author | wenzelm |
Tue, 11 Jul 2006 12:17:08 +0200 | |
changeset 20083 | 717b1eb434f1 |
parent 19931 | fb32b43e7f80 |
child 20318 | 0e0ea63fe768 |
permissions | -rw-r--r-- |
14706 | 1 |
(* Title: HOL/Algebra/Coset.thy |
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
2 |
ID: $Id$ |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
3 |
Author: Florian Kammueller, with new proofs by L C Paulson |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
4 |
*) |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
5 |
|
14747 | 6 |
header{*Cosets and Quotient Groups*} |
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
7 |
|
16417 | 8 |
theory Coset imports Group Exponent begin |
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
9 |
|
14651 | 10 |
constdefs (structure G) |
14963 | 11 |
r_coset :: "[_, 'a set, 'a] \<Rightarrow> 'a set" (infixl "#>\<index>" 60) |
12 |
"H #> a \<equiv> \<Union>h\<in>H. {h \<otimes> a}" |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
13 |
|
14963 | 14 |
l_coset :: "[_, 'a, 'a set] \<Rightarrow> 'a set" (infixl "<#\<index>" 60) |
15 |
"a <# H \<equiv> \<Union>h\<in>H. {a \<otimes> h}" |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
16 |
|
14963 | 17 |
RCOSETS :: "[_, 'a set] \<Rightarrow> ('a set)set" ("rcosets\<index> _" [81] 80) |
18 |
"rcosets H \<equiv> \<Union>a\<in>carrier G. {H #> a}" |
|
19 |
||
20 |
set_mult :: "[_, 'a set ,'a set] \<Rightarrow> 'a set" (infixl "<#>\<index>" 60) |
|
21 |
"H <#> K \<equiv> \<Union>h\<in>H. \<Union>k\<in>K. {h \<otimes> k}" |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
22 |
|
14963 | 23 |
SET_INV :: "[_,'a set] \<Rightarrow> 'a set" ("set'_inv\<index> _" [81] 80) |
24 |
"set_inv H \<equiv> \<Union>h\<in>H. {inv h}" |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
25 |
|
14963 | 26 |
|
27 |
locale normal = subgroup + group + |
|
28 |
assumes coset_eq: "(\<forall>x \<in> carrier G. H #> x = x <# H)" |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
29 |
|
19380 | 30 |
abbreviation |
31 |
normal_rel :: "['a set, ('a, 'b) monoid_scheme] \<Rightarrow> bool" (infixl "\<lhd>" 60) |
|
32 |
"H \<lhd> G \<equiv> normal H G" |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
33 |
|
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
34 |
|
14803 | 35 |
subsection {*Basic Properties of Cosets*} |
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
36 |
|
14747 | 37 |
lemma (in group) coset_mult_assoc: |
38 |
"[| M \<subseteq> carrier G; g \<in> carrier G; h \<in> carrier G |] |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
39 |
==> (M #> g) #> h = M #> (g \<otimes> h)" |
14747 | 40 |
by (force simp add: r_coset_def m_assoc) |
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
41 |
|
14747 | 42 |
lemma (in group) coset_mult_one [simp]: "M \<subseteq> carrier G ==> M #> \<one> = M" |
43 |
by (force simp add: r_coset_def) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
44 |
|
14747 | 45 |
lemma (in group) coset_mult_inv1: |
14666 | 46 |
"[| M #> (x \<otimes> (inv y)) = M; x \<in> carrier G ; y \<in> carrier G; |
14747 | 47 |
M \<subseteq> carrier G |] ==> M #> x = M #> y" |
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
48 |
apply (erule subst [of concl: "%z. M #> x = z #> y"]) |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
49 |
apply (simp add: coset_mult_assoc m_assoc) |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
50 |
done |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
51 |
|
14747 | 52 |
lemma (in group) coset_mult_inv2: |
53 |
"[| M #> x = M #> y; x \<in> carrier G; y \<in> carrier G; M \<subseteq> carrier G |] |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
54 |
==> M #> (x \<otimes> (inv y)) = M " |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
55 |
apply (simp add: coset_mult_assoc [symmetric]) |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
56 |
apply (simp add: coset_mult_assoc) |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
57 |
done |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
58 |
|
14747 | 59 |
lemma (in group) coset_join1: |
60 |
"[| H #> x = H; x \<in> carrier G; subgroup H G |] ==> x \<in> H" |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
61 |
apply (erule subst) |
14963 | 62 |
apply (simp add: r_coset_def) |
63 |
apply (blast intro: l_one subgroup.one_closed sym) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
64 |
done |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
65 |
|
14747 | 66 |
lemma (in group) solve_equation: |
14963 | 67 |
"\<lbrakk>subgroup H G; x \<in> H; y \<in> H\<rbrakk> \<Longrightarrow> \<exists>h\<in>H. y = h \<otimes> x" |
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
68 |
apply (rule bexI [of _ "y \<otimes> (inv x)"]) |
14666 | 69 |
apply (auto simp add: subgroup.m_closed subgroup.m_inv_closed m_assoc |
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
70 |
subgroup.subset [THEN subsetD]) |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
71 |
done |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
72 |
|
14963 | 73 |
lemma (in group) repr_independence: |
74 |
"\<lbrakk>y \<in> H #> x; x \<in> carrier G; subgroup H G\<rbrakk> \<Longrightarrow> H #> x = H #> y" |
|
75 |
by (auto simp add: r_coset_def m_assoc [symmetric] |
|
76 |
subgroup.subset [THEN subsetD] |
|
77 |
subgroup.m_closed solve_equation) |
|
78 |
||
14747 | 79 |
lemma (in group) coset_join2: |
14963 | 80 |
"\<lbrakk>x \<in> carrier G; subgroup H G; x\<in>H\<rbrakk> \<Longrightarrow> H #> x = H" |
81 |
--{*Alternative proof is to put @{term "x=\<one>"} in @{text repr_independence}.*} |
|
82 |
by (force simp add: subgroup.m_closed r_coset_def solve_equation) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
83 |
|
14747 | 84 |
lemma (in group) r_coset_subset_G: |
85 |
"[| H \<subseteq> carrier G; x \<in> carrier G |] ==> H #> x \<subseteq> carrier G" |
|
86 |
by (auto simp add: r_coset_def) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
87 |
|
14747 | 88 |
lemma (in group) rcosI: |
89 |
"[| h \<in> H; H \<subseteq> carrier G; x \<in> carrier G|] ==> h \<otimes> x \<in> H #> x" |
|
90 |
by (auto simp add: r_coset_def) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
91 |
|
14963 | 92 |
lemma (in group) rcosetsI: |
93 |
"\<lbrakk>H \<subseteq> carrier G; x \<in> carrier G\<rbrakk> \<Longrightarrow> H #> x \<in> rcosets H" |
|
94 |
by (auto simp add: RCOSETS_def) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
95 |
|
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
96 |
text{*Really needed?*} |
14747 | 97 |
lemma (in group) transpose_inv: |
14666 | 98 |
"[| x \<otimes> y = z; x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] |
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
99 |
==> (inv x) \<otimes> z = y" |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
100 |
by (force simp add: m_assoc [symmetric]) |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
101 |
|
14747 | 102 |
lemma (in group) rcos_self: "[| x \<in> carrier G; subgroup H G |] ==> x \<in> H #> x" |
14963 | 103 |
apply (simp add: r_coset_def) |
104 |
apply (blast intro: sym l_one subgroup.subset [THEN subsetD] |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
105 |
subgroup.one_closed) |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
106 |
done |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
107 |
|
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
108 |
|
14666 | 109 |
subsection {* Normal subgroups *} |
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
110 |
|
14963 | 111 |
lemma normal_imp_subgroup: "H \<lhd> G \<Longrightarrow> subgroup H G" |
112 |
by (simp add: normal_def subgroup_def) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
113 |
|
14963 | 114 |
lemma (in group) normalI: |
115 |
"subgroup H G \<Longrightarrow> (\<forall>x \<in> carrier G. H #> x = x <# H) \<Longrightarrow> H \<lhd> G"; |
|
116 |
by (simp add: normal_def normal_axioms_def prems) |
|
117 |
||
118 |
lemma (in normal) inv_op_closed1: |
|
119 |
"\<lbrakk>x \<in> carrier G; h \<in> H\<rbrakk> \<Longrightarrow> (inv x) \<otimes> h \<otimes> x \<in> H" |
|
120 |
apply (insert coset_eq) |
|
121 |
apply (auto simp add: l_coset_def r_coset_def) |
|
14666 | 122 |
apply (drule bspec, assumption) |
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
123 |
apply (drule equalityD1 [THEN subsetD], blast, clarify) |
14963 | 124 |
apply (simp add: m_assoc) |
125 |
apply (simp add: m_assoc [symmetric]) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
126 |
done |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
127 |
|
14963 | 128 |
lemma (in normal) inv_op_closed2: |
129 |
"\<lbrakk>x \<in> carrier G; h \<in> H\<rbrakk> \<Longrightarrow> x \<otimes> h \<otimes> (inv x) \<in> H" |
|
130 |
apply (subgoal_tac "inv (inv x) \<otimes> h \<otimes> (inv x) \<in> H") |
|
131 |
apply (simp add: ); |
|
132 |
apply (blast intro: inv_op_closed1) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
133 |
done |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
134 |
|
14747 | 135 |
text{*Alternative characterization of normal subgroups*} |
136 |
lemma (in group) normal_inv_iff: |
|
137 |
"(N \<lhd> G) = |
|
138 |
(subgroup N G & (\<forall>x \<in> carrier G. \<forall>h \<in> N. x \<otimes> h \<otimes> (inv x) \<in> N))" |
|
139 |
(is "_ = ?rhs") |
|
140 |
proof |
|
141 |
assume N: "N \<lhd> G" |
|
142 |
show ?rhs |
|
14963 | 143 |
by (blast intro: N normal.inv_op_closed2 normal_imp_subgroup) |
14747 | 144 |
next |
145 |
assume ?rhs |
|
146 |
hence sg: "subgroup N G" |
|
14963 | 147 |
and closed: "\<And>x. x\<in>carrier G \<Longrightarrow> \<forall>h\<in>N. x \<otimes> h \<otimes> inv x \<in> N" by auto |
14747 | 148 |
hence sb: "N \<subseteq> carrier G" by (simp add: subgroup.subset) |
149 |
show "N \<lhd> G" |
|
14963 | 150 |
proof (intro normalI [OF sg], simp add: l_coset_def r_coset_def, clarify) |
14747 | 151 |
fix x |
152 |
assume x: "x \<in> carrier G" |
|
15120 | 153 |
show "(\<Union>h\<in>N. {h \<otimes> x}) = (\<Union>h\<in>N. {x \<otimes> h})" |
14747 | 154 |
proof |
15120 | 155 |
show "(\<Union>h\<in>N. {h \<otimes> x}) \<subseteq> (\<Union>h\<in>N. {x \<otimes> h})" |
14747 | 156 |
proof clarify |
157 |
fix n |
|
158 |
assume n: "n \<in> N" |
|
15120 | 159 |
show "n \<otimes> x \<in> (\<Union>h\<in>N. {x \<otimes> h})" |
14747 | 160 |
proof |
14963 | 161 |
from closed [of "inv x"] |
162 |
show "inv x \<otimes> n \<otimes> x \<in> N" by (simp add: x n) |
|
163 |
show "n \<otimes> x \<in> {x \<otimes> (inv x \<otimes> n \<otimes> x)}" |
|
14747 | 164 |
by (simp add: x n m_assoc [symmetric] sb [THEN subsetD]) |
165 |
qed |
|
166 |
qed |
|
167 |
next |
|
15120 | 168 |
show "(\<Union>h\<in>N. {x \<otimes> h}) \<subseteq> (\<Union>h\<in>N. {h \<otimes> x})" |
14747 | 169 |
proof clarify |
170 |
fix n |
|
171 |
assume n: "n \<in> N" |
|
15120 | 172 |
show "x \<otimes> n \<in> (\<Union>h\<in>N. {h \<otimes> x})" |
14747 | 173 |
proof |
14963 | 174 |
show "x \<otimes> n \<otimes> inv x \<in> N" by (simp add: x n closed) |
175 |
show "x \<otimes> n \<in> {x \<otimes> n \<otimes> inv x \<otimes> x}" |
|
14747 | 176 |
by (simp add: x n m_assoc sb [THEN subsetD]) |
177 |
qed |
|
178 |
qed |
|
179 |
qed |
|
180 |
qed |
|
181 |
qed |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
182 |
|
14963 | 183 |
|
14803 | 184 |
subsection{*More Properties of Cosets*} |
185 |
||
14747 | 186 |
lemma (in group) lcos_m_assoc: |
187 |
"[| M \<subseteq> carrier G; g \<in> carrier G; h \<in> carrier G |] |
|
188 |
==> g <# (h <# M) = (g \<otimes> h) <# M" |
|
189 |
by (force simp add: l_coset_def m_assoc) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
190 |
|
14747 | 191 |
lemma (in group) lcos_mult_one: "M \<subseteq> carrier G ==> \<one> <# M = M" |
192 |
by (force simp add: l_coset_def) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
193 |
|
14747 | 194 |
lemma (in group) l_coset_subset_G: |
195 |
"[| H \<subseteq> carrier G; x \<in> carrier G |] ==> x <# H \<subseteq> carrier G" |
|
196 |
by (auto simp add: l_coset_def subsetD) |
|
197 |
||
198 |
lemma (in group) l_coset_swap: |
|
14963 | 199 |
"\<lbrakk>y \<in> x <# H; x \<in> carrier G; subgroup H G\<rbrakk> \<Longrightarrow> x \<in> y <# H" |
200 |
proof (simp add: l_coset_def) |
|
201 |
assume "\<exists>h\<in>H. y = x \<otimes> h" |
|
14666 | 202 |
and x: "x \<in> carrier G" |
14530 | 203 |
and sb: "subgroup H G" |
204 |
then obtain h' where h': "h' \<in> H & x \<otimes> h' = y" by blast |
|
14963 | 205 |
show "\<exists>h\<in>H. x = y \<otimes> h" |
14530 | 206 |
proof |
14963 | 207 |
show "x = y \<otimes> inv h'" using h' x sb |
14530 | 208 |
by (auto simp add: m_assoc subgroup.subset [THEN subsetD]) |
209 |
show "inv h' \<in> H" using h' sb |
|
210 |
by (auto simp add: subgroup.subset [THEN subsetD] subgroup.m_inv_closed) |
|
211 |
qed |
|
212 |
qed |
|
213 |
||
14747 | 214 |
lemma (in group) l_coset_carrier: |
14530 | 215 |
"[| y \<in> x <# H; x \<in> carrier G; subgroup H G |] ==> y \<in> carrier G" |
14747 | 216 |
by (auto simp add: l_coset_def m_assoc |
14530 | 217 |
subgroup.subset [THEN subsetD] subgroup.m_closed) |
218 |
||
14747 | 219 |
lemma (in group) l_repr_imp_subset: |
14666 | 220 |
assumes y: "y \<in> x <# H" and x: "x \<in> carrier G" and sb: "subgroup H G" |
14530 | 221 |
shows "y <# H \<subseteq> x <# H" |
222 |
proof - |
|
223 |
from y |
|
14747 | 224 |
obtain h' where "h' \<in> H" "x \<otimes> h' = y" by (auto simp add: l_coset_def) |
14530 | 225 |
thus ?thesis using x sb |
14747 | 226 |
by (auto simp add: l_coset_def m_assoc |
14530 | 227 |
subgroup.subset [THEN subsetD] subgroup.m_closed) |
228 |
qed |
|
229 |
||
14747 | 230 |
lemma (in group) l_repr_independence: |
14666 | 231 |
assumes y: "y \<in> x <# H" and x: "x \<in> carrier G" and sb: "subgroup H G" |
14530 | 232 |
shows "x <# H = y <# H" |
14666 | 233 |
proof |
14530 | 234 |
show "x <# H \<subseteq> y <# H" |
14666 | 235 |
by (rule l_repr_imp_subset, |
14530 | 236 |
(blast intro: l_coset_swap l_coset_carrier y x sb)+) |
14666 | 237 |
show "y <# H \<subseteq> x <# H" by (rule l_repr_imp_subset [OF y x sb]) |
14530 | 238 |
qed |
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
239 |
|
14747 | 240 |
lemma (in group) setmult_subset_G: |
14963 | 241 |
"\<lbrakk>H \<subseteq> carrier G; K \<subseteq> carrier G\<rbrakk> \<Longrightarrow> H <#> K \<subseteq> carrier G" |
242 |
by (auto simp add: set_mult_def subsetD) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
243 |
|
14963 | 244 |
lemma (in group) subgroup_mult_id: "subgroup H G \<Longrightarrow> H <#> H = H" |
245 |
apply (auto simp add: subgroup.m_closed set_mult_def Sigma_def image_def) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
246 |
apply (rule_tac x = x in bexI) |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
247 |
apply (rule bexI [of _ "\<one>"]) |
14666 | 248 |
apply (auto simp add: subgroup.m_closed subgroup.one_closed |
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
249 |
r_one subgroup.subset [THEN subsetD]) |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
250 |
done |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
251 |
|
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
252 |
|
14747 | 253 |
subsubsection {* Set of inverses of an @{text r_coset}. *} |
14666 | 254 |
|
14963 | 255 |
lemma (in normal) rcos_inv: |
256 |
assumes x: "x \<in> carrier G" |
|
257 |
shows "set_inv (H #> x) = H #> (inv x)" |
|
258 |
proof (simp add: r_coset_def SET_INV_def x inv_mult_group, safe) |
|
259 |
fix h |
|
260 |
assume "h \<in> H" |
|
15120 | 261 |
show "inv x \<otimes> inv h \<in> (\<Union>j\<in>H. {j \<otimes> inv x})" |
14963 | 262 |
proof |
263 |
show "inv x \<otimes> inv h \<otimes> x \<in> H" |
|
264 |
by (simp add: inv_op_closed1 prems) |
|
265 |
show "inv x \<otimes> inv h \<in> {inv x \<otimes> inv h \<otimes> x \<otimes> inv x}" |
|
266 |
by (simp add: prems m_assoc) |
|
267 |
qed |
|
268 |
next |
|
269 |
fix h |
|
270 |
assume "h \<in> H" |
|
15120 | 271 |
show "h \<otimes> inv x \<in> (\<Union>j\<in>H. {inv x \<otimes> inv j})" |
14963 | 272 |
proof |
273 |
show "x \<otimes> inv h \<otimes> inv x \<in> H" |
|
274 |
by (simp add: inv_op_closed2 prems) |
|
275 |
show "h \<otimes> inv x \<in> {inv x \<otimes> inv (x \<otimes> inv h \<otimes> inv x)}" |
|
276 |
by (simp add: prems m_assoc [symmetric] inv_mult_group) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
277 |
qed |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
278 |
qed |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
279 |
|
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
280 |
|
14803 | 281 |
subsubsection {*Theorems for @{text "<#>"} with @{text "#>"} or @{text "<#"}.*} |
14666 | 282 |
|
14747 | 283 |
lemma (in group) setmult_rcos_assoc: |
14963 | 284 |
"\<lbrakk>H \<subseteq> carrier G; K \<subseteq> carrier G; x \<in> carrier G\<rbrakk> |
285 |
\<Longrightarrow> H <#> (K #> x) = (H <#> K) #> x" |
|
286 |
by (force simp add: r_coset_def set_mult_def m_assoc) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
287 |
|
14747 | 288 |
lemma (in group) rcos_assoc_lcos: |
14963 | 289 |
"\<lbrakk>H \<subseteq> carrier G; K \<subseteq> carrier G; x \<in> carrier G\<rbrakk> |
290 |
\<Longrightarrow> (H #> x) <#> K = H <#> (x <# K)" |
|
291 |
by (force simp add: r_coset_def l_coset_def set_mult_def m_assoc) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
292 |
|
14963 | 293 |
lemma (in normal) rcos_mult_step1: |
294 |
"\<lbrakk>x \<in> carrier G; y \<in> carrier G\<rbrakk> |
|
295 |
\<Longrightarrow> (H #> x) <#> (H #> y) = (H <#> (x <# H)) #> y" |
|
296 |
by (simp add: setmult_rcos_assoc subset |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
297 |
r_coset_subset_G l_coset_subset_G rcos_assoc_lcos) |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
298 |
|
14963 | 299 |
lemma (in normal) rcos_mult_step2: |
300 |
"\<lbrakk>x \<in> carrier G; y \<in> carrier G\<rbrakk> |
|
301 |
\<Longrightarrow> (H <#> (x <# H)) #> y = (H <#> (H #> x)) #> y" |
|
302 |
by (insert coset_eq, simp add: normal_def) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
303 |
|
14963 | 304 |
lemma (in normal) rcos_mult_step3: |
305 |
"\<lbrakk>x \<in> carrier G; y \<in> carrier G\<rbrakk> |
|
306 |
\<Longrightarrow> (H <#> (H #> x)) #> y = H #> (x \<otimes> y)" |
|
307 |
by (simp add: setmult_rcos_assoc coset_mult_assoc |
|
19931
fb32b43e7f80
Restructured locales with predicates: import is now an interpretation.
ballarin
parents:
19380
diff
changeset
|
308 |
subgroup_mult_id normal.axioms subset prems) |
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
309 |
|
14963 | 310 |
lemma (in normal) rcos_sum: |
311 |
"\<lbrakk>x \<in> carrier G; y \<in> carrier G\<rbrakk> |
|
312 |
\<Longrightarrow> (H #> x) <#> (H #> y) = H #> (x \<otimes> y)" |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
313 |
by (simp add: rcos_mult_step1 rcos_mult_step2 rcos_mult_step3) |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
314 |
|
14963 | 315 |
lemma (in normal) rcosets_mult_eq: "M \<in> rcosets H \<Longrightarrow> H <#> M = M" |
14666 | 316 |
-- {* generalizes @{text subgroup_mult_id} *} |
14963 | 317 |
by (auto simp add: RCOSETS_def subset |
19931
fb32b43e7f80
Restructured locales with predicates: import is now an interpretation.
ballarin
parents:
19380
diff
changeset
|
318 |
setmult_rcos_assoc subgroup_mult_id normal.axioms prems) |
14963 | 319 |
|
320 |
||
321 |
subsubsection{*An Equivalence Relation*} |
|
322 |
||
323 |
constdefs (structure G) |
|
324 |
r_congruent :: "[('a,'b)monoid_scheme, 'a set] \<Rightarrow> ('a*'a)set" |
|
325 |
("rcong\<index> _") |
|
326 |
"rcong H \<equiv> {(x,y). x \<in> carrier G & y \<in> carrier G & inv x \<otimes> y \<in> H}" |
|
327 |
||
328 |
||
329 |
lemma (in subgroup) equiv_rcong: |
|
330 |
includes group G |
|
331 |
shows "equiv (carrier G) (rcong H)" |
|
332 |
proof (intro equiv.intro) |
|
333 |
show "refl (carrier G) (rcong H)" |
|
334 |
by (auto simp add: r_congruent_def refl_def) |
|
335 |
next |
|
336 |
show "sym (rcong H)" |
|
337 |
proof (simp add: r_congruent_def sym_def, clarify) |
|
338 |
fix x y |
|
339 |
assume [simp]: "x \<in> carrier G" "y \<in> carrier G" |
|
340 |
and "inv x \<otimes> y \<in> H" |
|
341 |
hence "inv (inv x \<otimes> y) \<in> H" by (simp add: m_inv_closed) |
|
342 |
thus "inv y \<otimes> x \<in> H" by (simp add: inv_mult_group) |
|
343 |
qed |
|
344 |
next |
|
345 |
show "trans (rcong H)" |
|
346 |
proof (simp add: r_congruent_def trans_def, clarify) |
|
347 |
fix x y z |
|
348 |
assume [simp]: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G" |
|
349 |
and "inv x \<otimes> y \<in> H" and "inv y \<otimes> z \<in> H" |
|
350 |
hence "(inv x \<otimes> y) \<otimes> (inv y \<otimes> z) \<in> H" by simp |
|
351 |
hence "inv x \<otimes> (y \<otimes> inv y) \<otimes> z \<in> H" by (simp add: m_assoc del: r_inv) |
|
352 |
thus "inv x \<otimes> z \<in> H" by simp |
|
353 |
qed |
|
354 |
qed |
|
355 |
||
356 |
text{*Equivalence classes of @{text rcong} correspond to left cosets. |
|
357 |
Was there a mistake in the definitions? I'd have expected them to |
|
358 |
correspond to right cosets.*} |
|
359 |
||
360 |
(* CB: This is correct, but subtle. |
|
361 |
We call H #> a the right coset of a relative to H. According to |
|
362 |
Jacobson, this is what the majority of group theory literature does. |
|
363 |
He then defines the notion of congruence relation ~ over monoids as |
|
364 |
equivalence relation with a ~ a' & b ~ b' \<Longrightarrow> a*b ~ a'*b'. |
|
365 |
Our notion of right congruence induced by K: rcong K appears only in |
|
366 |
the context where K is a normal subgroup. Jacobson doesn't name it. |
|
367 |
But in this context left and right cosets are identical. |
|
368 |
*) |
|
369 |
||
370 |
lemma (in subgroup) l_coset_eq_rcong: |
|
371 |
includes group G |
|
372 |
assumes a: "a \<in> carrier G" |
|
373 |
shows "a <# H = rcong H `` {a}" |
|
374 |
by (force simp add: r_congruent_def l_coset_def m_assoc [symmetric] a ) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
375 |
|
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
376 |
|
14803 | 377 |
subsubsection{*Two distinct right cosets are disjoint*} |
378 |
||
379 |
lemma (in group) rcos_equation: |
|
14963 | 380 |
includes subgroup H G |
381 |
shows |
|
382 |
"\<lbrakk>ha \<otimes> a = h \<otimes> b; a \<in> carrier G; b \<in> carrier G; |
|
383 |
h \<in> H; ha \<in> H; hb \<in> H\<rbrakk> |
|
384 |
\<Longrightarrow> hb \<otimes> a \<in> (\<Union>h\<in>H. {h \<otimes> b})" |
|
385 |
apply (rule UN_I [of "hb \<otimes> ((inv ha) \<otimes> h)"]) |
|
386 |
apply (simp add: ); |
|
387 |
apply (simp add: m_assoc transpose_inv) |
|
14803 | 388 |
done |
389 |
||
390 |
lemma (in group) rcos_disjoint: |
|
14963 | 391 |
includes subgroup H G |
392 |
shows "\<lbrakk>a \<in> rcosets H; b \<in> rcosets H; a\<noteq>b\<rbrakk> \<Longrightarrow> a \<inter> b = {}" |
|
393 |
apply (simp add: RCOSETS_def r_coset_def) |
|
394 |
apply (blast intro: rcos_equation prems sym) |
|
14803 | 395 |
done |
396 |
||
397 |
||
398 |
subsection {*Order of a Group and Lagrange's Theorem*} |
|
399 |
||
400 |
constdefs |
|
14963 | 401 |
order :: "('a, 'b) monoid_scheme \<Rightarrow> nat" |
402 |
"order S \<equiv> card (carrier S)" |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
403 |
|
14963 | 404 |
lemma (in group) rcos_self: |
405 |
includes subgroup |
|
406 |
shows "x \<in> carrier G \<Longrightarrow> x \<in> H #> x" |
|
407 |
apply (simp add: r_coset_def) |
|
408 |
apply (rule_tac x="\<one>" in bexI) |
|
409 |
apply (auto simp add: ); |
|
410 |
done |
|
411 |
||
412 |
lemma (in group) rcosets_part_G: |
|
413 |
includes subgroup |
|
414 |
shows "\<Union>(rcosets H) = carrier G" |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
415 |
apply (rule equalityI) |
14963 | 416 |
apply (force simp add: RCOSETS_def r_coset_def) |
417 |
apply (auto simp add: RCOSETS_def intro: rcos_self prems) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
418 |
done |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
419 |
|
14747 | 420 |
lemma (in group) cosets_finite: |
14963 | 421 |
"\<lbrakk>c \<in> rcosets H; H \<subseteq> carrier G; finite (carrier G)\<rbrakk> \<Longrightarrow> finite c" |
422 |
apply (auto simp add: RCOSETS_def) |
|
423 |
apply (simp add: r_coset_subset_G [THEN finite_subset]) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
424 |
done |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
425 |
|
14747 | 426 |
text{*The next two lemmas support the proof of @{text card_cosets_equal}.*} |
427 |
lemma (in group) inj_on_f: |
|
14963 | 428 |
"\<lbrakk>H \<subseteq> carrier G; a \<in> carrier G\<rbrakk> \<Longrightarrow> inj_on (\<lambda>y. y \<otimes> inv a) (H #> a)" |
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
429 |
apply (rule inj_onI) |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
430 |
apply (subgoal_tac "x \<in> carrier G & y \<in> carrier G") |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
431 |
prefer 2 apply (blast intro: r_coset_subset_G [THEN subsetD]) |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
432 |
apply (simp add: subsetD) |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
433 |
done |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
434 |
|
14747 | 435 |
lemma (in group) inj_on_g: |
14963 | 436 |
"\<lbrakk>H \<subseteq> carrier G; a \<in> carrier G\<rbrakk> \<Longrightarrow> inj_on (\<lambda>y. y \<otimes> a) H" |
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
437 |
by (force simp add: inj_on_def subsetD) |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
438 |
|
14747 | 439 |
lemma (in group) card_cosets_equal: |
14963 | 440 |
"\<lbrakk>c \<in> rcosets H; H \<subseteq> carrier G; finite(carrier G)\<rbrakk> |
441 |
\<Longrightarrow> card c = card H" |
|
442 |
apply (auto simp add: RCOSETS_def) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
443 |
apply (rule card_bij_eq) |
14666 | 444 |
apply (rule inj_on_f, assumption+) |
14747 | 445 |
apply (force simp add: m_assoc subsetD r_coset_def) |
14666 | 446 |
apply (rule inj_on_g, assumption+) |
14747 | 447 |
apply (force simp add: m_assoc subsetD r_coset_def) |
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
448 |
txt{*The sets @{term "H #> a"} and @{term "H"} are finite.*} |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
449 |
apply (simp add: r_coset_subset_G [THEN finite_subset]) |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
450 |
apply (blast intro: finite_subset) |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
451 |
done |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
452 |
|
14963 | 453 |
lemma (in group) rcosets_subset_PowG: |
454 |
"subgroup H G \<Longrightarrow> rcosets H \<subseteq> Pow(carrier G)" |
|
455 |
apply (simp add: RCOSETS_def) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
456 |
apply (blast dest: r_coset_subset_G subgroup.subset) |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
457 |
done |
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
458 |
|
14803 | 459 |
|
460 |
theorem (in group) lagrange: |
|
14963 | 461 |
"\<lbrakk>finite(carrier G); subgroup H G\<rbrakk> |
462 |
\<Longrightarrow> card(rcosets H) * card(H) = order(G)" |
|
463 |
apply (simp (no_asm_simp) add: order_def rcosets_part_G [symmetric]) |
|
14803 | 464 |
apply (subst mult_commute) |
465 |
apply (rule card_partition) |
|
14963 | 466 |
apply (simp add: rcosets_subset_PowG [THEN finite_subset]) |
467 |
apply (simp add: rcosets_part_G) |
|
14803 | 468 |
apply (simp add: card_cosets_equal subgroup.subset) |
469 |
apply (simp add: rcos_disjoint) |
|
470 |
done |
|
471 |
||
472 |
||
14747 | 473 |
subsection {*Quotient Groups: Factorization of a Group*} |
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
474 |
|
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
475 |
constdefs |
14963 | 476 |
FactGroup :: "[('a,'b) monoid_scheme, 'a set] \<Rightarrow> ('a set) monoid" |
14803 | 477 |
(infixl "Mod" 65) |
14747 | 478 |
--{*Actually defined for groups rather than monoids*} |
14963 | 479 |
"FactGroup G H \<equiv> |
480 |
\<lparr>carrier = rcosets\<^bsub>G\<^esub> H, mult = set_mult G, one = H\<rparr>" |
|
14747 | 481 |
|
14963 | 482 |
lemma (in normal) setmult_closed: |
483 |
"\<lbrakk>K1 \<in> rcosets H; K2 \<in> rcosets H\<rbrakk> \<Longrightarrow> K1 <#> K2 \<in> rcosets H" |
|
484 |
by (auto simp add: rcos_sum RCOSETS_def) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
485 |
|
14963 | 486 |
lemma (in normal) setinv_closed: |
487 |
"K \<in> rcosets H \<Longrightarrow> set_inv K \<in> rcosets H" |
|
488 |
by (auto simp add: rcos_inv RCOSETS_def) |
|
13889
6676ac2527fa
Fixed Coset.thy (proved theorem factorgroup_is_group).
ballarin
parents:
13870
diff
changeset
|
489 |
|
14963 | 490 |
lemma (in normal) rcosets_assoc: |
491 |
"\<lbrakk>M1 \<in> rcosets H; M2 \<in> rcosets H; M3 \<in> rcosets H\<rbrakk> |
|
492 |
\<Longrightarrow> M1 <#> M2 <#> M3 = M1 <#> (M2 <#> M3)" |
|
493 |
by (auto simp add: RCOSETS_def rcos_sum m_assoc) |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
494 |
|
14963 | 495 |
lemma (in subgroup) subgroup_in_rcosets: |
496 |
includes group G |
|
497 |
shows "H \<in> rcosets H" |
|
13889
6676ac2527fa
Fixed Coset.thy (proved theorem factorgroup_is_group).
ballarin
parents:
13870
diff
changeset
|
498 |
proof - |
14963 | 499 |
have "H #> \<one> = H" |
500 |
by (rule coset_join2, auto) |
|
13889
6676ac2527fa
Fixed Coset.thy (proved theorem factorgroup_is_group).
ballarin
parents:
13870
diff
changeset
|
501 |
then show ?thesis |
14963 | 502 |
by (auto simp add: RCOSETS_def) |
13889
6676ac2527fa
Fixed Coset.thy (proved theorem factorgroup_is_group).
ballarin
parents:
13870
diff
changeset
|
503 |
qed |
6676ac2527fa
Fixed Coset.thy (proved theorem factorgroup_is_group).
ballarin
parents:
13870
diff
changeset
|
504 |
|
14963 | 505 |
lemma (in normal) rcosets_inv_mult_group_eq: |
506 |
"M \<in> rcosets H \<Longrightarrow> set_inv M <#> M = H" |
|
19931
fb32b43e7f80
Restructured locales with predicates: import is now an interpretation.
ballarin
parents:
19380
diff
changeset
|
507 |
by (auto simp add: RCOSETS_def rcos_inv rcos_sum subgroup.subset normal.axioms prems) |
13889
6676ac2527fa
Fixed Coset.thy (proved theorem factorgroup_is_group).
ballarin
parents:
13870
diff
changeset
|
508 |
|
14963 | 509 |
theorem (in normal) factorgroup_is_group: |
510 |
"group (G Mod H)" |
|
14666 | 511 |
apply (simp add: FactGroup_def) |
13936 | 512 |
apply (rule groupI) |
14747 | 513 |
apply (simp add: setmult_closed) |
14963 | 514 |
apply (simp add: normal_imp_subgroup subgroup_in_rcosets [OF is_group]) |
515 |
apply (simp add: restrictI setmult_closed rcosets_assoc) |
|
13889
6676ac2527fa
Fixed Coset.thy (proved theorem factorgroup_is_group).
ballarin
parents:
13870
diff
changeset
|
516 |
apply (simp add: normal_imp_subgroup |
14963 | 517 |
subgroup_in_rcosets rcosets_mult_eq) |
518 |
apply (auto dest: rcosets_inv_mult_group_eq simp add: setinv_closed) |
|
13889
6676ac2527fa
Fixed Coset.thy (proved theorem factorgroup_is_group).
ballarin
parents:
13870
diff
changeset
|
519 |
done |
6676ac2527fa
Fixed Coset.thy (proved theorem factorgroup_is_group).
ballarin
parents:
13870
diff
changeset
|
520 |
|
14803 | 521 |
lemma mult_FactGroup [simp]: "X \<otimes>\<^bsub>(G Mod H)\<^esub> X' = X <#>\<^bsub>G\<^esub> X'" |
522 |
by (simp add: FactGroup_def) |
|
523 |
||
14963 | 524 |
lemma (in normal) inv_FactGroup: |
525 |
"X \<in> carrier (G Mod H) \<Longrightarrow> inv\<^bsub>G Mod H\<^esub> X = set_inv X" |
|
14747 | 526 |
apply (rule group.inv_equality [OF factorgroup_is_group]) |
14963 | 527 |
apply (simp_all add: FactGroup_def setinv_closed rcosets_inv_mult_group_eq) |
14747 | 528 |
done |
529 |
||
530 |
text{*The coset map is a homomorphism from @{term G} to the quotient group |
|
14963 | 531 |
@{term "G Mod H"}*} |
532 |
lemma (in normal) r_coset_hom_Mod: |
|
533 |
"(\<lambda>a. H #> a) \<in> hom G (G Mod H)" |
|
534 |
by (auto simp add: FactGroup_def RCOSETS_def Pi_def hom_def rcos_sum) |
|
14747 | 535 |
|
14963 | 536 |
|
537 |
subsection{*The First Isomorphism Theorem*} |
|
14803 | 538 |
|
14963 | 539 |
text{*The quotient by the kernel of a homomorphism is isomorphic to the |
540 |
range of that homomorphism.*} |
|
14803 | 541 |
|
542 |
constdefs |
|
14963 | 543 |
kernel :: "('a, 'm) monoid_scheme \<Rightarrow> ('b, 'n) monoid_scheme \<Rightarrow> |
544 |
('a \<Rightarrow> 'b) \<Rightarrow> 'a set" |
|
14803 | 545 |
--{*the kernel of a homomorphism*} |
14963 | 546 |
"kernel G H h \<equiv> {x. x \<in> carrier G & h x = \<one>\<^bsub>H\<^esub>}"; |
14803 | 547 |
|
548 |
lemma (in group_hom) subgroup_kernel: "subgroup (kernel G H h) G" |
|
14963 | 549 |
apply (rule subgroup.intro) |
14803 | 550 |
apply (auto simp add: kernel_def group.intro prems) |
551 |
done |
|
552 |
||
553 |
text{*The kernel of a homomorphism is a normal subgroup*} |
|
14963 | 554 |
lemma (in group_hom) normal_kernel: "(kernel G H h) \<lhd> G" |
19931
fb32b43e7f80
Restructured locales with predicates: import is now an interpretation.
ballarin
parents:
19380
diff
changeset
|
555 |
apply (simp add: G.normal_inv_iff subgroup_kernel) |
fb32b43e7f80
Restructured locales with predicates: import is now an interpretation.
ballarin
parents:
19380
diff
changeset
|
556 |
apply (simp add: kernel_def) |
14803 | 557 |
done |
558 |
||
559 |
lemma (in group_hom) FactGroup_nonempty: |
|
560 |
assumes X: "X \<in> carrier (G Mod kernel G H h)" |
|
561 |
shows "X \<noteq> {}" |
|
562 |
proof - |
|
563 |
from X |
|
564 |
obtain g where "g \<in> carrier G" |
|
565 |
and "X = kernel G H h #> g" |
|
14963 | 566 |
by (auto simp add: FactGroup_def RCOSETS_def) |
14803 | 567 |
thus ?thesis |
14963 | 568 |
by (auto simp add: kernel_def r_coset_def image_def intro: hom_one) |
14803 | 569 |
qed |
570 |
||
571 |
||
572 |
lemma (in group_hom) FactGroup_contents_mem: |
|
573 |
assumes X: "X \<in> carrier (G Mod (kernel G H h))" |
|
574 |
shows "contents (h`X) \<in> carrier H" |
|
575 |
proof - |
|
576 |
from X |
|
577 |
obtain g where g: "g \<in> carrier G" |
|
578 |
and "X = kernel G H h #> g" |
|
14963 | 579 |
by (auto simp add: FactGroup_def RCOSETS_def) |
580 |
hence "h ` X = {h g}" by (auto simp add: kernel_def r_coset_def image_def g) |
|
14803 | 581 |
thus ?thesis by (auto simp add: g) |
582 |
qed |
|
583 |
||
584 |
lemma (in group_hom) FactGroup_hom: |
|
14963 | 585 |
"(\<lambda>X. contents (h`X)) \<in> hom (G Mod (kernel G H h)) H" |
586 |
apply (simp add: hom_def FactGroup_contents_mem normal.factorgroup_is_group [OF normal_kernel] group.axioms monoid.m_closed) |
|
14803 | 587 |
proof (simp add: hom_def funcsetI FactGroup_contents_mem, intro ballI) |
588 |
fix X and X' |
|
589 |
assume X: "X \<in> carrier (G Mod kernel G H h)" |
|
590 |
and X': "X' \<in> carrier (G Mod kernel G H h)" |
|
591 |
then |
|
592 |
obtain g and g' |
|
593 |
where "g \<in> carrier G" and "g' \<in> carrier G" |
|
594 |
and "X = kernel G H h #> g" and "X' = kernel G H h #> g'" |
|
14963 | 595 |
by (auto simp add: FactGroup_def RCOSETS_def) |
14803 | 596 |
hence all: "\<forall>x\<in>X. h x = h g" "\<forall>x\<in>X'. h x = h g'" |
597 |
and Xsub: "X \<subseteq> carrier G" and X'sub: "X' \<subseteq> carrier G" |
|
598 |
by (force simp add: kernel_def r_coset_def image_def)+ |
|
599 |
hence "h ` (X <#> X') = {h g \<otimes>\<^bsub>H\<^esub> h g'}" using X X' |
|
600 |
by (auto dest!: FactGroup_nonempty |
|
601 |
simp add: set_mult_def image_eq_UN |
|
602 |
subsetD [OF Xsub] subsetD [OF X'sub]) |
|
603 |
thus "contents (h ` (X <#> X')) = contents (h ` X) \<otimes>\<^bsub>H\<^esub> contents (h ` X')" |
|
604 |
by (simp add: all image_eq_UN FactGroup_nonempty X X') |
|
605 |
qed |
|
606 |
||
14963 | 607 |
|
14803 | 608 |
text{*Lemma for the following injectivity result*} |
609 |
lemma (in group_hom) FactGroup_subset: |
|
14963 | 610 |
"\<lbrakk>g \<in> carrier G; g' \<in> carrier G; h g = h g'\<rbrakk> |
611 |
\<Longrightarrow> kernel G H h #> g \<subseteq> kernel G H h #> g'" |
|
14803 | 612 |
apply (clarsimp simp add: kernel_def r_coset_def image_def); |
613 |
apply (rename_tac y) |
|
614 |
apply (rule_tac x="y \<otimes> g \<otimes> inv g'" in exI) |
|
615 |
apply (simp add: G.m_assoc); |
|
616 |
done |
|
617 |
||
618 |
lemma (in group_hom) FactGroup_inj_on: |
|
619 |
"inj_on (\<lambda>X. contents (h ` X)) (carrier (G Mod kernel G H h))" |
|
620 |
proof (simp add: inj_on_def, clarify) |
|
621 |
fix X and X' |
|
622 |
assume X: "X \<in> carrier (G Mod kernel G H h)" |
|
623 |
and X': "X' \<in> carrier (G Mod kernel G H h)" |
|
624 |
then |
|
625 |
obtain g and g' |
|
626 |
where gX: "g \<in> carrier G" "g' \<in> carrier G" |
|
627 |
"X = kernel G H h #> g" "X' = kernel G H h #> g'" |
|
14963 | 628 |
by (auto simp add: FactGroup_def RCOSETS_def) |
14803 | 629 |
hence all: "\<forall>x\<in>X. h x = h g" "\<forall>x\<in>X'. h x = h g'" |
630 |
by (force simp add: kernel_def r_coset_def image_def)+ |
|
631 |
assume "contents (h ` X) = contents (h ` X')" |
|
632 |
hence h: "h g = h g'" |
|
633 |
by (simp add: image_eq_UN all FactGroup_nonempty X X') |
|
634 |
show "X=X'" by (rule equalityI) (simp_all add: FactGroup_subset h gX) |
|
635 |
qed |
|
636 |
||
637 |
text{*If the homomorphism @{term h} is onto @{term H}, then so is the |
|
638 |
homomorphism from the quotient group*} |
|
639 |
lemma (in group_hom) FactGroup_onto: |
|
640 |
assumes h: "h ` carrier G = carrier H" |
|
641 |
shows "(\<lambda>X. contents (h ` X)) ` carrier (G Mod kernel G H h) = carrier H" |
|
642 |
proof |
|
643 |
show "(\<lambda>X. contents (h ` X)) ` carrier (G Mod kernel G H h) \<subseteq> carrier H" |
|
644 |
by (auto simp add: FactGroup_contents_mem) |
|
645 |
show "carrier H \<subseteq> (\<lambda>X. contents (h ` X)) ` carrier (G Mod kernel G H h)" |
|
646 |
proof |
|
647 |
fix y |
|
648 |
assume y: "y \<in> carrier H" |
|
649 |
with h obtain g where g: "g \<in> carrier G" "h g = y" |
|
650 |
by (blast elim: equalityE); |
|
15120 | 651 |
hence "(\<Union>x\<in>kernel G H h #> g. {h x}) = {y}" |
14803 | 652 |
by (auto simp add: y kernel_def r_coset_def) |
653 |
with g show "y \<in> (\<lambda>X. contents (h ` X)) ` carrier (G Mod kernel G H h)" |
|
14963 | 654 |
by (auto intro!: bexI simp add: FactGroup_def RCOSETS_def image_eq_UN) |
14803 | 655 |
qed |
656 |
qed |
|
657 |
||
658 |
||
659 |
text{*If @{term h} is a homomorphism from @{term G} onto @{term H}, then the |
|
660 |
quotient group @{term "G Mod (kernel G H h)"} is isomorphic to @{term H}.*} |
|
661 |
theorem (in group_hom) FactGroup_iso: |
|
662 |
"h ` carrier G = carrier H |
|
14963 | 663 |
\<Longrightarrow> (\<lambda>X. contents (h`X)) \<in> (G Mod (kernel G H h)) \<cong> H" |
14803 | 664 |
by (simp add: iso_def FactGroup_hom FactGroup_inj_on bij_betw_def |
665 |
FactGroup_onto) |
|
666 |
||
14963 | 667 |
|
13870
cf947d1ec5ff
moved Exponent, Coset, Sylow from GroupTheory to Algebra, converting them
paulson
parents:
diff
changeset
|
668 |
end |