply simp
|
|
|
190 |
apply (erule exE)
|
|
|
191 |
apply simp
|
|
|
192 |
apply (rule exI)
|
|
|
193 |
apply (induct_tac "sch")
|
|
|
194 |
apply (simp (no_asm))
|
|
|
195 |
apply (simp (no_asm))
|
|
|
196 |
apply simp
|
|
|
197 |
done
|
|
|
198 |
|
|
|
199 |
lemma le_env_Cons:
|
|
|
200 |
"(sch # A <= sch' # B) = (sch <= (sch'::type_scheme) & A <= B)"
|
|
|
201 |
apply (unfold le_env_def)
|
|
|
202 |
apply (simp (no_asm))
|
|
|
203 |
apply (rule iffI)
|
|
|
204 |
apply clarify
|
|
|
205 |
apply (rule conjI)
|
|
|
206 |
apply (erule_tac x = "0" in allE)
|
|
|
207 |
apply simp
|
|
|
208 |
apply (rule conjI, assumption)
|
|
|
209 |
apply clarify
|
|
|
210 |
apply (erule_tac x = "Suc i" in allE)
|
|
|
211 |
apply simp
|
|
|
212 |
apply (rule conjI)
|
|
|
213 |
apply fast
|
|
|
214 |
apply (rule allI)
|
|
|
215 |
apply (induct_tac "i")
|
|
|
216 |
apply (simp_all (no_asm_simp))
|
|
|
217 |
done
|
|
|
218 |
declare le_env_Cons [iff]
|
|
|
219 |
|
|
|
220 |
lemma is_bound_typ_instance_closed_subst: "t <| sch ==> $S t <| $S sch"
|
|
|
221 |
apply (unfold is_bound_typ_instance)
|
|
|
222 |
apply (erule exE)
|
|
|
223 |
apply (rename_tac "SA")
|
|
|
224 |
apply (simp)
|
|
|
225 |
apply (rule_tac x = "$S o SA" in exI)
|
|
|
226 |
apply (simp (no_asm))
|
|
|
227 |
done
|
|
|
228 |
|
|
|
229 |
lemma S_compatible_le_scheme: "!!(sch::type_scheme) sch'. sch' <= sch ==> $S sch' <= $ S sch"
|
|
|
230 |
apply (simp add: le_type_scheme_def2)
|
|
|
231 |
apply (erule exE)
|
|
|
232 |
apply (simp add: substitution_lemma)
|
|
|
233 |
apply fast
|
|
|
234 |
done
|
|
|
235 |
|
|
|
236 |
lemma S_compatible_le_scheme_lists:
|
|
|
237 |
"!!(A::type_scheme list) A'. A' <= A ==> $S A' <= $ S A"
|
|
|
238 |
apply (unfold le_env_def app_subst_list)
|
|
|
239 |
apply (simp (no_asm) cong add: conj_cong)
|
|
|
240 |
apply (fast intro!: S_compatible_le_scheme)
|
|
|
241 |
done
|
|
|
242 |
|
|
|
243 |
lemma bound_typ_instance_trans: "[| t <| sch; sch <= sch' |] ==> t <| sch'"
|
|
|
244 |
apply (unfold le_type_scheme_def)
|
|
|
245 |
apply fast
|
|
|
246 |
done
|
|
|
247 |
|
|
|
248 |
lemma le_type_scheme_refl: "sch <= (sch::type_scheme)"
|
|
|
249 |
apply (unfold le_type_scheme_def)
|
|
|
250 |
apply fast
|
|
|
251 |
done
|
|
|
252 |
declare le_type_scheme_refl [iff]
|
|
|
253 |
|
|
|
254 |
lemma le_env_refl: "A <= (A::type_scheme list)"
|
|
|
255 |
apply (unfold le_env_def)
|
|
|
256 |
apply fast
|
|
|
257 |
done
|
|
|
258 |
declare le_env_refl [iff]
|
|
|
259 |
|
|
|
260 |
lemma bound_typ_instance_BVar: "sch <= BVar n"
|
|
|
261 |
apply (unfold le_type_scheme_def is_bound_typ_instance)
|
|
|
262 |
apply (intro strip)
|
|
|
263 |
apply (rule_tac x = "%a. t" in exI)
|
|
|
264 |
apply (simp (no_asm))
|
|
|
265 |
done
|
|
|
266 |
declare bound_typ_instance_BVar [iff]
|
|
|
267 |
|
|
|
268 |
lemma le_FVar:
|
|
|
269 |
"(sch <= FVar n) = (sch = FVar n)"
|
|
|
270 |
apply (unfold le_type_scheme_def is_bound_typ_instance)
|
|
|
271 |
apply (induct_tac "sch")
|
|
|
272 |
apply (simp (no_asm))
|
|
|
273 |
apply (simp (no_asm))
|
|
|
274 |
apply fast
|
|
|
275 |
apply simp
|
|
|
276 |
apply fast
|
|
|
277 |
done
|
|
|
278 |
declare le_FVar [simp]
|
|
|
279 |
|
|
|
280 |
lemma not_FVar_le_Fun: "~(FVar n <= sch1 =-> sch2)"
|
|
|
281 |
apply (unfold le_type_scheme_def is_bound_typ_instance)
|
|
|
282 |
apply (simp (no_asm))
|
|
|
283 |
done
|
|
|
284 |
declare not_FVar_le_Fun [iff]
|
|
|
285 |
|
|
|
286 |
lemma not_BVar_le_Fun: "~(BVar n <= sch1 =-> sch2)"
|
|
|
287 |
apply (unfold le_type_scheme_def is_bound_typ_instance)
|
|
|
288 |
apply (simp (no_asm))
|
|
|
289 |
apply (rule_tac x = "TVar n" in exI)
|
|
|
290 |
apply (simp (no_asm))
|
|
|
291 |
apply fast
|
|
|
292 |
done
|
|
|
293 |
declare not_BVar_le_Fun [iff]
|
|
|
294 |
|
|
|
295 |
lemma Fun_le_FunD:
|
|
|
296 |
"(sch1 =-> sch2 <= sch1' =-> sch2') ==> sch1 <= sch1' & sch2 <= sch2'"
|
|
|
297 |
apply (unfold le_type_scheme_def is_bound_typ_instance)
|
|
|
298 |
apply (fastsimp)
|
|
|
299 |
done
|
|
|
300 |
|
|
|
301 |
lemma scheme_le_Fun [rule_format (no_asm)]: "(sch' <= sch1 =-> sch2) --> (? sch'1 sch'2. sch' = sch'1 =-> sch'2)"
|
|
|
302 |
apply (induct_tac "sch'")
|
|
|
303 |
apply (simp (no_asm_simp))
|
|
|
304 |
apply (simp (no_asm_simp))
|
|
|
305 |
apply fast
|
|
|
306 |
done
|
|
|
307 |
|
|
|
308 |
lemma le_type_scheme_free_tv [rule_format (no_asm)]: "!sch'::type_scheme. sch <= sch' --> free_tv sch' <= free_tv sch"
|
|
|
309 |
apply (induct_tac "sch")
|
|
|
310 |
apply (rule allI)
|
|
|
311 |
apply (induct_tac "sch'")
|
|
|
312 |
apply (simp (no_asm))
|
|
|
313 |
apply (simp (no_asm))
|
|
|
314 |
apply (simp (no_asm))
|
|
|
315 |
apply (rule allI)
|
|
|
316 |
apply (induct_tac "sch'")
|
|
|
317 |
apply (simp (no_asm))
|
|
|
318 |
apply (simp (no_asm))
|
|
|
319 |
apply (simp (no_asm))
|
|
|
320 |
apply (rule allI)
|
|
|
321 |
apply (induct_tac "sch'")
|
|
|
322 |
apply (simp (no_asm))
|
|
|
323 |
apply (simp (no_asm))
|
|
|
324 |
apply simp
|
|
|
325 |
apply (intro strip)
|
|
|
326 |
apply (drule Fun_le_FunD)
|
|
|
327 |
apply fast
|
|
|
328 |
done
|
|
|
329 |
|
|
|
330 |
lemma le_env_free_tv [rule_format (no_asm)]: "!A::type_scheme list. A <= B --> free_tv B <= free_tv A"
|
|
|
331 |
apply (induct_tac "B")
|
|
|
332 |
apply (simp (no_asm))
|
|
|
333 |
apply (rule allI)
|
|
|
334 |
apply (induct_tac "A")
|
|
|
335 |
apply (simp (no_asm) add: le_env_def)
|
|
|
336 |
apply (simp (no_asm))
|
|
|
337 |
apply (fast dest: le_type_scheme_free_tv)
|
|
|
338 |
done
|
|
|
339 |
|
|
|
340 |
|
|
2525
|
341 |
end
|