| 
1440
 | 
     1  | 
  | 
| 
 | 
     2  | 
open Lattice;
  | 
| 
 | 
     3  | 
  | 
| 
 | 
     4  | 
  | 
| 
 | 
     5  | 
(** basic properties of "&&" and "||" **)
  | 
| 
 | 
     6  | 
  | 
| 
 | 
     7  | 
(* unique existence *)
  | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
goalw thy [inf_def] "is_inf x y (x && y)";
  | 
| 
 | 
    10  | 
  br (ex_inf RS spec RS spec RS selectI1) 1;
  | 
| 
 | 
    11  | 
qed "inf_is_inf";
  | 
| 
 | 
    12  | 
  | 
| 
 | 
    13  | 
goal thy "is_inf x y inf --> x && y = inf";
  | 
| 
 | 
    14  | 
  br impI 1;
  | 
| 
 | 
    15  | 
  br (is_inf_uniq RS mp) 1;
  | 
| 
 | 
    16  | 
  br conjI 1;
  | 
| 
 | 
    17  | 
  br inf_is_inf 1;
  | 
| 
 | 
    18  | 
  ba 1;
  | 
| 
 | 
    19  | 
qed "inf_uniq";
  | 
| 
 | 
    20  | 
  | 
| 
 | 
    21  | 
goalw thy [Ex1_def] "ALL x y. EX! inf::'a::lattice. is_inf x y inf";
  | 
| 
1899
 | 
    22  | 
  by (safe_tac (!claset));
  | 
| 
 | 
    23  | 
  by (Step_tac 1);
  | 
| 
 | 
    24  | 
  by (Step_tac 1);
  | 
| 
1440
 | 
    25  | 
  br inf_is_inf 1;
  | 
| 
 | 
    26  | 
  br (inf_uniq RS mp RS sym) 1;
  | 
| 
 | 
    27  | 
  ba 1;
  | 
| 
 | 
    28  | 
qed "ex1_inf";
  | 
| 
 | 
    29  | 
  | 
| 
 | 
    30  | 
  | 
| 
 | 
    31  | 
goalw thy [sup_def] "is_sup x y (x || y)";
  | 
| 
 | 
    32  | 
  br (ex_sup RS spec RS spec RS selectI1) 1;
  | 
| 
 | 
    33  | 
qed "sup_is_sup";
  | 
| 
 | 
    34  | 
  | 
| 
 | 
    35  | 
goal thy "is_sup x y sup --> x || y = sup";
  | 
| 
 | 
    36  | 
  br impI 1;
  | 
| 
 | 
    37  | 
  br (is_sup_uniq RS mp) 1;
  | 
| 
 | 
    38  | 
  br conjI 1;
  | 
| 
 | 
    39  | 
  br sup_is_sup 1;
  | 
| 
 | 
    40  | 
  ba 1;
  | 
| 
 | 
    41  | 
qed "sup_uniq";
  | 
| 
 | 
    42  | 
  | 
| 
 | 
    43  | 
goalw thy [Ex1_def] "ALL x y. EX! sup::'a::lattice. is_sup x y sup";
  | 
| 
1899
 | 
    44  | 
  by (safe_tac (!claset));
  | 
| 
 | 
    45  | 
  by (Step_tac 1);
  | 
| 
 | 
    46  | 
  by (Step_tac 1);
  | 
| 
1440
 | 
    47  | 
  br sup_is_sup 1;
  | 
| 
 | 
    48  | 
  br (sup_uniq RS mp RS sym) 1;
  | 
| 
 | 
    49  | 
  ba 1;
  | 
| 
 | 
    50  | 
qed "ex1_sup";
  | 
| 
 | 
    51  | 
  | 
| 
 | 
    52  | 
  | 
| 
 | 
    53  | 
(* "&&" yields g.l.bs, "||" yields l.u.bs. --- in pieces *)
  | 
| 
 | 
    54  | 
  | 
| 
 | 
    55  | 
val tac =
  | 
| 
 | 
    56  | 
  cut_facts_tac [inf_is_inf] 1 THEN
  | 
| 
 | 
    57  | 
  rewrite_goals_tac [inf_def, is_inf_def] THEN
  | 
| 
1899
 | 
    58  | 
  Fast_tac 1;
  | 
| 
1440
 | 
    59  | 
  | 
| 
 | 
    60  | 
goal thy "x && y [= x";
  | 
| 
 | 
    61  | 
  by tac;
  | 
| 
 | 
    62  | 
qed "inf_lb1";
  | 
| 
 | 
    63  | 
  | 
| 
 | 
    64  | 
goal thy "x && y [= y";
  | 
| 
 | 
    65  | 
  by tac;
  | 
| 
 | 
    66  | 
qed "inf_lb2";
  | 
| 
 | 
    67  | 
  | 
| 
 | 
    68  | 
val prems = goal thy "[| z [= x; z [= y |] ==> z [= x && y";
  | 
| 
 | 
    69  | 
  by (cut_facts_tac prems 1);
  | 
| 
 | 
    70  | 
  by tac;
  | 
| 
 | 
    71  | 
qed "inf_ub_lbs";
  | 
| 
 | 
    72  | 
  | 
| 
 | 
    73  | 
  | 
| 
 | 
    74  | 
val tac =
  | 
| 
 | 
    75  | 
  cut_facts_tac [sup_is_sup] 1 THEN
  | 
| 
 | 
    76  | 
  rewrite_goals_tac [sup_def, is_sup_def] THEN
  | 
| 
1899
 | 
    77  | 
  Fast_tac 1;
  | 
| 
1440
 | 
    78  | 
  | 
| 
 | 
    79  | 
goal thy "x [= x || y";
  | 
| 
 | 
    80  | 
  by tac;
  | 
| 
 | 
    81  | 
qed "sup_ub1";
  | 
| 
 | 
    82  | 
  | 
| 
 | 
    83  | 
goal thy "y [= x || y";
  | 
| 
 | 
    84  | 
  by tac;
  | 
| 
 | 
    85  | 
qed "sup_ub2";
  | 
| 
 | 
    86  | 
  | 
| 
 | 
    87  | 
val prems = goal thy "[| x [= z; y [= z |] ==> x || y [= z";
  | 
| 
 | 
    88  | 
  by (cut_facts_tac prems 1);
  | 
| 
 | 
    89  | 
  by tac;
  | 
| 
 | 
    90  | 
qed "sup_lb_ubs";
  | 
| 
 | 
    91  | 
  | 
| 
 | 
    92  | 
  | 
| 
 | 
    93  | 
  | 
| 
 | 
    94  | 
(** some equations concerning "&&" and "||" vs. "[=" **)
  | 
| 
 | 
    95  | 
  | 
| 
 | 
    96  | 
(* the Connection Theorems: "[=" expressed via "&&" or "||" *)
  | 
| 
 | 
    97  | 
  | 
| 
 | 
    98  | 
goal thy "(x && y = x) = (x [= y)";
  | 
| 
 | 
    99  | 
  br iffI 1;
  | 
| 
 | 
   100  | 
  (*==>*)
  | 
| 
 | 
   101  | 
    be subst 1;
  | 
| 
 | 
   102  | 
    br inf_lb2 1;
  | 
| 
 | 
   103  | 
  (*<==*)
  | 
| 
 | 
   104  | 
    br (inf_uniq RS mp) 1;
  | 
| 
1465
 | 
   105  | 
    by (rewtac is_inf_def);
  | 
| 
1440
 | 
   106  | 
    by (REPEAT_FIRST (rtac conjI));
  | 
| 
 | 
   107  | 
    br le_refl 1;
  | 
| 
 | 
   108  | 
    ba 1;
  | 
| 
1899
 | 
   109  | 
    by (Fast_tac 1);
  | 
| 
1440
 | 
   110  | 
qed "inf_connect";
  | 
| 
 | 
   111  | 
  | 
| 
 | 
   112  | 
goal thy "(x || y = y) = (x [= y)";
  | 
| 
 | 
   113  | 
  br iffI 1;
  | 
| 
 | 
   114  | 
  (*==>*)
  | 
| 
 | 
   115  | 
    be subst 1;
  | 
| 
 | 
   116  | 
    br sup_ub1 1;
  | 
| 
 | 
   117  | 
  (*<==*)
  | 
| 
 | 
   118  | 
    br (sup_uniq RS mp) 1;
  | 
| 
1465
 | 
   119  | 
    by (rewtac is_sup_def);
  | 
| 
1440
 | 
   120  | 
    by (REPEAT_FIRST (rtac conjI));
  | 
| 
 | 
   121  | 
    ba 1;
  | 
| 
 | 
   122  | 
    br le_refl 1;
  | 
| 
1899
 | 
   123  | 
    by (Fast_tac 1);
  | 
| 
1440
 | 
   124  | 
qed "sup_connect";
  | 
| 
 | 
   125  | 
  | 
| 
 | 
   126  | 
  | 
| 
 | 
   127  | 
(* minorized infs / majorized sups *)
  | 
| 
 | 
   128  | 
  | 
| 
 | 
   129  | 
goal thy "(x [= y && z) = (x [= y & x [= z)";
  | 
| 
 | 
   130  | 
  br iffI 1;
  | 
| 
 | 
   131  | 
  (*==> (level 1)*)
  | 
| 
 | 
   132  | 
    by (cut_facts_tac [inf_lb1, inf_lb2] 1);
  | 
| 
 | 
   133  | 
    br conjI 1;
  | 
| 
 | 
   134  | 
    br (le_trans RS mp) 1;
  | 
| 
 | 
   135  | 
    be conjI 1;
  | 
| 
 | 
   136  | 
    ba 1;
  | 
| 
 | 
   137  | 
    br (le_trans RS mp) 1;
  | 
| 
 | 
   138  | 
    be conjI 1;
  | 
| 
 | 
   139  | 
    ba 1;
  | 
| 
 | 
   140  | 
  (*<== (level 9)*)
  | 
| 
 | 
   141  | 
    be conjE 1;
  | 
| 
 | 
   142  | 
    be inf_ub_lbs 1;
  | 
| 
 | 
   143  | 
    ba 1;
  | 
| 
 | 
   144  | 
qed "le_inf_eq";
  | 
| 
 | 
   145  | 
  | 
| 
 | 
   146  | 
goal thy "(x || y [= z) = (x [= z & y [= z)";
  | 
| 
 | 
   147  | 
  br iffI 1;
  | 
| 
 | 
   148  | 
  (*==> (level 1)*)
  | 
| 
 | 
   149  | 
    by (cut_facts_tac [sup_ub1, sup_ub2] 1);
  | 
| 
 | 
   150  | 
    br conjI 1;
  | 
| 
 | 
   151  | 
    br (le_trans RS mp) 1;
  | 
| 
 | 
   152  | 
    be conjI 1;
  | 
| 
 | 
   153  | 
    ba 1;
  | 
| 
 | 
   154  | 
    br (le_trans RS mp) 1;
  | 
| 
 | 
   155  | 
    be conjI 1;
  | 
| 
 | 
   156  | 
    ba 1;
  | 
| 
 | 
   157  | 
  (*<== (level 9)*)
  | 
| 
 | 
   158  | 
    be conjE 1;
  | 
| 
 | 
   159  | 
    be sup_lb_ubs 1;
  | 
| 
 | 
   160  | 
    ba 1;
  | 
| 
 | 
   161  | 
qed "ge_sup_eq";
  | 
| 
 | 
   162  | 
  | 
| 
 | 
   163  | 
  | 
| 
 | 
   164  | 
(** algebraic properties of "&&" and "||": A, C, I, AB **)
  | 
| 
 | 
   165  | 
  | 
| 
 | 
   166  | 
(* associativity *)
  | 
| 
 | 
   167  | 
  | 
| 
 | 
   168  | 
goal thy "(x && y) && z = x && (y && z)";
  | 
| 
 | 
   169  | 
  by (stac (inf_uniq RS mp RS sym) 1);
  | 
| 
 | 
   170  | 
  back();
  | 
| 
 | 
   171  | 
  back();
  | 
| 
 | 
   172  | 
  back();
  | 
| 
 | 
   173  | 
  back();
  | 
| 
 | 
   174  | 
  back();
  | 
| 
 | 
   175  | 
  back();
  | 
| 
 | 
   176  | 
  back();
  | 
| 
 | 
   177  | 
  back();
  | 
| 
 | 
   178  | 
  br refl 2;
  | 
| 
 | 
   179  | 
  br (is_inf_assoc RS mp) 1;
  | 
| 
 | 
   180  | 
  by (REPEAT_FIRST (rtac conjI));
  | 
| 
 | 
   181  | 
  by (REPEAT_FIRST (rtac inf_is_inf));
  | 
| 
 | 
   182  | 
qed "inf_assoc";
  | 
| 
 | 
   183  | 
  | 
| 
 | 
   184  | 
goal thy "(x || y) || z = x || (y || z)";
  | 
| 
 | 
   185  | 
  by (stac (sup_uniq RS mp RS sym) 1);
  | 
| 
 | 
   186  | 
  back();
  | 
| 
 | 
   187  | 
  back();
  | 
| 
 | 
   188  | 
  back();
  | 
| 
 | 
   189  | 
  back();
  | 
| 
 | 
   190  | 
  back();
  | 
| 
 | 
   191  | 
  back();
  | 
| 
 | 
   192  | 
  back();
  | 
| 
 | 
   193  | 
  back();
  | 
| 
 | 
   194  | 
  br refl 2;
  | 
| 
 | 
   195  | 
  br (is_sup_assoc RS mp) 1;
  | 
| 
 | 
   196  | 
  by (REPEAT_FIRST (rtac conjI));
  | 
| 
 | 
   197  | 
  by (REPEAT_FIRST (rtac sup_is_sup));
  | 
| 
 | 
   198  | 
qed "sup_assoc";
  | 
| 
 | 
   199  | 
  | 
| 
 | 
   200  | 
  | 
| 
 | 
   201  | 
(* commutativity *)
  | 
| 
 | 
   202  | 
  | 
| 
 | 
   203  | 
goalw thy [inf_def] "x && y = y && x";
  | 
| 
 | 
   204  | 
  by (stac (is_inf_commut RS ext) 1);
  | 
| 
 | 
   205  | 
  br refl 1;
  | 
| 
 | 
   206  | 
qed "inf_commut";
  | 
| 
 | 
   207  | 
  | 
| 
 | 
   208  | 
goalw thy [sup_def] "x || y = y || x";
  | 
| 
 | 
   209  | 
  by (stac (is_sup_commut RS ext) 1);
  | 
| 
 | 
   210  | 
  br refl 1;
  | 
| 
 | 
   211  | 
qed "sup_commut";
  | 
| 
 | 
   212  | 
  | 
| 
 | 
   213  | 
  | 
| 
 | 
   214  | 
(* idempotency *)
  | 
| 
 | 
   215  | 
  | 
| 
 | 
   216  | 
goal thy "x && x = x";
  | 
| 
 | 
   217  | 
  by (stac inf_connect 1);
  | 
| 
 | 
   218  | 
  br le_refl 1;
  | 
| 
 | 
   219  | 
qed "inf_idemp";
  | 
| 
 | 
   220  | 
  | 
| 
 | 
   221  | 
goal thy "x || x = x";
  | 
| 
 | 
   222  | 
  by (stac sup_connect 1);
  | 
| 
 | 
   223  | 
  br le_refl 1;
  | 
| 
 | 
   224  | 
qed "sup_idemp";
  | 
| 
 | 
   225  | 
  | 
| 
 | 
   226  | 
  | 
| 
 | 
   227  | 
(* absorption *)
  | 
| 
 | 
   228  | 
  | 
| 
 | 
   229  | 
goal thy "x || (x && y) = x";
  | 
| 
 | 
   230  | 
  by (stac sup_commut 1);
  | 
| 
 | 
   231  | 
  by (stac sup_connect 1);
  | 
| 
 | 
   232  | 
  br inf_lb1 1;
  | 
| 
 | 
   233  | 
qed "sup_inf_absorb";
  | 
| 
 | 
   234  | 
  | 
| 
 | 
   235  | 
goal thy "x && (x || y) = x";
  | 
| 
 | 
   236  | 
  by (stac inf_connect 1);
  | 
| 
 | 
   237  | 
  br sup_ub1 1;
  | 
| 
 | 
   238  | 
qed "inf_sup_absorb";
  | 
| 
 | 
   239  | 
  | 
| 
 | 
   240  | 
  | 
| 
 | 
   241  | 
(* monotonicity *)
  | 
| 
 | 
   242  | 
  | 
| 
 | 
   243  | 
val prems = goal thy "[| a [= b; x [= y |] ==> a && x [= b && y";
  | 
| 
 | 
   244  | 
  by (cut_facts_tac prems 1);
  | 
| 
 | 
   245  | 
  by (stac le_inf_eq 1);
  | 
| 
 | 
   246  | 
  br conjI 1;
  | 
| 
 | 
   247  | 
  br (le_trans RS mp) 1;
  | 
| 
 | 
   248  | 
  br conjI 1;
  | 
| 
 | 
   249  | 
  br inf_lb1 1;
  | 
| 
 | 
   250  | 
  ba 1;
  | 
| 
 | 
   251  | 
  br (le_trans RS mp) 1;
  | 
| 
 | 
   252  | 
  br conjI 1;
  | 
| 
 | 
   253  | 
  br inf_lb2 1;
  | 
| 
 | 
   254  | 
  ba 1;
  | 
| 
 | 
   255  | 
qed "inf_mon";
  | 
| 
 | 
   256  | 
  | 
| 
 | 
   257  | 
val prems = goal thy "[| a [= b; x [= y |] ==> a || x [= b || y";
  | 
| 
 | 
   258  | 
  by (cut_facts_tac prems 1);
  | 
| 
 | 
   259  | 
  by (stac ge_sup_eq 1);
  | 
| 
 | 
   260  | 
  br conjI 1;
  | 
| 
 | 
   261  | 
  br (le_trans RS mp) 1;
  | 
| 
 | 
   262  | 
  br conjI 1;
  | 
| 
 | 
   263  | 
  ba 1;
  | 
| 
 | 
   264  | 
  br sup_ub1 1;
  | 
| 
 | 
   265  | 
  br (le_trans RS mp) 1;
  | 
| 
 | 
   266  | 
  br conjI 1;
  | 
| 
 | 
   267  | 
  ba 1;
  | 
| 
 | 
   268  | 
  br sup_ub2 1;
  | 
| 
 | 
   269  | 
qed "sup_mon";
  |