author | wenzelm |
Tue, 11 Jul 2006 12:17:08 +0200 | |
changeset 20083 | 717b1eb434f1 |
parent 19380 | b808efaa5828 |
child 20355 | 50aaae6ae4db |
permissions | -rw-r--r-- |
15013 | 1 |
(* Title: HOL/Integ/Numeral.thy |
2 |
ID: $Id$ |
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
4 |
Copyright 1994 University of Cambridge |
|
5 |
*) |
|
6 |
||
7 |
header{*Arithmetic on Binary Integers*} |
|
8 |
||
15131 | 9 |
theory Numeral |
15620
8ccdc8bc66a2
replaced bool by a new datatype "bit" for binary numerals
paulson
parents:
15140
diff
changeset
|
10 |
imports IntDef Datatype |
16417 | 11 |
uses "../Tools/numeral_syntax.ML" |
15131 | 12 |
begin |
15013 | 13 |
|
14 |
text{*This formalization defines binary arithmetic in terms of the integers |
|
15 |
rather than using a datatype. This avoids multiple representations (leading |
|
16 |
zeroes, etc.) See @{text "ZF/Integ/twos-compl.ML"}, function @{text |
|
17 |
int_of_binary}, for the numerical interpretation. |
|
18 |
||
19 |
The representation expects that @{text "(m mod 2)"} is 0 or 1, |
|
20 |
even if m is negative; |
|
21 |
For instance, @{text "-5 div 2 = -3"} and @{text "-5 mod 2 = 1"}; thus |
|
22 |
@{text "-5 = (-3)*2 + 1"}. |
|
23 |
*} |
|
24 |
||
25 |
||
26 |
typedef (Bin) |
|
27 |
bin = "UNIV::int set" |
|
28 |
by (auto) |
|
29 |
||
15620
8ccdc8bc66a2
replaced bool by a new datatype "bit" for binary numerals
paulson
parents:
15140
diff
changeset
|
30 |
|
8ccdc8bc66a2
replaced bool by a new datatype "bit" for binary numerals
paulson
parents:
15140
diff
changeset
|
31 |
text{*This datatype avoids the use of type @{typ bool}, which would make |
8ccdc8bc66a2
replaced bool by a new datatype "bit" for binary numerals
paulson
parents:
15140
diff
changeset
|
32 |
all of the rewrite rules higher-order. If the use of datatype causes |
8ccdc8bc66a2
replaced bool by a new datatype "bit" for binary numerals
paulson
parents:
15140
diff
changeset
|
33 |
problems, this two-element type can easily be formalized using typedef.*} |
8ccdc8bc66a2
replaced bool by a new datatype "bit" for binary numerals
paulson
parents:
15140
diff
changeset
|
34 |
datatype bit = B0 | B1 |
8ccdc8bc66a2
replaced bool by a new datatype "bit" for binary numerals
paulson
parents:
15140
diff
changeset
|
35 |
|
15013 | 36 |
constdefs |
37 |
Pls :: "bin" |
|
38 |
"Pls == Abs_Bin 0" |
|
39 |
||
40 |
Min :: "bin" |
|
41 |
"Min == Abs_Bin (- 1)" |
|
42 |
||
15620
8ccdc8bc66a2
replaced bool by a new datatype "bit" for binary numerals
paulson
parents:
15140
diff
changeset
|
43 |
Bit :: "[bin,bit] => bin" (infixl "BIT" 90) |
15013 | 44 |
--{*That is, 2w+b*} |
15620
8ccdc8bc66a2
replaced bool by a new datatype "bit" for binary numerals
paulson
parents:
15140
diff
changeset
|
45 |
"w BIT b == Abs_Bin ((case b of B0 => 0 | B1 => 1) + Rep_Bin w + Rep_Bin w)" |
15013 | 46 |
|
47 |
||
48 |
axclass |
|
49 |
number < type -- {* for numeric types: nat, int, real, \dots *} |
|
50 |
||
51 |
consts |
|
52 |
number_of :: "bin => 'a::number" |
|
53 |
||
54 |
syntax |
|
55 |
"_Numeral" :: "num_const => 'a" ("_") |
|
56 |
||
57 |
setup NumeralSyntax.setup |
|
58 |
||
19380 | 59 |
abbreviation |
60 |
"Numeral0 == number_of Pls" |
|
61 |
"Numeral1 == number_of (Pls BIT B1)" |
|
15013 | 62 |
|
63 |
lemma Let_number_of [simp]: "Let (number_of v) f == f (number_of v)" |
|
64 |
-- {* Unfold all @{text let}s involving constants *} |
|
65 |
by (simp add: Let_def) |
|
66 |
||
67 |
lemma Let_0 [simp]: "Let 0 f == f 0" |
|
68 |
by (simp add: Let_def) |
|
69 |
||
70 |
lemma Let_1 [simp]: "Let 1 f == f 1" |
|
71 |
by (simp add: Let_def) |
|
72 |
||
73 |
||
74 |
constdefs |
|
75 |
bin_succ :: "bin=>bin" |
|
76 |
"bin_succ w == Abs_Bin(Rep_Bin w + 1)" |
|
77 |
||
78 |
bin_pred :: "bin=>bin" |
|
79 |
"bin_pred w == Abs_Bin(Rep_Bin w - 1)" |
|
80 |
||
81 |
bin_minus :: "bin=>bin" |
|
82 |
"bin_minus w == Abs_Bin(- (Rep_Bin w))" |
|
83 |
||
84 |
bin_add :: "[bin,bin]=>bin" |
|
85 |
"bin_add v w == Abs_Bin(Rep_Bin v + Rep_Bin w)" |
|
86 |
||
87 |
bin_mult :: "[bin,bin]=>bin" |
|
88 |
"bin_mult v w == Abs_Bin(Rep_Bin v * Rep_Bin w)" |
|
89 |
||
90 |
||
91 |
lemmas Bin_simps = |
|
92 |
bin_succ_def bin_pred_def bin_minus_def bin_add_def bin_mult_def |
|
93 |
Pls_def Min_def Bit_def Abs_Bin_inverse Rep_Bin_inverse Bin_def |
|
94 |
||
95 |
text{*Removal of leading zeroes*} |
|
19380 | 96 |
lemma Pls_0_eq [simp]: "Pls BIT B0 = Pls" |
15013 | 97 |
by (simp add: Bin_simps) |
98 |
||
19380 | 99 |
lemma Min_1_eq [simp]: "Min BIT B1 = Min" |
15013 | 100 |
by (simp add: Bin_simps) |
101 |
||
102 |
subsection{*The Functions @{term bin_succ}, @{term bin_pred} and @{term bin_minus}*} |
|
103 |
||
19380 | 104 |
lemma bin_succ_Pls [simp]: "bin_succ Pls = Pls BIT B1" |
15013 | 105 |
by (simp add: Bin_simps) |
106 |
||
19380 | 107 |
lemma bin_succ_Min [simp]: "bin_succ Min = Pls" |
15013 | 108 |
by (simp add: Bin_simps) |
109 |
||
19380 | 110 |
lemma bin_succ_1 [simp]: "bin_succ(w BIT B1) = (bin_succ w) BIT B0" |
15013 | 111 |
by (simp add: Bin_simps add_ac) |
112 |
||
19380 | 113 |
lemma bin_succ_0 [simp]: "bin_succ(w BIT B0) = w BIT B1" |
15013 | 114 |
by (simp add: Bin_simps add_ac) |
115 |
||
19380 | 116 |
lemma bin_pred_Pls [simp]: "bin_pred Pls = Min" |
15013 | 117 |
by (simp add: Bin_simps) |
118 |
||
19380 | 119 |
lemma bin_pred_Min [simp]: "bin_pred Min = Min BIT B0" |
15013 | 120 |
by (simp add: Bin_simps diff_minus) |
121 |
||
19380 | 122 |
lemma bin_pred_1 [simp]: "bin_pred(w BIT B1) = w BIT B0" |
15013 | 123 |
by (simp add: Bin_simps) |
124 |
||
19380 | 125 |
lemma bin_pred_0 [simp]: "bin_pred(w BIT B0) = (bin_pred w) BIT B1" |
15013 | 126 |
by (simp add: Bin_simps diff_minus add_ac) |
127 |
||
19380 | 128 |
lemma bin_minus_Pls [simp]: "bin_minus Pls = Pls" |
15013 | 129 |
by (simp add: Bin_simps) |
130 |
||
19380 | 131 |
lemma bin_minus_Min [simp]: "bin_minus Min = Pls BIT B1" |
15013 | 132 |
by (simp add: Bin_simps) |
133 |
||
134 |
lemma bin_minus_1 [simp]: |
|
19380 | 135 |
"bin_minus (w BIT B1) = bin_pred (bin_minus w) BIT B1" |
15013 | 136 |
by (simp add: Bin_simps add_ac diff_minus) |
137 |
||
19380 | 138 |
lemma bin_minus_0 [simp]: "bin_minus(w BIT B0) = (bin_minus w) BIT B0" |
15013 | 139 |
by (simp add: Bin_simps) |
140 |
||
141 |
||
142 |
subsection{*Binary Addition and Multiplication: |
|
143 |
@{term bin_add} and @{term bin_mult}*} |
|
144 |
||
19380 | 145 |
lemma bin_add_Pls [simp]: "bin_add Pls w = w" |
15013 | 146 |
by (simp add: Bin_simps) |
147 |
||
19380 | 148 |
lemma bin_add_Min [simp]: "bin_add Min w = bin_pred w" |
15013 | 149 |
by (simp add: Bin_simps diff_minus add_ac) |
150 |
||
151 |
lemma bin_add_BIT_11 [simp]: |
|
19380 | 152 |
"bin_add (v BIT B1) (w BIT B1) = bin_add v (bin_succ w) BIT B0" |
15013 | 153 |
by (simp add: Bin_simps add_ac) |
154 |
||
155 |
lemma bin_add_BIT_10 [simp]: |
|
19380 | 156 |
"bin_add (v BIT B1) (w BIT B0) = (bin_add v w) BIT B1" |
15013 | 157 |
by (simp add: Bin_simps add_ac) |
158 |
||
159 |
lemma bin_add_BIT_0 [simp]: |
|
19380 | 160 |
"bin_add (v BIT B0) (w BIT y) = bin_add v w BIT y" |
15013 | 161 |
by (simp add: Bin_simps add_ac) |
162 |
||
19380 | 163 |
lemma bin_add_Pls_right [simp]: "bin_add w Pls = w" |
15013 | 164 |
by (simp add: Bin_simps) |
165 |
||
19380 | 166 |
lemma bin_add_Min_right [simp]: "bin_add w Min = bin_pred w" |
15013 | 167 |
by (simp add: Bin_simps diff_minus) |
168 |
||
19380 | 169 |
lemma bin_mult_Pls [simp]: "bin_mult Pls w = Pls" |
15013 | 170 |
by (simp add: Bin_simps) |
171 |
||
19380 | 172 |
lemma bin_mult_Min [simp]: "bin_mult Min w = bin_minus w" |
15013 | 173 |
by (simp add: Bin_simps) |
174 |
||
175 |
lemma bin_mult_1 [simp]: |
|
19380 | 176 |
"bin_mult (v BIT B1) w = bin_add ((bin_mult v w) BIT B0) w" |
15013 | 177 |
by (simp add: Bin_simps add_ac left_distrib) |
178 |
||
19380 | 179 |
lemma bin_mult_0 [simp]: "bin_mult (v BIT B0) w = (bin_mult v w) BIT B0" |
15013 | 180 |
by (simp add: Bin_simps left_distrib) |
181 |
||
182 |
||
183 |
||
184 |
subsection{*Converting Numerals to Rings: @{term number_of}*} |
|
185 |
||
186 |
axclass number_ring \<subseteq> number, comm_ring_1 |
|
187 |
number_of_eq: "number_of w = of_int (Rep_Bin w)" |
|
188 |
||
189 |
lemma number_of_succ: |
|
190 |
"number_of(bin_succ w) = (1 + number_of w ::'a::number_ring)" |
|
191 |
by (simp add: number_of_eq Bin_simps) |
|
192 |
||
193 |
lemma number_of_pred: |
|
194 |
"number_of(bin_pred w) = (- 1 + number_of w ::'a::number_ring)" |
|
195 |
by (simp add: number_of_eq Bin_simps) |
|
196 |
||
197 |
lemma number_of_minus: |
|
198 |
"number_of(bin_minus w) = (- (number_of w)::'a::number_ring)" |
|
199 |
by (simp add: number_of_eq Bin_simps) |
|
200 |
||
201 |
lemma number_of_add: |
|
202 |
"number_of(bin_add v w) = (number_of v + number_of w::'a::number_ring)" |
|
203 |
by (simp add: number_of_eq Bin_simps) |
|
204 |
||
205 |
lemma number_of_mult: |
|
206 |
"number_of(bin_mult v w) = (number_of v * number_of w::'a::number_ring)" |
|
207 |
by (simp add: number_of_eq Bin_simps) |
|
208 |
||
209 |
text{*The correctness of shifting. But it doesn't seem to give a measurable |
|
210 |
speed-up.*} |
|
211 |
lemma double_number_of_BIT: |
|
19380 | 212 |
"(1+1) * number_of w = (number_of (w BIT B0) ::'a::number_ring)" |
15013 | 213 |
by (simp add: number_of_eq Bin_simps left_distrib) |
214 |
||
215 |
text{*Converting numerals 0 and 1 to their abstract versions*} |
|
216 |
lemma numeral_0_eq_0 [simp]: "Numeral0 = (0::'a::number_ring)" |
|
217 |
by (simp add: number_of_eq Bin_simps) |
|
218 |
||
219 |
lemma numeral_1_eq_1 [simp]: "Numeral1 = (1::'a::number_ring)" |
|
220 |
by (simp add: number_of_eq Bin_simps) |
|
221 |
||
222 |
text{*Special-case simplification for small constants*} |
|
223 |
||
224 |
text{*Unary minus for the abstract constant 1. Cannot be inserted |
|
225 |
as a simprule until later: it is @{text number_of_Min} re-oriented!*} |
|
226 |
lemma numeral_m1_eq_minus_1: "(-1::'a::number_ring) = - 1" |
|
227 |
by (simp add: number_of_eq Bin_simps) |
|
228 |
||
229 |
||
230 |
lemma mult_minus1 [simp]: "-1 * z = -(z::'a::number_ring)" |
|
231 |
by (simp add: numeral_m1_eq_minus_1) |
|
232 |
||
233 |
lemma mult_minus1_right [simp]: "z * -1 = -(z::'a::number_ring)" |
|
234 |
by (simp add: numeral_m1_eq_minus_1) |
|
235 |
||
236 |
(*Negation of a coefficient*) |
|
237 |
lemma minus_number_of_mult [simp]: |
|
238 |
"- (number_of w) * z = number_of(bin_minus w) * (z::'a::number_ring)" |
|
239 |
by (simp add: number_of_minus) |
|
240 |
||
241 |
text{*Subtraction*} |
|
242 |
lemma diff_number_of_eq: |
|
243 |
"number_of v - number_of w = |
|
244 |
(number_of(bin_add v (bin_minus w))::'a::number_ring)" |
|
245 |
by (simp add: diff_minus number_of_add number_of_minus) |
|
246 |
||
247 |
||
19380 | 248 |
lemma number_of_Pls: "number_of Pls = (0::'a::number_ring)" |
15013 | 249 |
by (simp add: number_of_eq Bin_simps) |
250 |
||
19380 | 251 |
lemma number_of_Min: "number_of Min = (- 1::'a::number_ring)" |
15013 | 252 |
by (simp add: number_of_eq Bin_simps) |
253 |
||
254 |
lemma number_of_BIT: |
|
19380 | 255 |
"number_of(w BIT x) = (case x of B0 => 0 | B1 => (1::'a::number_ring)) + |
15013 | 256 |
(number_of w) + (number_of w)" |
15620
8ccdc8bc66a2
replaced bool by a new datatype "bit" for binary numerals
paulson
parents:
15140
diff
changeset
|
257 |
by (simp add: number_of_eq Bin_simps split: bit.split) |
15013 | 258 |
|
259 |
||
260 |
||
261 |
subsection{*Equality of Binary Numbers*} |
|
262 |
||
263 |
text{*First version by Norbert Voelker*} |
|
264 |
||
265 |
lemma eq_number_of_eq: |
|
266 |
"((number_of x::'a::number_ring) = number_of y) = |
|
267 |
iszero (number_of (bin_add x (bin_minus y)) :: 'a)" |
|
268 |
by (simp add: iszero_def compare_rls number_of_add number_of_minus) |
|
269 |
||
19380 | 270 |
lemma iszero_number_of_Pls: "iszero ((number_of Pls)::'a::number_ring)" |
15013 | 271 |
by (simp add: iszero_def numeral_0_eq_0) |
272 |
||
19380 | 273 |
lemma nonzero_number_of_Min: "~ iszero ((number_of Min)::'a::number_ring)" |
15013 | 274 |
by (simp add: iszero_def numeral_m1_eq_minus_1 eq_commute) |
275 |
||
276 |
||
277 |
subsection{*Comparisons, for Ordered Rings*} |
|
278 |
||
279 |
lemma double_eq_0_iff: "(a + a = 0) = (a = (0::'a::ordered_idom))" |
|
280 |
proof - |
|
281 |
have "a + a = (1+1)*a" by (simp add: left_distrib) |
|
282 |
with zero_less_two [where 'a = 'a] |
|
283 |
show ?thesis by force |
|
284 |
qed |
|
285 |
||
286 |
lemma le_imp_0_less: |
|
287 |
assumes le: "0 \<le> z" shows "(0::int) < 1 + z" |
|
288 |
proof - |
|
289 |
have "0 \<le> z" . |
|
290 |
also have "... < z + 1" by (rule less_add_one) |
|
291 |
also have "... = 1 + z" by (simp add: add_ac) |
|
292 |
finally show "0 < 1 + z" . |
|
293 |
qed |
|
294 |
||
295 |
lemma odd_nonzero: "1 + z + z \<noteq> (0::int)"; |
|
296 |
proof (cases z rule: int_cases) |
|
297 |
case (nonneg n) |
|
298 |
have le: "0 \<le> z+z" by (simp add: nonneg add_increasing) |
|
299 |
thus ?thesis using le_imp_0_less [OF le] |
|
300 |
by (auto simp add: add_assoc) |
|
301 |
next |
|
302 |
case (neg n) |
|
303 |
show ?thesis |
|
304 |
proof |
|
305 |
assume eq: "1 + z + z = 0" |
|
306 |
have "0 < 1 + (int n + int n)" |
|
307 |
by (simp add: le_imp_0_less add_increasing) |
|
308 |
also have "... = - (1 + z + z)" |
|
309 |
by (simp add: neg add_assoc [symmetric]) |
|
310 |
also have "... = 0" by (simp add: eq) |
|
311 |
finally have "0<0" .. |
|
312 |
thus False by blast |
|
313 |
qed |
|
314 |
qed |
|
315 |
||
316 |
||
317 |
text{*The premise involving @{term Ints} prevents @{term "a = 1/2"}.*} |
|
318 |
lemma Ints_odd_nonzero: "a \<in> Ints ==> 1 + a + a \<noteq> (0::'a::ordered_idom)" |
|
319 |
proof (unfold Ints_def) |
|
320 |
assume "a \<in> range of_int" |
|
321 |
then obtain z where a: "a = of_int z" .. |
|
322 |
show ?thesis |
|
323 |
proof |
|
324 |
assume eq: "1 + a + a = 0" |
|
325 |
hence "of_int (1 + z + z) = (of_int 0 :: 'a)" by (simp add: a) |
|
326 |
hence "1 + z + z = 0" by (simp only: of_int_eq_iff) |
|
327 |
with odd_nonzero show False by blast |
|
328 |
qed |
|
329 |
qed |
|
330 |
||
331 |
lemma Ints_number_of: "(number_of w :: 'a::number_ring) \<in> Ints" |
|
332 |
by (simp add: number_of_eq Ints_def) |
|
333 |
||
334 |
||
335 |
lemma iszero_number_of_BIT: |
|
336 |
"iszero (number_of (w BIT x)::'a) = |
|
19380 | 337 |
(x=B0 & iszero (number_of w::'a::{ordered_idom,number_ring}))" |
15013 | 338 |
by (simp add: iszero_def number_of_eq Bin_simps double_eq_0_iff |
15620
8ccdc8bc66a2
replaced bool by a new datatype "bit" for binary numerals
paulson
parents:
15140
diff
changeset
|
339 |
Ints_odd_nonzero Ints_def split: bit.split) |
15013 | 340 |
|
341 |
lemma iszero_number_of_0: |
|
19380 | 342 |
"iszero (number_of (w BIT B0) :: 'a::{ordered_idom,number_ring}) = |
15013 | 343 |
iszero (number_of w :: 'a)" |
344 |
by (simp only: iszero_number_of_BIT simp_thms) |
|
345 |
||
346 |
lemma iszero_number_of_1: |
|
19380 | 347 |
"~ iszero (number_of (w BIT B1)::'a::{ordered_idom,number_ring})" |
15620
8ccdc8bc66a2
replaced bool by a new datatype "bit" for binary numerals
paulson
parents:
15140
diff
changeset
|
348 |
by (simp add: iszero_number_of_BIT) |
15013 | 349 |
|
350 |
||
351 |
subsection{*The Less-Than Relation*} |
|
352 |
||
353 |
lemma less_number_of_eq_neg: |
|
354 |
"((number_of x::'a::{ordered_idom,number_ring}) < number_of y) |
|
355 |
= neg (number_of (bin_add x (bin_minus y)) :: 'a)" |
|
356 |
apply (subst less_iff_diff_less_0) |
|
357 |
apply (simp add: neg_def diff_minus number_of_add number_of_minus) |
|
358 |
done |
|
359 |
||
360 |
text{*If @{term Numeral0} is rewritten to 0 then this rule can't be applied: |
|
19380 | 361 |
@{term Numeral0} IS @{term "number_of Pls"} *} |
15013 | 362 |
lemma not_neg_number_of_Pls: |
19380 | 363 |
"~ neg (number_of Pls ::'a::{ordered_idom,number_ring})" |
15013 | 364 |
by (simp add: neg_def numeral_0_eq_0) |
365 |
||
366 |
lemma neg_number_of_Min: |
|
19380 | 367 |
"neg (number_of Min ::'a::{ordered_idom,number_ring})" |
15013 | 368 |
by (simp add: neg_def zero_less_one numeral_m1_eq_minus_1) |
369 |
||
370 |
lemma double_less_0_iff: "(a + a < 0) = (a < (0::'a::ordered_idom))" |
|
371 |
proof - |
|
372 |
have "(a + a < 0) = ((1+1)*a < 0)" by (simp add: left_distrib) |
|
373 |
also have "... = (a < 0)" |
|
374 |
by (simp add: mult_less_0_iff zero_less_two |
|
375 |
order_less_not_sym [OF zero_less_two]) |
|
376 |
finally show ?thesis . |
|
377 |
qed |
|
378 |
||
379 |
lemma odd_less_0: "(1 + z + z < 0) = (z < (0::int))"; |
|
380 |
proof (cases z rule: int_cases) |
|
381 |
case (nonneg n) |
|
382 |
thus ?thesis by (simp add: linorder_not_less add_assoc add_increasing |
|
383 |
le_imp_0_less [THEN order_less_imp_le]) |
|
384 |
next |
|
385 |
case (neg n) |
|
386 |
thus ?thesis by (simp del: int_Suc |
|
387 |
add: int_Suc0_eq_1 [symmetric] zadd_int compare_rls) |
|
388 |
qed |
|
389 |
||
390 |
text{*The premise involving @{term Ints} prevents @{term "a = 1/2"}.*} |
|
391 |
lemma Ints_odd_less_0: |
|
392 |
"a \<in> Ints ==> (1 + a + a < 0) = (a < (0::'a::ordered_idom))"; |
|
393 |
proof (unfold Ints_def) |
|
394 |
assume "a \<in> range of_int" |
|
395 |
then obtain z where a: "a = of_int z" .. |
|
396 |
hence "((1::'a) + a + a < 0) = (of_int (1 + z + z) < (of_int 0 :: 'a))" |
|
397 |
by (simp add: a) |
|
398 |
also have "... = (z < 0)" by (simp only: of_int_less_iff odd_less_0) |
|
399 |
also have "... = (a < 0)" by (simp add: a) |
|
400 |
finally show ?thesis . |
|
401 |
qed |
|
402 |
||
403 |
lemma neg_number_of_BIT: |
|
404 |
"neg (number_of (w BIT x)::'a) = |
|
405 |
neg (number_of w :: 'a::{ordered_idom,number_ring})" |
|
406 |
by (simp add: neg_def number_of_eq Bin_simps double_less_0_iff |
|
15620
8ccdc8bc66a2
replaced bool by a new datatype "bit" for binary numerals
paulson
parents:
15140
diff
changeset
|
407 |
Ints_odd_less_0 Ints_def split: bit.split) |
15013 | 408 |
|
409 |
||
410 |
text{*Less-Than or Equals*} |
|
411 |
||
412 |
text{*Reduces @{term "a\<le>b"} to @{term "~ (b<a)"} for ALL numerals*} |
|
413 |
lemmas le_number_of_eq_not_less = |
|
414 |
linorder_not_less [of "number_of w" "number_of v", symmetric, |
|
415 |
standard] |
|
416 |
||
417 |
lemma le_number_of_eq: |
|
418 |
"((number_of x::'a::{ordered_idom,number_ring}) \<le> number_of y) |
|
419 |
= (~ (neg (number_of (bin_add y (bin_minus x)) :: 'a)))" |
|
420 |
by (simp add: le_number_of_eq_not_less less_number_of_eq_neg) |
|
421 |
||
422 |
||
423 |
text{*Absolute value (@{term abs})*} |
|
424 |
||
425 |
lemma abs_number_of: |
|
426 |
"abs(number_of x::'a::{ordered_idom,number_ring}) = |
|
427 |
(if number_of x < (0::'a) then -number_of x else number_of x)" |
|
428 |
by (simp add: abs_if) |
|
429 |
||
430 |
||
431 |
text{*Re-orientation of the equation nnn=x*} |
|
432 |
lemma number_of_reorient: "(number_of w = x) = (x = number_of w)" |
|
433 |
by auto |
|
434 |
||
435 |
||
436 |
||
437 |
||
438 |
subsection{*Simplification of arithmetic operations on integer constants.*} |
|
439 |
||
440 |
lemmas bin_arith_extra_simps = |
|
441 |
number_of_add [symmetric] |
|
442 |
number_of_minus [symmetric] numeral_m1_eq_minus_1 [symmetric] |
|
443 |
number_of_mult [symmetric] |
|
444 |
diff_number_of_eq abs_number_of |
|
445 |
||
446 |
text{*For making a minimal simpset, one must include these default simprules. |
|
15620
8ccdc8bc66a2
replaced bool by a new datatype "bit" for binary numerals
paulson
parents:
15140
diff
changeset
|
447 |
Also include @{text simp_thms} *} |
15013 | 448 |
lemmas bin_arith_simps = |
15620
8ccdc8bc66a2
replaced bool by a new datatype "bit" for binary numerals
paulson
parents:
15140
diff
changeset
|
449 |
Numeral.bit.distinct |
15013 | 450 |
Pls_0_eq Min_1_eq |
451 |
bin_pred_Pls bin_pred_Min bin_pred_1 bin_pred_0 |
|
452 |
bin_succ_Pls bin_succ_Min bin_succ_1 bin_succ_0 |
|
453 |
bin_add_Pls bin_add_Min bin_add_BIT_0 bin_add_BIT_10 bin_add_BIT_11 |
|
454 |
bin_minus_Pls bin_minus_Min bin_minus_1 bin_minus_0 |
|
455 |
bin_mult_Pls bin_mult_Min bin_mult_1 bin_mult_0 |
|
456 |
bin_add_Pls_right bin_add_Min_right |
|
457 |
abs_zero abs_one bin_arith_extra_simps |
|
458 |
||
459 |
text{*Simplification of relational operations*} |
|
460 |
lemmas bin_rel_simps = |
|
461 |
eq_number_of_eq iszero_number_of_Pls nonzero_number_of_Min |
|
462 |
iszero_number_of_0 iszero_number_of_1 |
|
463 |
less_number_of_eq_neg |
|
464 |
not_neg_number_of_Pls not_neg_0 not_neg_1 not_iszero_1 |
|
465 |
neg_number_of_Min neg_number_of_BIT |
|
466 |
le_number_of_eq |
|
467 |
||
468 |
declare bin_arith_extra_simps [simp] |
|
469 |
declare bin_rel_simps [simp] |
|
470 |
||
471 |
||
472 |
subsection{*Simplification of arithmetic when nested to the right*} |
|
473 |
||
474 |
lemma add_number_of_left [simp]: |
|
475 |
"number_of v + (number_of w + z) = |
|
476 |
(number_of(bin_add v w) + z::'a::number_ring)" |
|
477 |
by (simp add: add_assoc [symmetric]) |
|
478 |
||
479 |
lemma mult_number_of_left [simp]: |
|
480 |
"number_of v * (number_of w * z) = |
|
481 |
(number_of(bin_mult v w) * z::'a::number_ring)" |
|
482 |
by (simp add: mult_assoc [symmetric]) |
|
483 |
||
484 |
lemma add_number_of_diff1: |
|
485 |
"number_of v + (number_of w - c) = |
|
486 |
number_of(bin_add v w) - (c::'a::number_ring)" |
|
487 |
by (simp add: diff_minus add_number_of_left) |
|
488 |
||
489 |
lemma add_number_of_diff2 [simp]: "number_of v + (c - number_of w) = |
|
490 |
number_of (bin_add v (bin_minus w)) + (c::'a::number_ring)" |
|
491 |
apply (subst diff_number_of_eq [symmetric]) |
|
492 |
apply (simp only: compare_rls) |
|
493 |
done |
|
494 |
||
19380 | 495 |
|
496 |
hide (open) const Pls Min B0 B1 |
|
497 |
||
15013 | 498 |
end |