| author | Manuel Eberl <eberlm@in.tum.de> | 
| Fri, 13 Jul 2018 16:54:36 +0100 | |
| changeset 68624 | 205d352ed727 | 
| parent 68484 | 59793df7f853 | 
| child 69065 | 440f7a575760 | 
| permissions | -rw-r--r-- | 
| 30293 | 1  | 
(*<*)  | 
| 30401 | 2  | 
theory Main_Doc  | 
| 30293 | 3  | 
imports Main  | 
4  | 
begin  | 
|
5  | 
||
| 61996 | 6  | 
setup \<open>  | 
| 67463 | 7  | 
  Thy_Output.antiquotation_pretty_source @{binding term_type_only} (Args.term -- Args.typ_abbrev)
 | 
8  | 
(fn ctxt => fn (t, T) =>  | 
|
| 
43564
 
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
 
wenzelm 
parents: 
42361 
diff
changeset
 | 
9  | 
(if fastype_of t = Sign.certify_typ (Proof_Context.theory_of ctxt) T then ()  | 
| 
 
9864182c6bad
document antiquotations are managed as theory data, with proper name space and entity markup;
 
wenzelm 
parents: 
42361 
diff
changeset
 | 
10  | 
else error "term_type_only: type mismatch";  | 
| 
67505
 
ceb324e34c14
clarified signature: items with \isasep are special;
 
wenzelm 
parents: 
67463 
diff
changeset
 | 
11  | 
Syntax.pretty_typ ctxt T))  | 
| 61996 | 12  | 
\<close>  | 
13  | 
setup \<open>  | 
|
| 67463 | 14  | 
  Thy_Output.antiquotation_pretty_source @{binding expanded_typ} Args.typ
 | 
| 
67505
 
ceb324e34c14
clarified signature: items with \isasep are special;
 
wenzelm 
parents: 
67463 
diff
changeset
 | 
15  | 
Syntax.pretty_typ  | 
| 61996 | 16  | 
\<close>  | 
| 30293 | 17  | 
(*>*)  | 
| 61996 | 18  | 
text\<open>  | 
| 30293 | 19  | 
|
20  | 
\begin{abstract}
 | 
|
| 68224 | 21  | 
This document lists the main types, functions and syntax provided by theory @{theory Main}. It is meant as a quick overview of what is available. For infix operators and their precedences see the final section. The sophisticated class structure is only hinted at. For details see \<^url>\<open>https://isabelle.in.tum.de/library/HOL\<close>.
 | 
| 30293 | 22  | 
\end{abstract}
 | 
23  | 
||
| 50581 | 24  | 
\section*{HOL}
 | 
| 30293 | 25  | 
|
| 63902 | 26  | 
The basic logic: @{prop "x = y"}, @{const True}, @{const False}, @{prop "\<not> P"}, @{prop"P \<and> Q"},
 | 
27  | 
@{prop "P \<or> Q"}, @{prop "P \<longrightarrow> Q"}, @{prop "\<forall>x. P"}, @{prop "\<exists>x. P"}, @{prop"\<exists>! x. P"},
 | 
|
28  | 
@{term"THE x. P"}.
 | 
|
| 61996 | 29  | 
\<^smallskip>  | 
| 30440 | 30  | 
|
31  | 
\begin{tabular}{@ {} l @ {~::~} l @ {}}
 | 
|
32  | 
@{const HOL.undefined} & @{typeof HOL.undefined}\\
 | 
|
33  | 
@{const HOL.default} & @{typeof HOL.default}\\
 | 
|
34  | 
\end{tabular}
 | 
|
35  | 
||
36  | 
\subsubsection*{Syntax}
 | 
|
| 30293 | 37  | 
|
| 30440 | 38  | 
\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
 | 
| 63902 | 39  | 
@{term"\<not> (x = y)"} & @{term[source]"\<not> (x = y)"} & (\<^verbatim>\<open>~=\<close>)\\
 | 
| 30440 | 40  | 
@{term[source]"P \<longleftrightarrow> Q"} & @{term"P \<longleftrightarrow> Q"} \\
 | 
41  | 
@{term"If x y z"} & @{term[source]"If x y z"}\\
 | 
|
| 63902 | 42  | 
@{term"Let e\<^sub>1 (\<lambda>x. e\<^sub>2)"} & @{term[source]"Let e\<^sub>1 (\<lambda>x. e\<^sub>2)"}\\
 | 
| 30440 | 43  | 
\end{supertabular}
 | 
44  | 
||
45  | 
||
| 50581 | 46  | 
\section*{Orderings}
 | 
| 30440 | 47  | 
|
48  | 
A collection of classes defining basic orderings:  | 
|
49  | 
preorder, partial order, linear order, dense linear order and wellorder.  | 
|
| 61996 | 50  | 
\<^smallskip>  | 
| 30293 | 51  | 
|
| 30425 | 52  | 
\begin{supertabular}{@ {} l @ {~::~} l l @ {}}
 | 
| 61996 | 53  | 
@{const Orderings.less_eq} & @{typeof Orderings.less_eq} & (\<^verbatim>\<open><=\<close>)\\
 | 
| 35277 | 54  | 
@{const Orderings.less} & @{typeof Orderings.less}\\
 | 
| 30440 | 55  | 
@{const Orderings.Least} & @{typeof Orderings.Least}\\
 | 
| 65964 | 56  | 
@{const Orderings.Greatest} & @{typeof Orderings.Greatest}\\
 | 
| 30440 | 57  | 
@{const Orderings.min} & @{typeof Orderings.min}\\
 | 
58  | 
@{const Orderings.max} & @{typeof Orderings.max}\\
 | 
|
59  | 
@{const[source] top} & @{typeof Orderings.top}\\
 | 
|
60  | 
@{const[source] bot} & @{typeof Orderings.bot}\\
 | 
|
61  | 
@{const Orderings.mono} & @{typeof Orderings.mono}\\
 | 
|
62  | 
@{const Orderings.strict_mono} & @{typeof Orderings.strict_mono}\\
 | 
|
| 30293 | 63  | 
\end{supertabular}
 | 
64  | 
||
65  | 
\subsubsection*{Syntax}
 | 
|
66  | 
||
| 30440 | 67  | 
\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
 | 
| 61996 | 68  | 
@{term[source]"x \<ge> y"} & @{term"x \<ge> y"} & (\<^verbatim>\<open>>=\<close>)\\
 | 
| 30293 | 69  | 
@{term[source]"x > y"} & @{term"x > y"}\\
 | 
| 63902 | 70  | 
@{term "\<forall>x\<le>y. P"} & @{term[source]"\<forall>x. x \<le> y \<longrightarrow> P"}\\
 | 
71  | 
@{term "\<exists>x\<le>y. P"} & @{term[source]"\<exists>x. x \<le> y \<and> P"}\\
 | 
|
| 30440 | 72  | 
\multicolumn{2}{@ {}l@ {}}{Similarly for $<$, $\ge$ and $>$}\\
 | 
| 63902 | 73  | 
@{term "LEAST x. P"} & @{term[source]"Least (\<lambda>x. P)"}\\
 | 
| 65964 | 74  | 
@{term "GREATEST x. P"} & @{term[source]"Greatest (\<lambda>x. P)"}\\
 | 
| 30293 | 75  | 
\end{supertabular}
 | 
76  | 
||
| 30401 | 77  | 
|
| 50581 | 78  | 
\section*{Lattices}
 | 
| 30401 | 79  | 
|
80  | 
Classes semilattice, lattice, distributive lattice and complete lattice (the  | 
|
| 68484 | 81  | 
latter in theory @{theory HOL.Set}).
 | 
| 30401 | 82  | 
|
83  | 
\begin{tabular}{@ {} l @ {~::~} l @ {}}
 | 
|
84  | 
@{const Lattices.inf} & @{typeof Lattices.inf}\\
 | 
|
85  | 
@{const Lattices.sup} & @{typeof Lattices.sup}\\
 | 
|
| 44969 | 86  | 
@{const Complete_Lattices.Inf} & @{term_type_only Complete_Lattices.Inf "'a set \<Rightarrow> 'a::Inf"}\\
 | 
87  | 
@{const Complete_Lattices.Sup} & @{term_type_only Complete_Lattices.Sup "'a set \<Rightarrow> 'a::Sup"}\\
 | 
|
| 30401 | 88  | 
\end{tabular}
 | 
89  | 
||
90  | 
\subsubsection*{Syntax}
 | 
|
91  | 
||
| 61996 | 92  | 
Available by loading theory \<open>Lattice_Syntax\<close> in directory \<open>Library\<close>.  | 
| 30401 | 93  | 
|
94  | 
\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
 | 
|
95  | 
@{text[source]"x \<sqsubseteq> y"} & @{term"x \<le> y"}\\
 | 
|
96  | 
@{text[source]"x \<sqsubset> y"} & @{term"x < y"}\\
 | 
|
97  | 
@{text[source]"x \<sqinter> y"} & @{term"inf x y"}\\
 | 
|
98  | 
@{text[source]"x \<squnion> y"} & @{term"sup x y"}\\
 | 
|
| 62204 | 99  | 
@{text[source]"\<Sqinter>A"} & @{term"Inf A"}\\
 | 
100  | 
@{text[source]"\<Squnion>A"} & @{term"Sup A"}\\
 | 
|
| 30440 | 101  | 
@{text[source]"\<top>"} & @{term[source] top}\\
 | 
102  | 
@{text[source]"\<bottom>"} & @{term[source] bot}\\
 | 
|
| 30401 | 103  | 
\end{supertabular}
 | 
104  | 
||
105  | 
||
| 50581 | 106  | 
\section*{Set}
 | 
| 30293 | 107  | 
|
| 30425 | 108  | 
\begin{supertabular}{@ {} l @ {~::~} l l @ {}}
 | 
| 30370 | 109  | 
@{const Set.empty} & @{term_type_only "Set.empty" "'a set"}\\
 | 
| 32142 | 110  | 
@{const Set.insert} & @{term_type_only insert "'a\<Rightarrow>'a set\<Rightarrow>'a set"}\\
 | 
| 30293 | 111  | 
@{const Collect} & @{term_type_only Collect "('a\<Rightarrow>bool)\<Rightarrow>'a set"}\\
 | 
| 61996 | 112  | 
@{const Set.member} & @{term_type_only Set.member "'a\<Rightarrow>'a set\<Rightarrow>bool"} & (\<^verbatim>\<open>:\<close>)\\
 | 
113  | 
@{const Set.union} & @{term_type_only Set.union "'a set\<Rightarrow>'a set \<Rightarrow> 'a set"} & (\<^verbatim>\<open>Un\<close>)\\
 | 
|
114  | 
@{const Set.inter} & @{term_type_only Set.inter "'a set\<Rightarrow>'a set \<Rightarrow> 'a set"} & (\<^verbatim>\<open>Int\<close>)\\
 | 
|
| 30293 | 115  | 
@{const UNION} & @{term_type_only UNION "'a set\<Rightarrow>('a \<Rightarrow> 'b set) \<Rightarrow> 'b set"}\\
 | 
116  | 
@{const INTER} & @{term_type_only INTER "'a set\<Rightarrow>('a \<Rightarrow> 'b set) \<Rightarrow> 'b set"}\\
 | 
|
117  | 
@{const Union} & @{term_type_only Union "'a set set\<Rightarrow>'a set"}\\
 | 
|
118  | 
@{const Inter} & @{term_type_only Inter "'a set set\<Rightarrow>'a set"}\\
 | 
|
119  | 
@{const Pow} & @{term_type_only Pow "'a set \<Rightarrow>'a set set"}\\
 | 
|
120  | 
@{const UNIV} & @{term_type_only UNIV "'a set"}\\
 | 
|
121  | 
@{const image} & @{term_type_only image "('a\<Rightarrow>'b)\<Rightarrow>'a set\<Rightarrow>'b set"}\\
 | 
|
122  | 
@{const Ball} & @{term_type_only Ball "'a set\<Rightarrow>('a\<Rightarrow>bool)\<Rightarrow>bool"}\\
 | 
|
123  | 
@{const Bex} & @{term_type_only Bex "'a set\<Rightarrow>('a\<Rightarrow>bool)\<Rightarrow>bool"}\\
 | 
|
124  | 
\end{supertabular}
 | 
|
125  | 
||
126  | 
\subsubsection*{Syntax}
 | 
|
127  | 
||
| 30425 | 128  | 
\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
 | 
| 61996 | 129  | 
\<open>{a\<^sub>1,\<dots>,a\<^sub>n}\<close> & \<open>insert a\<^sub>1 (\<dots> (insert a\<^sub>n {})\<dots>)\<close>\\
 | 
| 63902 | 130  | 
@{term "a \<notin> A"} & @{term[source]"\<not>(x \<in> A)"}\\
 | 
131  | 
@{term "A \<subseteq> B"} & @{term[source]"A \<le> B"}\\
 | 
|
132  | 
@{term "A \<subset> B"} & @{term[source]"A < B"}\\
 | 
|
| 30293 | 133  | 
@{term[source]"A \<supseteq> B"} & @{term[source]"B \<le> A"}\\
 | 
134  | 
@{term[source]"A \<supset> B"} & @{term[source]"B < A"}\\
 | 
|
| 63902 | 135  | 
@{term "{x. P}"} & @{term[source]"Collect (\<lambda>x. P)"}\\
 | 
| 61996 | 136  | 
\<open>{t | x\<^sub>1 \<dots> x\<^sub>n. P}\<close> & \<open>{v. \<exists>x\<^sub>1 \<dots> x\<^sub>n. v = t \<and> P}\<close>\\
 | 
| 
61995
 
74709e9c4f17
clarified print modes: Isabelle symbols are used by default, but "latex" mode needs to be for some syntax forms;
 
wenzelm 
parents: 
61943 
diff
changeset
 | 
137  | 
@{term[source]"\<Union>x\<in>I. A"} & @{term[source]"UNION I (\<lambda>x. A)"} & (\texttt{UN})\\
 | 
| 
 
74709e9c4f17
clarified print modes: Isabelle symbols are used by default, but "latex" mode needs to be for some syntax forms;
 
wenzelm 
parents: 
61943 
diff
changeset
 | 
138  | 
@{term[source]"\<Union>x. A"} & @{term[source]"UNION UNIV (\<lambda>x. A)"}\\
 | 
| 
 
74709e9c4f17
clarified print modes: Isabelle symbols are used by default, but "latex" mode needs to be for some syntax forms;
 
wenzelm 
parents: 
61943 
diff
changeset
 | 
139  | 
@{term[source]"\<Inter>x\<in>I. A"} & @{term[source]"INTER I (\<lambda>x. A)"} & (\texttt{INT})\\
 | 
| 
 
74709e9c4f17
clarified print modes: Isabelle symbols are used by default, but "latex" mode needs to be for some syntax forms;
 
wenzelm 
parents: 
61943 
diff
changeset
 | 
140  | 
@{term[source]"\<Inter>x. A"} & @{term[source]"INTER UNIV (\<lambda>x. A)"}\\
 | 
| 63902 | 141  | 
@{term "\<forall>x\<in>A. P"} & @{term[source]"Ball A (\<lambda>x. P)"}\\
 | 
142  | 
@{term "\<exists>x\<in>A. P"} & @{term[source]"Bex A (\<lambda>x. P)"}\\
 | 
|
143  | 
@{term "range f"} & @{term[source]"f ` UNIV"}\\
 | 
|
| 30293 | 144  | 
\end{supertabular}
 | 
145  | 
||
146  | 
||
| 50581 | 147  | 
\section*{Fun}
 | 
| 30293 | 148  | 
|
| 32933 | 149  | 
\begin{supertabular}{@ {} l @ {~::~} l l @ {}}
 | 
| 30293 | 150  | 
@{const "Fun.id"} & @{typeof Fun.id}\\
 | 
| 32933 | 151  | 
@{const "Fun.comp"} & @{typeof Fun.comp} & (\texttt{o})\\
 | 
| 30293 | 152  | 
@{const "Fun.inj_on"} & @{term_type_only Fun.inj_on "('a\<Rightarrow>'b)\<Rightarrow>'a set\<Rightarrow>bool"}\\
 | 
153  | 
@{const "Fun.inj"} & @{typeof Fun.inj}\\
 | 
|
154  | 
@{const "Fun.surj"} & @{typeof Fun.surj}\\
 | 
|
155  | 
@{const "Fun.bij"} & @{typeof Fun.bij}\\
 | 
|
156  | 
@{const "Fun.bij_betw"} & @{term_type_only Fun.bij_betw "('a\<Rightarrow>'b)\<Rightarrow>'a set\<Rightarrow>'b set\<Rightarrow>bool"}\\
 | 
|
157  | 
@{const "Fun.fun_upd"} & @{typeof Fun.fun_upd}\\
 | 
|
158  | 
\end{supertabular}
 | 
|
159  | 
||
160  | 
\subsubsection*{Syntax}
 | 
|
161  | 
||
162  | 
\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
 | 
|
163  | 
@{term"fun_upd f x y"} & @{term[source]"fun_upd f x y"}\\
 | 
|
| 61996 | 164  | 
\<open>f(x\<^sub>1:=y\<^sub>1,\<dots>,x\<^sub>n:=y\<^sub>n)\<close> & \<open>f(x\<^sub>1:=y\<^sub>1)\<dots>(x\<^sub>n:=y\<^sub>n)\<close>\\  | 
| 30293 | 165  | 
\end{tabular}
 | 
166  | 
||
167  | 
||
| 50581 | 168  | 
\section*{Hilbert\_Choice}
 | 
| 33019 | 169  | 
|
170  | 
Hilbert's selection ($\varepsilon$) operator: @{term"SOME x. P"}.
 | 
|
| 61996 | 171  | 
\<^smallskip>  | 
| 33019 | 172  | 
|
173  | 
\begin{tabular}{@ {} l @ {~::~} l @ {}}
 | 
|
| 33057 | 174  | 
@{const Hilbert_Choice.inv_into} & @{term_type_only Hilbert_Choice.inv_into "'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a)"}
 | 
| 33019 | 175  | 
\end{tabular}
 | 
176  | 
||
177  | 
\subsubsection*{Syntax}
 | 
|
178  | 
||
179  | 
\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
 | 
|
| 33057 | 180  | 
@{term inv} & @{term[source]"inv_into UNIV"}
 | 
| 33019 | 181  | 
\end{tabular}
 | 
182  | 
||
| 50581 | 183  | 
\section*{Fixed Points}
 | 
| 30293 | 184  | 
|
| 68484 | 185  | 
Theory: @{theory HOL.Inductive}.
 | 
| 30293 | 186  | 
|
187  | 
Least and greatest fixed points in a complete lattice @{typ 'a}:
 | 
|
188  | 
||
189  | 
\begin{tabular}{@ {} l @ {~::~} l @ {}}
 | 
|
190  | 
@{const Inductive.lfp} & @{typeof Inductive.lfp}\\
 | 
|
191  | 
@{const Inductive.gfp} & @{typeof Inductive.gfp}\\
 | 
|
192  | 
\end{tabular}
 | 
|
193  | 
||
194  | 
Note that in particular sets (@{typ"'a \<Rightarrow> bool"}) are complete lattices.
 | 
|
195  | 
||
| 50581 | 196  | 
\section*{Sum\_Type}
 | 
| 30293 | 197  | 
|
| 61996 | 198  | 
Type constructor \<open>+\<close>.  | 
| 30293 | 199  | 
|
200  | 
\begin{tabular}{@ {} l @ {~::~} l @ {}}
 | 
|
201  | 
@{const Sum_Type.Inl} & @{typeof Sum_Type.Inl}\\
 | 
|
202  | 
@{const Sum_Type.Inr} & @{typeof Sum_Type.Inr}\\
 | 
|
203  | 
@{const Sum_Type.Plus} & @{term_type_only Sum_Type.Plus "'a set\<Rightarrow>'b set\<Rightarrow>('a+'b)set"}
 | 
|
204  | 
\end{tabular}
 | 
|
205  | 
||
206  | 
||
| 50581 | 207  | 
\section*{Product\_Type}
 | 
| 30293 | 208  | 
|
| 61996 | 209  | 
Types @{typ unit} and \<open>\<times>\<close>.
 | 
| 30293 | 210  | 
|
211  | 
\begin{supertabular}{@ {} l @ {~::~} l @ {}}
 | 
|
212  | 
@{const Product_Type.Unity} & @{typeof Product_Type.Unity}\\
 | 
|
213  | 
@{const Pair} & @{typeof Pair}\\
 | 
|
214  | 
@{const fst} & @{typeof fst}\\
 | 
|
215  | 
@{const snd} & @{typeof snd}\\
 | 
|
| 
61424
 
c3658c18b7bc
prod_case as canonical name for product type eliminator
 
haftmann 
parents: 
60352 
diff
changeset
 | 
216  | 
@{const case_prod} & @{typeof case_prod}\\
 | 
| 30293 | 217  | 
@{const curry} & @{typeof curry}\\
 | 
218  | 
@{const Product_Type.Sigma} & @{term_type_only Product_Type.Sigma "'a set\<Rightarrow>('a\<Rightarrow>'b set)\<Rightarrow>('a*'b)set"}\\
 | 
|
219  | 
\end{supertabular}
 | 
|
220  | 
||
221  | 
\subsubsection*{Syntax}
 | 
|
222  | 
||
| 30440 | 223  | 
\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} ll @ {}}
 | 
| 63902 | 224  | 
@{term "Pair a b"} & @{term[source]"Pair a b"}\\
 | 
225  | 
@{term "case_prod (\<lambda>x y. t)"} & @{term[source]"case_prod (\<lambda>x y. t)"}\\
 | 
|
| 
63935
 
aa1fe1103ab8
raw control symbols are superseded by Latex.embed_raw;
 
wenzelm 
parents: 
63902 
diff
changeset
 | 
226  | 
@{term "A \<times> B"} &  \<open>Sigma A (\<lambda>\<^latex>\<open>\_\<close>. B)\<close>
 | 
| 30293 | 227  | 
\end{tabular}
 | 
228  | 
||
229  | 
Pairs may be nested. Nesting to the right is printed as a tuple,  | 
|
| 63902 | 230  | 
e.g.\ \mbox{@{term "(a,b,c)"}} is really \mbox{\<open>(a, (b, c))\<close>.}
 | 
| 30293 | 231  | 
Pattern matching with pairs and tuples extends to all binders,  | 
| 63902 | 232  | 
e.g.\ \mbox{@{prop "\<forall>(x,y)\<in>A. P"},} @{term "{(x,y). P}"}, etc.
 | 
| 30293 | 233  | 
|
234  | 
||
| 50581 | 235  | 
\section*{Relation}
 | 
| 30293 | 236  | 
|
| 47187 | 237  | 
\begin{tabular}{@ {} l @ {~::~} l @ {}}
 | 
| 30293 | 238  | 
@{const Relation.converse} & @{term_type_only Relation.converse "('a * 'b)set \<Rightarrow> ('b*'a)set"}\\
 | 
| 47682 | 239  | 
@{const Relation.relcomp} & @{term_type_only Relation.relcomp "('a*'b)set\<Rightarrow>('b*'c)set\<Rightarrow>('a*'c)set"}\\
 | 
| 30293 | 240  | 
@{const Relation.Image} & @{term_type_only Relation.Image "('a*'b)set\<Rightarrow>'a set\<Rightarrow>'b set"}\\
 | 
241  | 
@{const Relation.inv_image} & @{term_type_only Relation.inv_image "('a*'a)set\<Rightarrow>('b\<Rightarrow>'a)\<Rightarrow>('b*'b)set"}\\
 | 
|
242  | 
@{const Relation.Id_on} & @{term_type_only Relation.Id_on "'a set\<Rightarrow>('a*'a)set"}\\
 | 
|
243  | 
@{const Relation.Id} & @{term_type_only Relation.Id "('a*'a)set"}\\
 | 
|
244  | 
@{const Relation.Domain} & @{term_type_only Relation.Domain "('a*'b)set\<Rightarrow>'a set"}\\
 | 
|
245  | 
@{const Relation.Range} & @{term_type_only Relation.Range "('a*'b)set\<Rightarrow>'b set"}\\
 | 
|
246  | 
@{const Relation.Field} & @{term_type_only Relation.Field "('a*'a)set\<Rightarrow>'a set"}\\
 | 
|
247  | 
@{const Relation.refl_on} & @{term_type_only Relation.refl_on "'a set\<Rightarrow>('a*'a)set\<Rightarrow>bool"}\\
 | 
|
248  | 
@{const Relation.refl} & @{term_type_only Relation.refl "('a*'a)set\<Rightarrow>bool"}\\
 | 
|
249  | 
@{const Relation.sym} & @{term_type_only Relation.sym "('a*'a)set\<Rightarrow>bool"}\\
 | 
|
250  | 
@{const Relation.antisym} & @{term_type_only Relation.antisym "('a*'a)set\<Rightarrow>bool"}\\
 | 
|
251  | 
@{const Relation.trans} & @{term_type_only Relation.trans "('a*'a)set\<Rightarrow>bool"}\\
 | 
|
252  | 
@{const Relation.irrefl} & @{term_type_only Relation.irrefl "('a*'a)set\<Rightarrow>bool"}\\
 | 
|
253  | 
@{const Relation.total_on} & @{term_type_only Relation.total_on "'a set\<Rightarrow>('a*'a)set\<Rightarrow>bool"}\\
 | 
|
| 30440 | 254  | 
@{const Relation.total} & @{term_type_only Relation.total "('a*'a)set\<Rightarrow>bool"}\\
 | 
| 47187 | 255  | 
\end{tabular}
 | 
| 30293 | 256  | 
|
257  | 
\subsubsection*{Syntax}
 | 
|
258  | 
||
| 30440 | 259  | 
\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
 | 
| 61996 | 260  | 
@{term"converse r"} & @{term[source]"converse r"} & (\<^verbatim>\<open>^-1\<close>)
 | 
| 30293 | 261  | 
\end{tabular}
 | 
| 61996 | 262  | 
\<^medskip>  | 
| 47187 | 263  | 
|
264  | 
\noindent  | 
|
| 61996 | 265  | 
Type synonym \ @{typ"'a rel"} \<open>=\<close> @{expanded_typ "'a rel"}
 | 
| 30293 | 266  | 
|
| 50581 | 267  | 
\section*{Equiv\_Relations}
 | 
| 30293 | 268  | 
|
269  | 
\begin{supertabular}{@ {} l @ {~::~} l @ {}}
 | 
|
270  | 
@{const Equiv_Relations.equiv} & @{term_type_only Equiv_Relations.equiv "'a set \<Rightarrow> ('a*'a)set\<Rightarrow>bool"}\\
 | 
|
271  | 
@{const Equiv_Relations.quotient} & @{term_type_only Equiv_Relations.quotient "'a set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> 'a set set"}\\
 | 
|
272  | 
@{const Equiv_Relations.congruent} & @{term_type_only Equiv_Relations.congruent "('a*'a)set\<Rightarrow>('a\<Rightarrow>'b)\<Rightarrow>bool"}\\
 | 
|
273  | 
@{const Equiv_Relations.congruent2} & @{term_type_only Equiv_Relations.congruent2 "('a*'a)set\<Rightarrow>('b*'b)set\<Rightarrow>('a\<Rightarrow>'b\<Rightarrow>'c)\<Rightarrow>bool"}\\
 | 
|
274  | 
%@ {const Equiv_Relations.} & @ {term_type_only Equiv_Relations. ""}\\
 | 
|
275  | 
\end{supertabular}
 | 
|
276  | 
||
277  | 
\subsubsection*{Syntax}
 | 
|
278  | 
||
279  | 
\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
 | 
|
280  | 
@{term"congruent r f"} & @{term[source]"congruent r f"}\\
 | 
|
281  | 
@{term"congruent2 r r f"} & @{term[source]"congruent2 r r f"}\\
 | 
|
282  | 
\end{tabular}
 | 
|
283  | 
||
284  | 
||
| 50581 | 285  | 
\section*{Transitive\_Closure}
 | 
| 30293 | 286  | 
|
287  | 
\begin{tabular}{@ {} l @ {~::~} l @ {}}
 | 
|
288  | 
@{const Transitive_Closure.rtrancl} & @{term_type_only Transitive_Closure.rtrancl "('a*'a)set\<Rightarrow>('a*'a)set"}\\
 | 
|
289  | 
@{const Transitive_Closure.trancl} & @{term_type_only Transitive_Closure.trancl "('a*'a)set\<Rightarrow>('a*'a)set"}\\
 | 
|
290  | 
@{const Transitive_Closure.reflcl} & @{term_type_only Transitive_Closure.reflcl "('a*'a)set\<Rightarrow>('a*'a)set"}\\
 | 
|
| 45618 | 291  | 
@{const Transitive_Closure.acyclic} & @{term_type_only Transitive_Closure.acyclic "('a*'a)set\<Rightarrow>bool"}\\
 | 
| 67399 | 292  | 
@{const compower} & @{term_type_only "(^^) :: ('a*'a)set\<Rightarrow>nat\<Rightarrow>('a*'a)set" "('a*'a)set\<Rightarrow>nat\<Rightarrow>('a*'a)set"}\\
 | 
| 30293 | 293  | 
\end{tabular}
 | 
294  | 
||
295  | 
\subsubsection*{Syntax}
 | 
|
296  | 
||
| 30440 | 297  | 
\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
 | 
| 61996 | 298  | 
@{term"rtrancl r"} & @{term[source]"rtrancl r"} & (\<^verbatim>\<open>^*\<close>)\\
 | 
299  | 
@{term"trancl r"} & @{term[source]"trancl r"} & (\<^verbatim>\<open>^+\<close>)\\
 | 
|
300  | 
@{term"reflcl r"} & @{term[source]"reflcl r"} & (\<^verbatim>\<open>^=\<close>)
 | 
|
| 30293 | 301  | 
\end{tabular}
 | 
302  | 
||
303  | 
||
| 50581 | 304  | 
\section*{Algebra}
 | 
| 30293 | 305  | 
|
| 68484 | 306  | 
Theories @{theory HOL.Groups}, @{theory HOL.Rings}, @{theory HOL.Fields} and @{theory
 | 
307  | 
HOL.Divides} define a large collection of classes describing common algebraic  | 
|
| 30440 | 308  | 
structures from semigroups up to fields. Everything is done in terms of  | 
309  | 
overloaded operators:  | 
|
310  | 
||
311  | 
\begin{supertabular}{@ {} l @ {~::~} l l @ {}}
 | 
|
| 61996 | 312  | 
\<open>0\<close> & @{typeof zero}\\
 | 
313  | 
\<open>1\<close> & @{typeof one}\\
 | 
|
| 30440 | 314  | 
@{const plus} & @{typeof plus}\\
 | 
315  | 
@{const minus} & @{typeof minus}\\
 | 
|
| 61996 | 316  | 
@{const uminus} & @{typeof uminus} & (\<^verbatim>\<open>-\<close>)\\
 | 
| 30440 | 317  | 
@{const times} & @{typeof times}\\
 | 
318  | 
@{const inverse} & @{typeof inverse}\\
 | 
|
319  | 
@{const divide} & @{typeof divide}\\
 | 
|
320  | 
@{const abs} & @{typeof abs}\\
 | 
|
321  | 
@{const sgn} & @{typeof sgn}\\
 | 
|
| 
63950
 
cdc1e59aa513
syntactic type class for operation mod named after mod;
 
haftmann 
parents: 
63935 
diff
changeset
 | 
322  | 
@{const Rings.dvd} & @{typeof Rings.dvd}\\
 | 
| 
 
cdc1e59aa513
syntactic type class for operation mod named after mod;
 
haftmann 
parents: 
63935 
diff
changeset
 | 
323  | 
@{const divide} & @{typeof divide}\\
 | 
| 
 
cdc1e59aa513
syntactic type class for operation mod named after mod;
 
haftmann 
parents: 
63935 
diff
changeset
 | 
324  | 
@{const modulo} & @{typeof modulo}\\
 | 
| 30440 | 325  | 
\end{supertabular}
 | 
326  | 
||
327  | 
\subsubsection*{Syntax}
 | 
|
328  | 
||
329  | 
\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
 | 
|
| 63902 | 330  | 
@{term "\<bar>x\<bar>"} & @{term[source] "abs x"}
 | 
| 30440 | 331  | 
\end{tabular}
 | 
| 30293 | 332  | 
|
333  | 
||
| 50581 | 334  | 
\section*{Nat}
 | 
| 30293 | 335  | 
|
336  | 
@{datatype nat}
 | 
|
| 61996 | 337  | 
\<^bigskip>  | 
| 30293 | 338  | 
|
339  | 
\begin{tabular}{@ {} lllllll @ {}}
 | 
|
| 67399 | 340  | 
@{term "(+) :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
 | 
341  | 
@{term "(-) :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
 | 
|
342  | 
@{term "( * ) :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
 | 
|
343  | 
@{term "(^) :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
 | 
|
344  | 
@{term "(div) :: nat \<Rightarrow> nat \<Rightarrow> nat"}&
 | 
|
345  | 
@{term "(mod) :: nat \<Rightarrow> nat \<Rightarrow> nat"}&
 | 
|
346  | 
@{term "(dvd) :: nat \<Rightarrow> nat \<Rightarrow> bool"}\\
 | 
|
347  | 
@{term "(\<le>) :: nat \<Rightarrow> nat \<Rightarrow> bool"} &
 | 
|
348  | 
@{term "(<) :: nat \<Rightarrow> nat \<Rightarrow> bool"} &
 | 
|
| 30293 | 349  | 
@{term "min :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
 | 
350  | 
@{term "max :: nat \<Rightarrow> nat \<Rightarrow> nat"} &
 | 
|
351  | 
@{term "Min :: nat set \<Rightarrow> nat"} &
 | 
|
352  | 
@{term "Max :: nat set \<Rightarrow> nat"}\\
 | 
|
353  | 
\end{tabular}
 | 
|
354  | 
||
355  | 
\begin{tabular}{@ {} l @ {~::~} l @ {}}
 | 
|
| 30988 | 356  | 
@{const Nat.of_nat} & @{typeof Nat.of_nat}\\
 | 
| 67399 | 357  | 
@{term "(^^) :: ('a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a"} &
 | 
358  | 
  @{term_type_only "(^^) :: ('a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a" "('a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a"}
 | 
|
| 30293 | 359  | 
\end{tabular}
 | 
360  | 
||
| 50581 | 361  | 
\section*{Int}
 | 
| 30293 | 362  | 
|
363  | 
Type @{typ int}
 | 
|
| 61996 | 364  | 
\<^bigskip>  | 
| 30293 | 365  | 
|
366  | 
\begin{tabular}{@ {} llllllll @ {}}
 | 
|
| 67399 | 367  | 
@{term "(+) :: int \<Rightarrow> int \<Rightarrow> int"} &
 | 
368  | 
@{term "(-) :: int \<Rightarrow> int \<Rightarrow> int"} &
 | 
|
| 30293 | 369  | 
@{term "uminus :: int \<Rightarrow> int"} &
 | 
| 67399 | 370  | 
@{term "( * ) :: int \<Rightarrow> int \<Rightarrow> int"} &
 | 
371  | 
@{term "(^) :: int \<Rightarrow> nat \<Rightarrow> int"} &
 | 
|
372  | 
@{term "(div) :: int \<Rightarrow> int \<Rightarrow> int"}&
 | 
|
373  | 
@{term "(mod) :: int \<Rightarrow> int \<Rightarrow> int"}&
 | 
|
374  | 
@{term "(dvd) :: int \<Rightarrow> int \<Rightarrow> bool"}\\
 | 
|
375  | 
@{term "(\<le>) :: int \<Rightarrow> int \<Rightarrow> bool"} &
 | 
|
376  | 
@{term "(<) :: int \<Rightarrow> int \<Rightarrow> bool"} &
 | 
|
| 30293 | 377  | 
@{term "min :: int \<Rightarrow> int \<Rightarrow> int"} &
 | 
378  | 
@{term "max :: int \<Rightarrow> int \<Rightarrow> int"} &
 | 
|
379  | 
@{term "Min :: int set \<Rightarrow> int"} &
 | 
|
380  | 
@{term "Max :: int set \<Rightarrow> int"}\\
 | 
|
381  | 
@{term "abs :: int \<Rightarrow> int"} &
 | 
|
382  | 
@{term "sgn :: int \<Rightarrow> int"}\\
 | 
|
383  | 
\end{tabular}
 | 
|
384  | 
||
| 30440 | 385  | 
\begin{tabular}{@ {} l @ {~::~} l l @ {}}
 | 
| 30293 | 386  | 
@{const Int.nat} & @{typeof Int.nat}\\
 | 
387  | 
@{const Int.of_int} & @{typeof Int.of_int}\\
 | 
|
| 61996 | 388  | 
@{const Int.Ints} & @{term_type_only Int.Ints "'a::ring_1 set"} & (\<^verbatim>\<open>Ints\<close>)
 | 
| 30293 | 389  | 
\end{tabular}
 | 
390  | 
||
391  | 
\subsubsection*{Syntax}
 | 
|
392  | 
||
393  | 
\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
 | 
|
394  | 
@{term"of_nat::nat\<Rightarrow>int"} & @{term[source]"of_nat"}\\
 | 
|
395  | 
\end{tabular}
 | 
|
396  | 
||
397  | 
||
| 50581 | 398  | 
\section*{Finite\_Set}
 | 
| 30401 | 399  | 
|
400  | 
\begin{supertabular}{@ {} l @ {~::~} l @ {}}
 | 
|
401  | 
@{const Finite_Set.finite} & @{term_type_only Finite_Set.finite "'a set\<Rightarrow>bool"}\\
 | 
|
| 63902 | 402  | 
@{const Finite_Set.card} & @{term_type_only Finite_Set.card "'a set \<Rightarrow> nat"}\\
 | 
| 30401 | 403  | 
@{const Finite_Set.fold} & @{term_type_only Finite_Set.fold "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b"}\\
 | 
| 
64281
 
bfc2e92d9b4c
restored document structure after theory refactoring
 
haftmann 
parents: 
64272 
diff
changeset
 | 
404  | 
\end{supertabular}
 | 
| 
 
bfc2e92d9b4c
restored document structure after theory refactoring
 
haftmann 
parents: 
64272 
diff
changeset
 | 
405  | 
|
| 
 
bfc2e92d9b4c
restored document structure after theory refactoring
 
haftmann 
parents: 
64272 
diff
changeset
 | 
406  | 
|
| 65952 | 407  | 
\section*{Lattices\_Big}
 | 
408  | 
||
409  | 
\begin{supertabular}{@ {} l @ {~::~} l l @ {}}
 | 
|
410  | 
@{const Lattices_Big.Min} & @{typeof Lattices_Big.Min}\\
 | 
|
411  | 
@{const Lattices_Big.Max} & @{typeof Lattices_Big.Max}\\
 | 
|
412  | 
@{const Lattices_Big.arg_min} & @{typeof Lattices_Big.arg_min}\\
 | 
|
| 65953 | 413  | 
@{const Lattices_Big.is_arg_min} & @{typeof Lattices_Big.is_arg_min}\\
 | 
| 65954 | 414  | 
@{const Lattices_Big.arg_max} & @{typeof Lattices_Big.arg_max}\\
 | 
415  | 
@{const Lattices_Big.is_arg_max} & @{typeof Lattices_Big.is_arg_max}\\
 | 
|
| 65952 | 416  | 
\end{supertabular}
 | 
417  | 
||
418  | 
\subsubsection*{Syntax}
 | 
|
419  | 
||
420  | 
\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
 | 
|
421  | 
@{term "ARG_MIN f x. P"} & @{term[source]"arg_min f (\<lambda>x. P)"}\\
 | 
|
| 65954 | 422  | 
@{term "ARG_MAX f x. P"} & @{term[source]"arg_max f (\<lambda>x. P)"}\\
 | 
| 65952 | 423  | 
\end{supertabular}
 | 
424  | 
||
425  | 
||
| 
64281
 
bfc2e92d9b4c
restored document structure after theory refactoring
 
haftmann 
parents: 
64272 
diff
changeset
 | 
426  | 
\section*{Groups\_Big}
 | 
| 
 
bfc2e92d9b4c
restored document structure after theory refactoring
 
haftmann 
parents: 
64272 
diff
changeset
 | 
427  | 
|
| 
 
bfc2e92d9b4c
restored document structure after theory refactoring
 
haftmann 
parents: 
64272 
diff
changeset
 | 
428  | 
\begin{supertabular}{@ {} l @ {~::~} l @ {}}
 | 
| 64267 | 429  | 
@{const Groups_Big.sum} & @{term_type_only Groups_Big.sum "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b::comm_monoid_add"}\\
 | 
| 64272 | 430  | 
@{const Groups_Big.prod} & @{term_type_only Groups_Big.prod "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b::comm_monoid_mult"}\\
 | 
| 30401 | 431  | 
\end{supertabular}
 | 
432  | 
||
433  | 
||
434  | 
\subsubsection*{Syntax}
 | 
|
435  | 
||
| 30440 | 436  | 
\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l l @ {}}
 | 
| 64267 | 437  | 
@{term "sum (\<lambda>x. x) A"} & @{term[source]"sum (\<lambda>x. x) A"} & (\<^verbatim>\<open>SUM\<close>)\\
 | 
438  | 
@{term "sum (\<lambda>x. t) A"} & @{term[source]"sum (\<lambda>x. t) A"}\\
 | 
|
| 63902 | 439  | 
@{term[source] "\<Sum>x|P. t"} & @{term"\<Sum>x|P. t"}\\
 | 
| 61996 | 440  | 
\multicolumn{2}{@ {}l@ {}}{Similarly for \<open>\<Prod>\<close> instead of \<open>\<Sum>\<close>} & (\<^verbatim>\<open>PROD\<close>)\\
 | 
| 30401 | 441  | 
\end{supertabular}
 | 
442  | 
||
443  | 
||
| 50581 | 444  | 
\section*{Wellfounded}
 | 
| 30293 | 445  | 
|
446  | 
\begin{supertabular}{@ {} l @ {~::~} l @ {}}
 | 
|
447  | 
@{const Wellfounded.wf} & @{term_type_only Wellfounded.wf "('a*'a)set\<Rightarrow>bool"}\\
 | 
|
448  | 
@{const Wellfounded.acc} & @{term_type_only Wellfounded.acc "('a*'a)set\<Rightarrow>'a set"}\\
 | 
|
449  | 
@{const Wellfounded.measure} & @{term_type_only Wellfounded.measure "('a\<Rightarrow>nat)\<Rightarrow>('a*'a)set"}\\
 | 
|
450  | 
@{const Wellfounded.lex_prod} & @{term_type_only Wellfounded.lex_prod "('a*'a)set\<Rightarrow>('b*'b)set\<Rightarrow>(('a*'b)*('a*'b))set"}\\
 | 
|
451  | 
@{const Wellfounded.mlex_prod} & @{term_type_only Wellfounded.mlex_prod "('a\<Rightarrow>nat)\<Rightarrow>('a*'a)set\<Rightarrow>('a*'a)set"}\\
 | 
|
452  | 
@{const Wellfounded.less_than} & @{term_type_only Wellfounded.less_than "(nat*nat)set"}\\
 | 
|
453  | 
@{const Wellfounded.pred_nat} & @{term_type_only Wellfounded.pred_nat "(nat*nat)set"}\\
 | 
|
454  | 
\end{supertabular}
 | 
|
455  | 
||
456  | 
||
| 68484 | 457  | 
\section*{Set\_Interval} % @{theory HOL.Set_Interval}
 | 
| 30321 | 458  | 
|
459  | 
\begin{supertabular}{@ {} l @ {~::~} l @ {}}
 | 
|
| 30370 | 460  | 
@{const lessThan} & @{term_type_only lessThan "'a::ord \<Rightarrow> 'a set"}\\
 | 
461  | 
@{const atMost} & @{term_type_only atMost "'a::ord \<Rightarrow> 'a set"}\\
 | 
|
462  | 
@{const greaterThan} & @{term_type_only greaterThan "'a::ord \<Rightarrow> 'a set"}\\
 | 
|
463  | 
@{const atLeast} & @{term_type_only atLeast "'a::ord \<Rightarrow> 'a set"}\\
 | 
|
464  | 
@{const greaterThanLessThan} & @{term_type_only greaterThanLessThan "'a::ord \<Rightarrow> 'a \<Rightarrow> 'a set"}\\
 | 
|
465  | 
@{const atLeastLessThan} & @{term_type_only atLeastLessThan "'a::ord \<Rightarrow> 'a \<Rightarrow> 'a set"}\\
 | 
|
466  | 
@{const greaterThanAtMost} & @{term_type_only greaterThanAtMost "'a::ord \<Rightarrow> 'a \<Rightarrow> 'a set"}\\
 | 
|
467  | 
@{const atLeastAtMost} & @{term_type_only atLeastAtMost "'a::ord \<Rightarrow> 'a \<Rightarrow> 'a set"}\\
 | 
|
| 30321 | 468  | 
\end{supertabular}
 | 
469  | 
||
470  | 
\subsubsection*{Syntax}
 | 
|
471  | 
||
472  | 
\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
 | 
|
473  | 
@{term "lessThan y"} & @{term[source] "lessThan y"}\\
 | 
|
474  | 
@{term "atMost y"} & @{term[source] "atMost y"}\\
 | 
|
475  | 
@{term "greaterThan x"} & @{term[source] "greaterThan x"}\\
 | 
|
476  | 
@{term "atLeast x"} & @{term[source] "atLeast x"}\\
 | 
|
477  | 
@{term "greaterThanLessThan x y"} & @{term[source] "greaterThanLessThan x y"}\\
 | 
|
478  | 
@{term "atLeastLessThan x y"} & @{term[source] "atLeastLessThan x y"}\\
 | 
|
479  | 
@{term "greaterThanAtMost x y"} & @{term[source] "greaterThanAtMost x y"}\\
 | 
|
480  | 
@{term "atLeastAtMost x y"} & @{term[source] "atLeastAtMost x y"}\\
 | 
|
| 
61995
 
74709e9c4f17
clarified print modes: Isabelle symbols are used by default, but "latex" mode needs to be for some syntax forms;
 
wenzelm 
parents: 
61943 
diff
changeset
 | 
481  | 
@{term[source] "\<Union>i\<le>n. A"} & @{term[source] "\<Union>i \<in> {..n}. A"}\\
 | 
| 
 
74709e9c4f17
clarified print modes: Isabelle symbols are used by default, but "latex" mode needs to be for some syntax forms;
 
wenzelm 
parents: 
61943 
diff
changeset
 | 
482  | 
@{term[source] "\<Union>i<n. A"} & @{term[source] "\<Union>i \<in> {..<n}. A"}\\
 | 
| 61996 | 483  | 
\multicolumn{2}{@ {}l@ {}}{Similarly for \<open>\<Inter>\<close> instead of \<open>\<Union>\<close>}\\
 | 
| 64267 | 484  | 
@{term "sum (\<lambda>x. t) {a..b}"} & @{term[source] "sum (\<lambda>x. t) {a..b}"}\\
 | 
485  | 
@{term "sum (\<lambda>x. t) {a..<b}"} & @{term[source] "sum (\<lambda>x. t) {a..<b}"}\\
 | 
|
486  | 
@{term "sum (\<lambda>x. t) {..b}"} & @{term[source] "sum (\<lambda>x. t) {..b}"}\\
 | 
|
487  | 
@{term "sum (\<lambda>x. t) {..<b}"} & @{term[source] "sum (\<lambda>x. t) {..<b}"}\\
 | 
|
| 61996 | 488  | 
\multicolumn{2}{@ {}l@ {}}{Similarly for \<open>\<Prod>\<close> instead of \<open>\<Sum>\<close>}\\
 | 
| 30321 | 489  | 
\end{supertabular}
 | 
490  | 
||
491  | 
||
| 50581 | 492  | 
\section*{Power}
 | 
| 30293 | 493  | 
|
494  | 
\begin{tabular}{@ {} l @ {~::~} l @ {}}
 | 
|
495  | 
@{const Power.power} & @{typeof Power.power}
 | 
|
496  | 
\end{tabular}
 | 
|
497  | 
||
498  | 
||
| 50581 | 499  | 
\section*{Option}
 | 
| 30293 | 500  | 
|
501  | 
@{datatype option}
 | 
|
| 61996 | 502  | 
\<^bigskip>  | 
| 30293 | 503  | 
|
504  | 
\begin{tabular}{@ {} l @ {~::~} l @ {}}
 | 
|
505  | 
@{const Option.the} & @{typeof Option.the}\\
 | 
|
| 55466 | 506  | 
@{const map_option} & @{typ[source]"('a \<Rightarrow> 'b) \<Rightarrow> 'a option \<Rightarrow> 'b option"}\\
 | 
| 
55518
 
1ddb2edf5ceb
folded 'Option.set' into BNF-generated 'set_option'
 
blanchet 
parents: 
55466 
diff
changeset
 | 
507  | 
@{const set_option} & @{term_type_only set_option "'a option \<Rightarrow> 'a set"}\\
 | 
| 41532 | 508  | 
@{const Option.bind} & @{term_type_only Option.bind "'a option \<Rightarrow> ('a \<Rightarrow> 'b option) \<Rightarrow> 'b option"}
 | 
| 30293 | 509  | 
\end{tabular}
 | 
510  | 
||
| 50581 | 511  | 
\section*{List}
 | 
| 30293 | 512  | 
|
513  | 
@{datatype list}
 | 
|
| 61996 | 514  | 
\<^bigskip>  | 
| 30293 | 515  | 
|
516  | 
\begin{supertabular}{@ {} l @ {~::~} l @ {}}
 | 
|
517  | 
@{const List.append} & @{typeof List.append}\\
 | 
|
518  | 
@{const List.butlast} & @{typeof List.butlast}\\
 | 
|
519  | 
@{const List.concat} & @{typeof List.concat}\\
 | 
|
520  | 
@{const List.distinct} & @{typeof List.distinct}\\
 | 
|
521  | 
@{const List.drop} & @{typeof List.drop}\\
 | 
|
522  | 
@{const List.dropWhile} & @{typeof List.dropWhile}\\
 | 
|
523  | 
@{const List.filter} & @{typeof List.filter}\\
 | 
|
| 47187 | 524  | 
@{const List.find} & @{typeof List.find}\\
 | 
| 
46133
 
d9fe85d3d2cd
incorporated canonical fold combinator on lists into body of List theory; refactored passages on List.fold(l/r)
 
haftmann 
parents: 
45618 
diff
changeset
 | 
525  | 
@{const List.fold} & @{typeof List.fold}\\
 | 
| 
 
d9fe85d3d2cd
incorporated canonical fold combinator on lists into body of List theory; refactored passages on List.fold(l/r)
 
haftmann 
parents: 
45618 
diff
changeset
 | 
526  | 
@{const List.foldr} & @{typeof List.foldr}\\
 | 
| 30293 | 527  | 
@{const List.foldl} & @{typeof List.foldl}\\
 | 
528  | 
@{const List.hd} & @{typeof List.hd}\\
 | 
|
529  | 
@{const List.last} & @{typeof List.last}\\
 | 
|
530  | 
@{const List.length} & @{typeof List.length}\\
 | 
|
531  | 
@{const List.lenlex} & @{term_type_only List.lenlex "('a*'a)set\<Rightarrow>('a list * 'a list)set"}\\
 | 
|
532  | 
@{const List.lex} & @{term_type_only List.lex "('a*'a)set\<Rightarrow>('a list * 'a list)set"}\\
 | 
|
533  | 
@{const List.lexn} & @{term_type_only List.lexn "('a*'a)set\<Rightarrow>nat\<Rightarrow>('a list * 'a list)set"}\\
 | 
|
534  | 
@{const List.lexord} & @{term_type_only List.lexord "('a*'a)set\<Rightarrow>('a list * 'a list)set"}\\
 | 
|
| 46488 | 535  | 
@{const List.listrel} & @{term_type_only List.listrel "('a*'b)set\<Rightarrow>('a list * 'b list)set"}\\
 | 
| 40272 | 536  | 
@{const List.listrel1} & @{term_type_only List.listrel1 "('a*'a)set\<Rightarrow>('a list * 'a list)set"}\\
 | 
| 30293 | 537  | 
@{const List.lists} & @{term_type_only List.lists "'a set\<Rightarrow>'a list set"}\\
 | 
538  | 
@{const List.listset} & @{term_type_only List.listset "'a set list \<Rightarrow> 'a list set"}\\
 | 
|
| 63884 | 539  | 
@{const Groups_List.sum_list} & @{typeof Groups_List.sum_list}\\
 | 
540  | 
@{const Groups_List.prod_list} & @{typeof Groups_List.prod_list}\\
 | 
|
| 30293 | 541  | 
@{const List.list_all2} & @{typeof List.list_all2}\\
 | 
542  | 
@{const List.list_update} & @{typeof List.list_update}\\
 | 
|
543  | 
@{const List.map} & @{typeof List.map}\\
 | 
|
544  | 
@{const List.measures} & @{term_type_only List.measures "('a\<Rightarrow>nat)list\<Rightarrow>('a*'a)set"}\\
 | 
|
| 32933 | 545  | 
@{const List.nth} & @{typeof List.nth}\\
 | 
| 
65956
 
639eb3617a86
reorganised material on sublists
 
eberlm <eberlm@in.tum.de> 
parents: 
65954 
diff
changeset
 | 
546  | 
@{const List.nths} & @{typeof List.nths}\\
 | 
| 30293 | 547  | 
@{const List.remdups} & @{typeof List.remdups}\\
 | 
548  | 
@{const List.removeAll} & @{typeof List.removeAll}\\
 | 
|
549  | 
@{const List.remove1} & @{typeof List.remove1}\\
 | 
|
550  | 
@{const List.replicate} & @{typeof List.replicate}\\
 | 
|
551  | 
@{const List.rev} & @{typeof List.rev}\\
 | 
|
552  | 
@{const List.rotate} & @{typeof List.rotate}\\
 | 
|
553  | 
@{const List.rotate1} & @{typeof List.rotate1}\\
 | 
|
554  | 
@{const List.set} & @{term_type_only List.set "'a list \<Rightarrow> 'a set"}\\
 | 
|
| 
65956
 
639eb3617a86
reorganised material on sublists
 
eberlm <eberlm@in.tum.de> 
parents: 
65954 
diff
changeset
 | 
555  | 
@{const List.shuffle} & @{typeof List.shuffle}\\
 | 
| 30293 | 556  | 
@{const List.sort} & @{typeof List.sort}\\
 | 
557  | 
@{const List.sorted} & @{typeof List.sorted}\\
 | 
|
| 66435 | 558  | 
@{const List.sorted_wrt} & @{typeof List.sorted_wrt}\\
 | 
| 30293 | 559  | 
@{const List.splice} & @{typeof List.splice}\\
 | 
560  | 
@{const List.take} & @{typeof List.take}\\
 | 
|
561  | 
@{const List.takeWhile} & @{typeof List.takeWhile}\\
 | 
|
562  | 
@{const List.tl} & @{typeof List.tl}\\
 | 
|
563  | 
@{const List.upt} & @{typeof List.upt}\\
 | 
|
564  | 
@{const List.upto} & @{typeof List.upto}\\
 | 
|
565  | 
@{const List.zip} & @{typeof List.zip}\\
 | 
|
566  | 
\end{supertabular}
 | 
|
567  | 
||
568  | 
\subsubsection*{Syntax}
 | 
|
569  | 
||
570  | 
\begin{supertabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
 | 
|
| 61996 | 571  | 
\<open>[x\<^sub>1,\<dots>,x\<^sub>n]\<close> & \<open>x\<^sub>1 # \<dots> # x\<^sub>n # []\<close>\\  | 
| 30293 | 572  | 
@{term"[m..<n]"} & @{term[source]"upt m n"}\\
 | 
573  | 
@{term"[i..j]"} & @{term[source]"upto i j"}\\
 | 
|
574  | 
@{term"xs[n := x]"} & @{term[source]"list_update xs n x"}\\
 | 
|
575  | 
@{term"\<Sum>x\<leftarrow>xs. e"} & @{term[source]"listsum (map (\<lambda>x. e) xs)"}\\
 | 
|
576  | 
\end{supertabular}
 | 
|
| 61996 | 577  | 
\<^medskip>  | 
| 30293 | 578  | 
|
| 68364 | 579  | 
Filter input syntax \<open>[pat \<leftarrow> e. b]\<close>, where  | 
580  | 
\<open>pat\<close> is a tuple pattern, which stands for @{term "filter (\<lambda>pat. b) e"}.
 | 
|
581  | 
||
582  | 
List comprehension input syntax: \<open>[e. q\<^sub>1, \<dots>, q\<^sub>n]\<close> where each  | 
|
| 61996 | 583  | 
qualifier \<open>q\<^sub>i\<close> is either a generator \mbox{\<open>pat \<leftarrow> e\<close>} or a
 | 
| 30293 | 584  | 
guard, i.e.\ boolean expression.  | 
585  | 
||
| 50581 | 586  | 
\section*{Map}
 | 
| 30293 | 587  | 
|
588  | 
Maps model partial functions and are often used as finite tables. However,  | 
|
589  | 
the domain of a map may be infinite.  | 
|
590  | 
||
591  | 
\begin{supertabular}{@ {} l @ {~::~} l @ {}}
 | 
|
592  | 
@{const Map.empty} & @{typeof Map.empty}\\
 | 
|
593  | 
@{const Map.map_add} & @{typeof Map.map_add}\\
 | 
|
594  | 
@{const Map.map_comp} & @{typeof Map.map_comp}\\
 | 
|
595  | 
@{const Map.restrict_map} & @{term_type_only Map.restrict_map "('a\<Rightarrow>'b option)\<Rightarrow>'a set\<Rightarrow>('a\<Rightarrow>'b option)"}\\
 | 
|
596  | 
@{const Map.dom} & @{term_type_only Map.dom "('a\<Rightarrow>'b option)\<Rightarrow>'a set"}\\
 | 
|
597  | 
@{const Map.ran} & @{term_type_only Map.ran "('a\<Rightarrow>'b option)\<Rightarrow>'b set"}\\
 | 
|
598  | 
@{const Map.map_le} & @{typeof Map.map_le}\\
 | 
|
599  | 
@{const Map.map_of} & @{typeof Map.map_of}\\
 | 
|
600  | 
@{const Map.map_upds} & @{typeof Map.map_upds}\\
 | 
|
601  | 
\end{supertabular}
 | 
|
602  | 
||
603  | 
\subsubsection*{Syntax}
 | 
|
604  | 
||
605  | 
\begin{tabular}{@ {} l @ {\quad$\equiv$\quad} l @ {}}
 | 
|
| 30403 | 606  | 
@{term"Map.empty"} & @{term"\<lambda>x. None"}\\
 | 
| 30293 | 607  | 
@{term"m(x:=Some y)"} & @{term[source]"m(x:=Some y)"}\\
 | 
| 61996 | 608  | 
\<open>m(x\<^sub>1\<mapsto>y\<^sub>1,\<dots>,x\<^sub>n\<mapsto>y\<^sub>n)\<close> & @{text[source]"m(x\<^sub>1\<mapsto>y\<^sub>1)\<dots>(x\<^sub>n\<mapsto>y\<^sub>n)"}\\
 | 
609  | 
\<open>[x\<^sub>1\<mapsto>y\<^sub>1,\<dots>,x\<^sub>n\<mapsto>y\<^sub>n]\<close> & @{text[source]"Map.empty(x\<^sub>1\<mapsto>y\<^sub>1,\<dots>,x\<^sub>n\<mapsto>y\<^sub>n)"}\\
 | 
|
| 30293 | 610  | 
@{term"map_upds m xs ys"} & @{term[source]"map_upds m xs ys"}\\
 | 
611  | 
\end{tabular}
 | 
|
612  | 
||
| 50581 | 613  | 
\section*{Infix operators in Main} % @{theory Main}
 | 
614  | 
||
615  | 
\begin{center}
 | 
|
| 50605 | 616  | 
\begin{tabular}{llll}
 | 
617  | 
& Operator & precedence & associativity \\  | 
|
618  | 
\hline  | 
|
| 61996 | 619  | 
Meta-logic & \<open>\<Longrightarrow>\<close> & 1 & right \\  | 
620  | 
& \<open>\<equiv>\<close> & 2 \\  | 
|
| 50605 | 621  | 
\hline  | 
| 61996 | 622  | 
Logic & \<open>\<and>\<close> & 35 & right \\  | 
623  | 
&\<open>\<or>\<close> & 30 & right \\  | 
|
624  | 
&\<open>\<longrightarrow>\<close>, \<open>\<longleftrightarrow>\<close> & 25 & right\\  | 
|
625  | 
&\<open>=\<close>, \<open>\<noteq>\<close> & 50 & left\\  | 
|
| 50605 | 626  | 
\hline  | 
| 61996 | 627  | 
Orderings & \<open>\<le>\<close>, \<open><\<close>, \<open>\<ge>\<close>, \<open>>\<close> & 50 \\  | 
| 50605 | 628  | 
\hline  | 
| 61996 | 629  | 
Sets & \<open>\<subseteq>\<close>, \<open>\<subset>\<close>, \<open>\<supseteq>\<close>, \<open>\<supset>\<close> & 50 \\  | 
630  | 
&\<open>\<in>\<close>, \<open>\<notin>\<close> & 50 \\  | 
|
631  | 
&\<open>\<inter>\<close> & 70 & left \\  | 
|
632  | 
&\<open>\<union>\<close> & 65 & left \\  | 
|
| 50605 | 633  | 
\hline  | 
| 61996 | 634  | 
Functions and Relations & \<open>\<circ>\<close> & 55 & left\\  | 
635  | 
&\<open>`\<close> & 90 & right\\  | 
|
636  | 
&\<open>O\<close> & 75 & right\\  | 
|
637  | 
&\<open>``\<close> & 90 & right\\  | 
|
638  | 
&\<open>^^\<close> & 80 & right\\  | 
|
| 50605 | 639  | 
\hline  | 
| 61996 | 640  | 
Numbers & \<open>+\<close>, \<open>-\<close> & 65 & left \\  | 
641  | 
&\<open>*\<close>, \<open>/\<close> & 70 & left \\  | 
|
642  | 
&\<open>div\<close>, \<open>mod\<close> & 70 & left\\  | 
|
643  | 
&\<open>^\<close> & 80 & right\\  | 
|
644  | 
&\<open>dvd\<close> & 50 \\  | 
|
| 50605 | 645  | 
\hline  | 
| 61996 | 646  | 
Lists & \<open>#\<close>, \<open>@\<close> & 65 & right\\  | 
647  | 
&\<open>!\<close> & 100 & left  | 
|
| 50581 | 648  | 
\end{tabular}
 | 
649  | 
\end{center}
 | 
|
| 61996 | 650  | 
\<close>  | 
| 30293 | 651  | 
(*<*)  | 
652  | 
end  | 
|
| 
65956
 
639eb3617a86
reorganised material on sublists
 
eberlm <eberlm@in.tum.de> 
parents: 
65954 
diff
changeset
 | 
653  | 
(*>*)  |