author | berghofe |
Fri, 01 Jul 2005 13:54:12 +0200 | |
changeset 16633 | 208ebc9311f2 |
parent 16417 | 9bc16273c2d4 |
child 17290 | a39d1430d271 |
permissions | -rw-r--r-- |
10751 | 1 |
(* Title : HOL/Real/Hyperreal/HyperDef.thy |
2 |
ID : $Id$ |
|
3 |
Author : Jacques D. Fleuriot |
|
4 |
Copyright : 1998 University of Cambridge |
|
14468 | 5 |
Conversion to Isar and new proofs by Lawrence C Paulson, 2004 |
13487 | 6 |
*) |
10751 | 7 |
|
14468 | 8 |
header{*Construction of Hyperreals Using Ultrafilters*} |
9 |
||
15131 | 10 |
theory HyperDef |
15140 | 11 |
imports Filter "../Real/Real" |
16417 | 12 |
uses ("fuf.ML") (*Warning: file fuf.ML refers to the name Hyperdef!*) |
15131 | 13 |
begin |
10751 | 14 |
|
15 |
constdefs |
|
14299 | 16 |
|
14361
ad2f5da643b4
* Support for raw latex output in control symbols: \<^raw...>
schirmer
parents:
14348
diff
changeset
|
17 |
FreeUltrafilterNat :: "nat set set" ("\<U>") |
14299 | 18 |
"FreeUltrafilterNat == (SOME U. U \<in> FreeUltrafilter (UNIV:: nat set))" |
19 |
||
20 |
hyprel :: "((nat=>real)*(nat=>real)) set" |
|
21 |
"hyprel == {p. \<exists>X Y. p = ((X::nat=>real),Y) & |
|
14705 | 22 |
{n::nat. X(n) = Y(n)} \<in> FreeUltrafilterNat}" |
10751 | 23 |
|
14299 | 24 |
typedef hypreal = "UNIV//hyprel" |
25 |
by (auto simp add: quotient_def) |
|
10751 | 26 |
|
14691 | 27 |
instance hypreal :: "{ord, zero, one, plus, times, minus, inverse}" .. |
10751 | 28 |
|
14299 | 29 |
defs (overloaded) |
30 |
||
31 |
hypreal_zero_def: |
|
14705 | 32 |
"0 == Abs_hypreal(hyprel``{%n. 0})" |
10751 | 33 |
|
14299 | 34 |
hypreal_one_def: |
14705 | 35 |
"1 == Abs_hypreal(hyprel``{%n. 1})" |
10751 | 36 |
|
14299 | 37 |
hypreal_minus_def: |
14705 | 38 |
"- P == Abs_hypreal(\<Union>X \<in> Rep_hypreal(P). hyprel``{%n. - (X n)})" |
10751 | 39 |
|
14299 | 40 |
hypreal_diff_def: |
10751 | 41 |
"x - y == x + -(y::hypreal)" |
42 |
||
14299 | 43 |
hypreal_inverse_def: |
44 |
"inverse P == Abs_hypreal(\<Union>X \<in> Rep_hypreal(P). |
|
12018
ec054019c910
Numerals and simprocs for types real and hypreal. The abstract
paulson
parents:
11713
diff
changeset
|
45 |
hyprel``{%n. if X n = 0 then 0 else inverse (X n)})" |
10751 | 46 |
|
14299 | 47 |
hypreal_divide_def: |
10751 | 48 |
"P / Q::hypreal == P * inverse Q" |
13487 | 49 |
|
10751 | 50 |
constdefs |
51 |
||
14299 | 52 |
hypreal_of_real :: "real => hypreal" |
14705 | 53 |
"hypreal_of_real r == Abs_hypreal(hyprel``{%n. r})" |
10751 | 54 |
|
14691 | 55 |
omega :: hypreal -- {*an infinite number @{text "= [<1,2,3,...>]"} *} |
14705 | 56 |
"omega == Abs_hypreal(hyprel``{%n. real (Suc n)})" |
13487 | 57 |
|
14691 | 58 |
epsilon :: hypreal -- {*an infinitesimal number @{text "= [<1,1/2,1/3,...>]"} *} |
14705 | 59 |
"epsilon == Abs_hypreal(hyprel``{%n. inverse (real (Suc n))})" |
10919
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
paulson
parents:
10834
diff
changeset
|
60 |
|
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
paulson
parents:
10834
diff
changeset
|
61 |
syntax (xsymbols) |
14299 | 62 |
omega :: hypreal ("\<omega>") |
63 |
epsilon :: hypreal ("\<epsilon>") |
|
10919
144ede948e58
renamings: real_of_nat, real_of_int -> (overloaded) real
paulson
parents:
10834
diff
changeset
|
64 |
|
14565 | 65 |
syntax (HTML output) |
66 |
omega :: hypreal ("\<omega>") |
|
67 |
epsilon :: hypreal ("\<epsilon>") |
|
68 |
||
10751 | 69 |
|
14370 | 70 |
defs (overloaded) |
13487 | 71 |
|
14299 | 72 |
hypreal_add_def: |
73 |
"P + Q == Abs_hypreal(\<Union>X \<in> Rep_hypreal(P). \<Union>Y \<in> Rep_hypreal(Q). |
|
14705 | 74 |
hyprel``{%n. X n + Y n})" |
10751 | 75 |
|
14299 | 76 |
hypreal_mult_def: |
77 |
"P * Q == Abs_hypreal(\<Union>X \<in> Rep_hypreal(P). \<Union>Y \<in> Rep_hypreal(Q). |
|
14705 | 78 |
hyprel``{%n. X n * Y n})" |
10751 | 79 |
|
14370 | 80 |
hypreal_le_def: |
81 |
"P \<le> (Q::hypreal) == \<exists>X Y. X \<in> Rep_hypreal(P) & |
|
14299 | 82 |
Y \<in> Rep_hypreal(Q) & |
14705 | 83 |
{n. X n \<le> Y n} \<in> FreeUltrafilterNat" |
14370 | 84 |
|
85 |
hypreal_less_def: "(x < (y::hypreal)) == (x \<le> y & x \<noteq> y)" |
|
10751 | 86 |
|
14329 | 87 |
hrabs_def: "abs (r::hypreal) == (if 0 \<le> r then r else -r)" |
88 |
||
89 |
||
90 |
subsection{*The Set of Naturals is not Finite*} |
|
14299 | 91 |
|
92 |
(*** based on James' proof that the set of naturals is not finite ***) |
|
14329 | 93 |
lemma finite_exhausts [rule_format]: |
94 |
"finite (A::nat set) --> (\<exists>n. \<forall>m. Suc (n + m) \<notin> A)" |
|
14299 | 95 |
apply (rule impI) |
14301 | 96 |
apply (erule_tac F = A in finite_induct) |
97 |
apply (blast, erule exE) |
|
14299 | 98 |
apply (rule_tac x = "n + x" in exI) |
14301 | 99 |
apply (rule allI, erule_tac x = "x + m" in allE) |
14299 | 100 |
apply (auto simp add: add_ac) |
101 |
done |
|
102 |
||
14329 | 103 |
lemma finite_not_covers [rule_format (no_asm)]: |
104 |
"finite (A :: nat set) --> (\<exists>n. n \<notin>A)" |
|
14301 | 105 |
by (rule impI, drule finite_exhausts, blast) |
14299 | 106 |
|
107 |
lemma not_finite_nat: "~ finite(UNIV:: nat set)" |
|
14301 | 108 |
by (fast dest!: finite_exhausts) |
14299 | 109 |
|
14329 | 110 |
|
111 |
subsection{*Existence of Free Ultrafilter over the Naturals*} |
|
112 |
||
113 |
text{*Also, proof of various properties of @{term FreeUltrafilterNat}: |
|
114 |
an arbitrary free ultrafilter*} |
|
14299 | 115 |
|
14705 | 116 |
lemma FreeUltrafilterNat_Ex: "\<exists>U. U \<in> FreeUltrafilter (UNIV::nat set)" |
14301 | 117 |
by (rule not_finite_nat [THEN FreeUltrafilter_Ex]) |
14299 | 118 |
|
14301 | 119 |
lemma FreeUltrafilterNat_mem [simp]: |
14705 | 120 |
"FreeUltrafilterNat \<in> FreeUltrafilter(UNIV:: nat set)" |
14299 | 121 |
apply (unfold FreeUltrafilterNat_def) |
122 |
apply (rule FreeUltrafilterNat_Ex [THEN exE]) |
|
14301 | 123 |
apply (rule someI2, assumption+) |
14299 | 124 |
done |
125 |
||
126 |
lemma FreeUltrafilterNat_finite: "finite x ==> x \<notin> FreeUltrafilterNat" |
|
127 |
apply (unfold FreeUltrafilterNat_def) |
|
128 |
apply (rule FreeUltrafilterNat_Ex [THEN exE]) |
|
14301 | 129 |
apply (rule someI2, assumption) |
14299 | 130 |
apply (blast dest: mem_FreeUltrafiltersetD1) |
131 |
done |
|
132 |
||
14705 | 133 |
lemma FreeUltrafilterNat_not_finite: "x \<in> FreeUltrafilterNat ==> ~ finite x" |
14301 | 134 |
by (blast dest: FreeUltrafilterNat_finite) |
14299 | 135 |
|
14301 | 136 |
lemma FreeUltrafilterNat_empty [simp]: "{} \<notin> FreeUltrafilterNat" |
14299 | 137 |
apply (unfold FreeUltrafilterNat_def) |
138 |
apply (rule FreeUltrafilterNat_Ex [THEN exE]) |
|
14301 | 139 |
apply (rule someI2, assumption) |
140 |
apply (blast dest: FreeUltrafilter_Ultrafilter Ultrafilter_Filter |
|
141 |
Filter_empty_not_mem) |
|
14299 | 142 |
done |
143 |
||
14329 | 144 |
lemma FreeUltrafilterNat_Int: |
14705 | 145 |
"[| X \<in> FreeUltrafilterNat; Y \<in> FreeUltrafilterNat |] |
14299 | 146 |
==> X Int Y \<in> FreeUltrafilterNat" |
14705 | 147 |
apply (insert FreeUltrafilterNat_mem) |
14299 | 148 |
apply (blast dest: FreeUltrafilter_Ultrafilter Ultrafilter_Filter mem_FiltersetD1) |
149 |
done |
|
150 |
||
14329 | 151 |
lemma FreeUltrafilterNat_subset: |
14705 | 152 |
"[| X \<in> FreeUltrafilterNat; X \<subseteq> Y |] |
14299 | 153 |
==> Y \<in> FreeUltrafilterNat" |
14705 | 154 |
apply (insert FreeUltrafilterNat_mem) |
14299 | 155 |
apply (blast dest: FreeUltrafilter_Ultrafilter Ultrafilter_Filter mem_FiltersetD2) |
156 |
done |
|
157 |
||
14329 | 158 |
lemma FreeUltrafilterNat_Compl: |
14705 | 159 |
"X \<in> FreeUltrafilterNat ==> -X \<notin> FreeUltrafilterNat" |
160 |
proof |
|
161 |
assume "X \<in> \<U>" and "- X \<in> \<U>" |
|
162 |
hence "X Int - X \<in> \<U>" by (rule FreeUltrafilterNat_Int) |
|
163 |
thus False by force |
|
164 |
qed |
|
14299 | 165 |
|
14329 | 166 |
lemma FreeUltrafilterNat_Compl_mem: |
167 |
"X\<notin> FreeUltrafilterNat ==> -X \<in> FreeUltrafilterNat" |
|
14299 | 168 |
apply (cut_tac FreeUltrafilterNat_mem [THEN FreeUltrafilter_iff [THEN iffD1]]) |
14301 | 169 |
apply (safe, drule_tac x = X in bspec) |
15539 | 170 |
apply (auto) |
14299 | 171 |
done |
172 |
||
14329 | 173 |
lemma FreeUltrafilterNat_Compl_iff1: |
14705 | 174 |
"(X \<notin> FreeUltrafilterNat) = (-X \<in> FreeUltrafilterNat)" |
14301 | 175 |
by (blast dest: FreeUltrafilterNat_Compl FreeUltrafilterNat_Compl_mem) |
14299 | 176 |
|
14329 | 177 |
lemma FreeUltrafilterNat_Compl_iff2: |
14705 | 178 |
"(X \<in> FreeUltrafilterNat) = (-X \<notin> FreeUltrafilterNat)" |
14301 | 179 |
by (auto simp add: FreeUltrafilterNat_Compl_iff1 [symmetric]) |
14299 | 180 |
|
14378
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
181 |
lemma cofinite_mem_FreeUltrafilterNat: "finite (-X) ==> X \<in> FreeUltrafilterNat" |
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
182 |
apply (drule FreeUltrafilterNat_finite) |
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
183 |
apply (simp add: FreeUltrafilterNat_Compl_iff2 [symmetric]) |
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
184 |
done |
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
185 |
|
15539 | 186 |
lemma FreeUltrafilterNat_UNIV [iff]: "UNIV \<in> FreeUltrafilterNat" |
14301 | 187 |
by (rule FreeUltrafilterNat_mem [THEN FreeUltrafilter_Ultrafilter, THEN Ultrafilter_Filter, THEN mem_FiltersetD4]) |
14299 | 188 |
|
14329 | 189 |
lemma FreeUltrafilterNat_Nat_set_refl [intro]: |
190 |
"{n. P(n) = P(n)} \<in> FreeUltrafilterNat" |
|
14301 | 191 |
by simp |
14299 | 192 |
|
193 |
lemma FreeUltrafilterNat_P: "{n::nat. P} \<in> FreeUltrafilterNat ==> P" |
|
14301 | 194 |
by (rule ccontr, simp) |
14299 | 195 |
|
196 |
lemma FreeUltrafilterNat_Ex_P: "{n. P(n)} \<in> FreeUltrafilterNat ==> \<exists>n. P(n)" |
|
14301 | 197 |
by (rule ccontr, simp) |
14299 | 198 |
|
199 |
lemma FreeUltrafilterNat_all: "\<forall>n. P(n) ==> {n. P(n)} \<in> FreeUltrafilterNat" |
|
15539 | 200 |
by (auto) |
14299 | 201 |
|
14329 | 202 |
|
203 |
text{*Define and use Ultrafilter tactics*} |
|
14299 | 204 |
use "fuf.ML" |
205 |
||
206 |
method_setup fuf = {* |
|
207 |
Method.ctxt_args (fn ctxt => |
|
208 |
Method.METHOD (fn facts => |
|
15032 | 209 |
fuf_tac (local_clasimpset_of ctxt) 1)) *} |
14299 | 210 |
"free ultrafilter tactic" |
211 |
||
212 |
method_setup ultra = {* |
|
213 |
Method.ctxt_args (fn ctxt => |
|
214 |
Method.METHOD (fn facts => |
|
15032 | 215 |
ultra_tac (local_clasimpset_of ctxt) 1)) *} |
14299 | 216 |
"ultrafilter tactic" |
217 |
||
218 |
||
14329 | 219 |
text{*One further property of our free ultrafilter*} |
220 |
lemma FreeUltrafilterNat_Un: |
|
14705 | 221 |
"X Un Y \<in> FreeUltrafilterNat |
222 |
==> X \<in> FreeUltrafilterNat | Y \<in> FreeUltrafilterNat" |
|
223 |
by (auto, ultra) |
|
14299 | 224 |
|
225 |
||
14329 | 226 |
subsection{*Properties of @{term hyprel}*} |
227 |
||
228 |
text{*Proving that @{term hyprel} is an equivalence relation*} |
|
14299 | 229 |
|
14705 | 230 |
lemma hyprel_iff: "((X,Y) \<in> hyprel) = ({n. X n = Y n} \<in> FreeUltrafilterNat)" |
14468 | 231 |
by (simp add: hyprel_def) |
14299 | 232 |
|
14365
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents:
14361
diff
changeset
|
233 |
lemma hyprel_refl: "(x,x) \<in> hyprel" |
14468 | 234 |
by (simp add: hyprel_def) |
14299 | 235 |
|
14365
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents:
14361
diff
changeset
|
236 |
lemma hyprel_sym [rule_format (no_asm)]: "(x,y) \<in> hyprel --> (y,x) \<in> hyprel" |
14301 | 237 |
by (simp add: hyprel_def eq_commute) |
14299 | 238 |
|
239 |
lemma hyprel_trans: |
|
14365
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents:
14361
diff
changeset
|
240 |
"[|(x,y) \<in> hyprel; (y,z) \<in> hyprel|] ==> (x,z) \<in> hyprel" |
14468 | 241 |
by (simp add: hyprel_def, ultra) |
14299 | 242 |
|
243 |
lemma equiv_hyprel: "equiv UNIV hyprel" |
|
244 |
apply (simp add: equiv_def refl_def sym_def trans_def hyprel_refl) |
|
245 |
apply (blast intro: hyprel_sym hyprel_trans) |
|
246 |
done |
|
247 |
||
248 |
(* (hyprel `` {x} = hyprel `` {y}) = ((x,y) \<in> hyprel) *) |
|
249 |
lemmas equiv_hyprel_iff = |
|
250 |
eq_equiv_class_iff [OF equiv_hyprel UNIV_I UNIV_I, simp] |
|
251 |
||
14301 | 252 |
lemma hyprel_in_hypreal [simp]: "hyprel``{x}:hypreal" |
14468 | 253 |
by (simp add: hypreal_def hyprel_def quotient_def, blast) |
14299 | 254 |
|
255 |
||
15413 | 256 |
declare Abs_hypreal_inject [simp] Abs_hypreal_inverse [simp] |
14299 | 257 |
declare equiv_hyprel [THEN eq_equiv_class_iff, simp] |
258 |
declare hyprel_iff [iff] |
|
259 |
||
260 |
lemmas eq_hyprelD = eq_equiv_class [OF _ equiv_hyprel] |
|
261 |
||
14301 | 262 |
lemma lemma_hyprel_refl [simp]: "x \<in> hyprel `` {x}" |
14468 | 263 |
by (simp add: hyprel_def) |
14299 | 264 |
|
14301 | 265 |
lemma hypreal_empty_not_mem [simp]: "{} \<notin> hypreal" |
14468 | 266 |
apply (simp add: hypreal_def) |
14299 | 267 |
apply (auto elim!: quotientE equalityCE) |
268 |
done |
|
269 |
||
14301 | 270 |
lemma Rep_hypreal_nonempty [simp]: "Rep_hypreal x \<noteq> {}" |
14705 | 271 |
by (insert Rep_hypreal [of x], auto) |
14299 | 272 |
|
273 |
||
14329 | 274 |
subsection{*@{term hypreal_of_real}: |
275 |
the Injection from @{typ real} to @{typ hypreal}*} |
|
14299 | 276 |
|
277 |
lemma inj_hypreal_of_real: "inj(hypreal_of_real)" |
|
278 |
apply (rule inj_onI) |
|
14468 | 279 |
apply (simp add: hypreal_of_real_def split: split_if_asm) |
14299 | 280 |
done |
281 |
||
282 |
lemma eq_Abs_hypreal: |
|
14468 | 283 |
"(!!x. z = Abs_hypreal(hyprel``{x}) ==> P) ==> P" |
14299 | 284 |
apply (rule_tac x1=z in Rep_hypreal [unfolded hypreal_def, THEN quotientE]) |
14301 | 285 |
apply (drule_tac f = Abs_hypreal in arg_cong) |
14299 | 286 |
apply (force simp add: Rep_hypreal_inverse) |
287 |
done |
|
288 |
||
14468 | 289 |
theorem hypreal_cases [case_names Abs_hypreal, cases type: hypreal]: |
290 |
"(!!x. z = Abs_hypreal(hyprel``{x}) ==> P) ==> P" |
|
291 |
by (rule eq_Abs_hypreal [of z], blast) |
|
292 |
||
14329 | 293 |
|
294 |
subsection{*Hyperreal Addition*} |
|
295 |
||
296 |
lemma hypreal_add_congruent2: |
|
14658 | 297 |
"congruent2 hyprel hyprel (%X Y. hyprel``{%n. X n + Y n})" |
14705 | 298 |
by (simp add: congruent2_def, auto, ultra) |
14329 | 299 |
|
300 |
lemma hypreal_add: |
|
301 |
"Abs_hypreal(hyprel``{%n. X n}) + Abs_hypreal(hyprel``{%n. Y n}) = |
|
302 |
Abs_hypreal(hyprel``{%n. X n + Y n})" |
|
14658 | 303 |
by (simp add: hypreal_add_def |
304 |
UN_equiv_class2 [OF equiv_hyprel equiv_hyprel hypreal_add_congruent2]) |
|
14329 | 305 |
|
306 |
lemma hypreal_add_commute: "(z::hypreal) + w = w + z" |
|
14468 | 307 |
apply (cases z, cases w) |
14334 | 308 |
apply (simp add: add_ac hypreal_add) |
14329 | 309 |
done |
310 |
||
311 |
lemma hypreal_add_assoc: "((z1::hypreal) + z2) + z3 = z1 + (z2 + z3)" |
|
14468 | 312 |
apply (cases z1, cases z2, cases z3) |
14329 | 313 |
apply (simp add: hypreal_add real_add_assoc) |
314 |
done |
|
315 |
||
14331 | 316 |
lemma hypreal_add_zero_left: "(0::hypreal) + z = z" |
14468 | 317 |
by (cases z, simp add: hypreal_zero_def hypreal_add) |
14329 | 318 |
|
14738 | 319 |
instance hypreal :: comm_monoid_add |
14691 | 320 |
by intro_classes |
321 |
(assumption | |
|
322 |
rule hypreal_add_commute hypreal_add_assoc hypreal_add_zero_left)+ |
|
14329 | 323 |
|
324 |
lemma hypreal_add_zero_right [simp]: "z + (0::hypreal) = z" |
|
325 |
by (simp add: hypreal_add_zero_left hypreal_add_commute) |
|
326 |
||
327 |
||
328 |
subsection{*Additive inverse on @{typ hypreal}*} |
|
14299 | 329 |
|
15169 | 330 |
lemma hypreal_minus_congruent: "(%X. hyprel``{%n. - (X n)}) respects hyprel" |
14299 | 331 |
by (force simp add: congruent_def) |
332 |
||
333 |
lemma hypreal_minus: |
|
334 |
"- (Abs_hypreal(hyprel``{%n. X n})) = Abs_hypreal(hyprel `` {%n. -(X n)})" |
|
15539 | 335 |
by (simp add: hypreal_minus_def hyprel_in_hypreal [THEN Abs_hypreal_inverse] |
14705 | 336 |
UN_equiv_class [OF equiv_hyprel hypreal_minus_congruent]) |
14299 | 337 |
|
14329 | 338 |
lemma hypreal_diff: |
339 |
"Abs_hypreal(hyprel``{%n. X n}) - Abs_hypreal(hyprel``{%n. Y n}) = |
|
14299 | 340 |
Abs_hypreal(hyprel``{%n. X n - Y n})" |
14705 | 341 |
by (simp add: hypreal_diff_def hypreal_minus hypreal_add) |
14299 | 342 |
|
14301 | 343 |
lemma hypreal_add_minus [simp]: "z + -z = (0::hypreal)" |
14705 | 344 |
by (cases z, simp add: hypreal_zero_def hypreal_minus hypreal_add) |
14299 | 345 |
|
14331 | 346 |
lemma hypreal_add_minus_left: "-z + z = (0::hypreal)" |
15539 | 347 |
by (simp add: hypreal_add_commute) |
14299 | 348 |
|
14329 | 349 |
|
350 |
subsection{*Hyperreal Multiplication*} |
|
14299 | 351 |
|
352 |
lemma hypreal_mult_congruent2: |
|
14658 | 353 |
"congruent2 hyprel hyprel (%X Y. hyprel``{%n. X n * Y n})" |
354 |
by (simp add: congruent2_def, auto, ultra) |
|
14299 | 355 |
|
356 |
lemma hypreal_mult: |
|
357 |
"Abs_hypreal(hyprel``{%n. X n}) * Abs_hypreal(hyprel``{%n. Y n}) = |
|
358 |
Abs_hypreal(hyprel``{%n. X n * Y n})" |
|
14658 | 359 |
by (simp add: hypreal_mult_def |
360 |
UN_equiv_class2 [OF equiv_hyprel equiv_hyprel hypreal_mult_congruent2]) |
|
14299 | 361 |
|
362 |
lemma hypreal_mult_commute: "(z::hypreal) * w = w * z" |
|
14705 | 363 |
by (cases z, cases w, simp add: hypreal_mult mult_ac) |
14299 | 364 |
|
365 |
lemma hypreal_mult_assoc: "((z1::hypreal) * z2) * z3 = z1 * (z2 * z3)" |
|
14705 | 366 |
by (cases z1, cases z2, cases z3, simp add: hypreal_mult mult_assoc) |
14299 | 367 |
|
14331 | 368 |
lemma hypreal_mult_1: "(1::hypreal) * z = z" |
14705 | 369 |
by (cases z, simp add: hypreal_one_def hypreal_mult) |
14301 | 370 |
|
14329 | 371 |
lemma hypreal_add_mult_distrib: |
372 |
"((z1::hypreal) + z2) * w = (z1 * w) + (z2 * w)" |
|
14705 | 373 |
by (cases z1, cases z2, cases w, simp add: hypreal_mult hypreal_add left_distrib) |
14299 | 374 |
|
14331 | 375 |
text{*one and zero are distinct*} |
14299 | 376 |
lemma hypreal_zero_not_eq_one: "0 \<noteq> (1::hypreal)" |
14468 | 377 |
by (simp add: hypreal_zero_def hypreal_one_def) |
14299 | 378 |
|
379 |
||
14329 | 380 |
subsection{*Multiplicative Inverse on @{typ hypreal} *} |
14299 | 381 |
|
382 |
lemma hypreal_inverse_congruent: |
|
15169 | 383 |
"(%X. hyprel``{%n. if X n = 0 then 0 else inverse(X n)}) respects hyprel" |
14705 | 384 |
by (auto simp add: congruent_def, ultra) |
14299 | 385 |
|
386 |
lemma hypreal_inverse: |
|
387 |
"inverse (Abs_hypreal(hyprel``{%n. X n})) = |
|
388 |
Abs_hypreal(hyprel `` {%n. if X n = 0 then 0 else inverse(X n)})" |
|
15539 | 389 |
by (simp add: hypreal_inverse_def hyprel_in_hypreal [THEN Abs_hypreal_inverse] |
14705 | 390 |
UN_equiv_class [OF equiv_hyprel hypreal_inverse_congruent]) |
14299 | 391 |
|
14331 | 392 |
lemma hypreal_mult_inverse: |
14299 | 393 |
"x \<noteq> 0 ==> x*inverse(x) = (1::hypreal)" |
14468 | 394 |
apply (cases x) |
14705 | 395 |
apply (simp add: hypreal_one_def hypreal_zero_def hypreal_inverse hypreal_mult) |
14299 | 396 |
apply (drule FreeUltrafilterNat_Compl_mem) |
14334 | 397 |
apply (blast intro!: right_inverse FreeUltrafilterNat_subset) |
14299 | 398 |
done |
399 |
||
14331 | 400 |
lemma hypreal_mult_inverse_left: |
14329 | 401 |
"x \<noteq> 0 ==> inverse(x)*x = (1::hypreal)" |
14301 | 402 |
by (simp add: hypreal_mult_inverse hypreal_mult_commute) |
14299 | 403 |
|
14331 | 404 |
instance hypreal :: field |
405 |
proof |
|
406 |
fix x y z :: hypreal |
|
407 |
show "- x + x = 0" by (simp add: hypreal_add_minus_left) |
|
408 |
show "x - y = x + (-y)" by (simp add: hypreal_diff_def) |
|
409 |
show "(x * y) * z = x * (y * z)" by (rule hypreal_mult_assoc) |
|
410 |
show "x * y = y * x" by (rule hypreal_mult_commute) |
|
411 |
show "1 * x = x" by (simp add: hypreal_mult_1) |
|
412 |
show "(x + y) * z = x * z + y * z" by (simp add: hypreal_add_mult_distrib) |
|
413 |
show "0 \<noteq> (1::hypreal)" by (rule hypreal_zero_not_eq_one) |
|
414 |
show "x \<noteq> 0 ==> inverse x * x = 1" by (simp add: hypreal_mult_inverse_left) |
|
14430
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14421
diff
changeset
|
415 |
show "x / y = x * inverse y" by (simp add: hypreal_divide_def) |
14331 | 416 |
qed |
417 |
||
418 |
||
419 |
instance hypreal :: division_by_zero |
|
420 |
proof |
|
14430
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14421
diff
changeset
|
421 |
show "inverse 0 = (0::hypreal)" |
14421
ee97b6463cb4
new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents:
14387
diff
changeset
|
422 |
by (simp add: hypreal_inverse hypreal_zero_def) |
14331 | 423 |
qed |
424 |
||
14329 | 425 |
|
426 |
subsection{*Properties of The @{text "\<le>"} Relation*} |
|
14299 | 427 |
|
428 |
lemma hypreal_le: |
|
14365
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents:
14361
diff
changeset
|
429 |
"(Abs_hypreal(hyprel``{%n. X n}) \<le> Abs_hypreal(hyprel``{%n. Y n})) = |
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents:
14361
diff
changeset
|
430 |
({n. X n \<le> Y n} \<in> FreeUltrafilterNat)" |
14468 | 431 |
apply (simp add: hypreal_le_def) |
14387
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14378
diff
changeset
|
432 |
apply (auto intro!: lemma_hyprel_refl, ultra) |
14299 | 433 |
done |
434 |
||
14365
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents:
14361
diff
changeset
|
435 |
lemma hypreal_le_refl: "w \<le> (w::hypreal)" |
14705 | 436 |
by (cases w, simp add: hypreal_le) |
14299 | 437 |
|
14365
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents:
14361
diff
changeset
|
438 |
lemma hypreal_le_trans: "[| i \<le> j; j \<le> k |] ==> i \<le> (k::hypreal)" |
14705 | 439 |
by (cases i, cases j, cases k, simp add: hypreal_le, ultra) |
14299 | 440 |
|
14365
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents:
14361
diff
changeset
|
441 |
lemma hypreal_le_anti_sym: "[| z \<le> w; w \<le> z |] ==> z = (w::hypreal)" |
14705 | 442 |
by (cases z, cases w, simp add: hypreal_le, ultra) |
14299 | 443 |
|
444 |
(* Axiom 'order_less_le' of class 'order': *) |
|
14365
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents:
14361
diff
changeset
|
445 |
lemma hypreal_less_le: "((w::hypreal) < z) = (w \<le> z & w \<noteq> z)" |
14387
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14378
diff
changeset
|
446 |
by (simp add: hypreal_less_def) |
14299 | 447 |
|
14329 | 448 |
instance hypreal :: order |
14691 | 449 |
by intro_classes |
450 |
(assumption | |
|
451 |
rule hypreal_le_refl hypreal_le_trans hypreal_le_anti_sym hypreal_less_le)+ |
|
14370 | 452 |
|
453 |
||
454 |
(* Axiom 'linorder_linear' of class 'linorder': *) |
|
455 |
lemma hypreal_le_linear: "(z::hypreal) \<le> w | w \<le> z" |
|
14468 | 456 |
apply (cases z, cases w) |
14387
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14378
diff
changeset
|
457 |
apply (auto simp add: hypreal_le, ultra) |
14370 | 458 |
done |
14329 | 459 |
|
460 |
instance hypreal :: linorder |
|
14691 | 461 |
by intro_classes (rule hypreal_le_linear) |
14329 | 462 |
|
14370 | 463 |
lemma hypreal_not_refl2: "!!(x::hypreal). x < y ==> x \<noteq> y" |
15539 | 464 |
by (auto) |
14329 | 465 |
|
14370 | 466 |
lemma hypreal_add_left_mono: "x \<le> y ==> z + x \<le> z + (y::hypreal)" |
14468 | 467 |
apply (cases x, cases y, cases z) |
14370 | 468 |
apply (auto simp add: hypreal_le hypreal_add) |
14329 | 469 |
done |
470 |
||
471 |
lemma hypreal_mult_less_mono2: "[| (0::hypreal)<z; x<y |] ==> z*x<z*y" |
|
14468 | 472 |
apply (cases x, cases y, cases z) |
14370 | 473 |
apply (auto simp add: hypreal_zero_def hypreal_le hypreal_mult |
14387
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14378
diff
changeset
|
474 |
linorder_not_le [symmetric], ultra) |
14329 | 475 |
done |
476 |
||
14370 | 477 |
|
14329 | 478 |
subsection{*The Hyperreals Form an Ordered Field*} |
479 |
||
480 |
instance hypreal :: ordered_field |
|
481 |
proof |
|
482 |
fix x y z :: hypreal |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14341
diff
changeset
|
483 |
show "x \<le> y ==> z + x \<le> z + y" |
14370 | 484 |
by (rule hypreal_add_left_mono) |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14341
diff
changeset
|
485 |
show "x < y ==> 0 < z ==> z * x < z * y" |
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14341
diff
changeset
|
486 |
by (simp add: hypreal_mult_less_mono2) |
14329 | 487 |
show "\<bar>x\<bar> = (if x < 0 then -x else x)" |
488 |
by (auto dest: order_le_less_trans simp add: hrabs_def linorder_not_le) |
|
489 |
qed |
|
490 |
||
14331 | 491 |
lemma hypreal_eq_minus_iff: "((x::hypreal) = y) = (x + - y = 0)" |
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
492 |
by auto |
14331 | 493 |
|
14329 | 494 |
lemma hypreal_mult_left_cancel: "(c::hypreal) \<noteq> 0 ==> (c*a=c*b) = (a=b)" |
14387
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14378
diff
changeset
|
495 |
by auto |
14329 | 496 |
|
497 |
lemma hypreal_mult_right_cancel: "(c::hypreal) \<noteq> 0 ==> (a*c=b*c) = (a=b)" |
|
14387
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14378
diff
changeset
|
498 |
by auto |
14329 | 499 |
|
500 |
||
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
501 |
subsection{*The Embedding @{term hypreal_of_real} Preserves Field and |
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
502 |
Order Properties*} |
14329 | 503 |
|
14301 | 504 |
lemma hypreal_of_real_add [simp]: |
14369 | 505 |
"hypreal_of_real (w + z) = hypreal_of_real w + hypreal_of_real z" |
14705 | 506 |
by (simp add: hypreal_of_real_def, simp add: hypreal_add left_distrib) |
14299 | 507 |
|
15013 | 508 |
lemma hypreal_of_real_minus [simp]: |
509 |
"hypreal_of_real (-r) = - hypreal_of_real r" |
|
510 |
by (auto simp add: hypreal_of_real_def hypreal_minus) |
|
511 |
||
512 |
lemma hypreal_of_real_diff [simp]: |
|
513 |
"hypreal_of_real (w - z) = hypreal_of_real w - hypreal_of_real z" |
|
514 |
by (simp add: diff_minus) |
|
515 |
||
14301 | 516 |
lemma hypreal_of_real_mult [simp]: |
14369 | 517 |
"hypreal_of_real (w * z) = hypreal_of_real w * hypreal_of_real z" |
14705 | 518 |
by (simp add: hypreal_of_real_def, simp add: hypreal_mult right_distrib) |
14299 | 519 |
|
14301 | 520 |
lemma hypreal_of_real_one [simp]: "hypreal_of_real 1 = (1::hypreal)" |
14468 | 521 |
by (simp add: hypreal_of_real_def hypreal_one_def) |
14299 | 522 |
|
14301 | 523 |
lemma hypreal_of_real_zero [simp]: "hypreal_of_real 0 = 0" |
14468 | 524 |
by (simp add: hypreal_of_real_def hypreal_zero_def) |
14299 | 525 |
|
14370 | 526 |
lemma hypreal_of_real_le_iff [simp]: |
527 |
"(hypreal_of_real w \<le> hypreal_of_real z) = (w \<le> z)" |
|
14468 | 528 |
apply (simp add: hypreal_le_def hypreal_of_real_def, auto) |
14369 | 529 |
apply (rule_tac [2] x = "%n. w" in exI, safe) |
530 |
apply (rule_tac [3] x = "%n. z" in exI, auto) |
|
531 |
apply (rule FreeUltrafilterNat_P, ultra) |
|
532 |
done |
|
533 |
||
14370 | 534 |
lemma hypreal_of_real_less_iff [simp]: |
535 |
"(hypreal_of_real w < hypreal_of_real z) = (w < z)" |
|
536 |
by (simp add: linorder_not_le [symmetric]) |
|
14369 | 537 |
|
538 |
lemma hypreal_of_real_eq_iff [simp]: |
|
539 |
"(hypreal_of_real w = hypreal_of_real z) = (w = z)" |
|
540 |
by (force intro: order_antisym hypreal_of_real_le_iff [THEN iffD1]) |
|
541 |
||
542 |
text{*As above, for 0*} |
|
543 |
||
544 |
declare hypreal_of_real_less_iff [of 0, simplified, simp] |
|
545 |
declare hypreal_of_real_le_iff [of 0, simplified, simp] |
|
546 |
declare hypreal_of_real_eq_iff [of 0, simplified, simp] |
|
547 |
||
548 |
declare hypreal_of_real_less_iff [of _ 0, simplified, simp] |
|
549 |
declare hypreal_of_real_le_iff [of _ 0, simplified, simp] |
|
550 |
declare hypreal_of_real_eq_iff [of _ 0, simplified, simp] |
|
551 |
||
552 |
text{*As above, for 1*} |
|
553 |
||
554 |
declare hypreal_of_real_less_iff [of 1, simplified, simp] |
|
555 |
declare hypreal_of_real_le_iff [of 1, simplified, simp] |
|
556 |
declare hypreal_of_real_eq_iff [of 1, simplified, simp] |
|
557 |
||
558 |
declare hypreal_of_real_less_iff [of _ 1, simplified, simp] |
|
559 |
declare hypreal_of_real_le_iff [of _ 1, simplified, simp] |
|
560 |
declare hypreal_of_real_eq_iff [of _ 1, simplified, simp] |
|
561 |
||
14329 | 562 |
lemma hypreal_of_real_inverse [simp]: |
563 |
"hypreal_of_real (inverse r) = inverse (hypreal_of_real r)" |
|
14370 | 564 |
apply (case_tac "r=0", simp) |
14299 | 565 |
apply (rule_tac c1 = "hypreal_of_real r" in hypreal_mult_left_cancel [THEN iffD1]) |
14369 | 566 |
apply (auto simp add: hypreal_of_real_mult [symmetric]) |
14299 | 567 |
done |
568 |
||
14329 | 569 |
lemma hypreal_of_real_divide [simp]: |
14369 | 570 |
"hypreal_of_real (w / z) = hypreal_of_real w / hypreal_of_real z" |
14301 | 571 |
by (simp add: hypreal_divide_def real_divide_def) |
14299 | 572 |
|
15013 | 573 |
lemma hypreal_of_real_of_nat [simp]: "hypreal_of_real (of_nat n) = of_nat n" |
574 |
by (induct n, simp_all) |
|
575 |
||
576 |
lemma hypreal_of_real_of_int [simp]: "hypreal_of_real (of_int z) = of_int z" |
|
577 |
proof (cases z) |
|
578 |
case (1 n) |
|
579 |
thus ?thesis by simp |
|
580 |
next |
|
581 |
case (2 n) |
|
582 |
thus ?thesis |
|
583 |
by (simp only: of_int_minus hypreal_of_real_minus, simp) |
|
584 |
qed |
|
585 |
||
14299 | 586 |
|
14329 | 587 |
subsection{*Misc Others*} |
14299 | 588 |
|
14370 | 589 |
lemma hypreal_less: |
590 |
"(Abs_hypreal(hyprel``{%n. X n}) < Abs_hypreal(hyprel``{%n. Y n})) = |
|
591 |
({n. X n < Y n} \<in> FreeUltrafilterNat)" |
|
14705 | 592 |
by (auto simp add: hypreal_le linorder_not_le [symmetric], ultra+) |
14370 | 593 |
|
14299 | 594 |
lemma hypreal_zero_num: "0 = Abs_hypreal (hyprel `` {%n. 0})" |
14301 | 595 |
by (simp add: hypreal_zero_def [THEN meta_eq_to_obj_eq, symmetric]) |
14299 | 596 |
|
597 |
lemma hypreal_one_num: "1 = Abs_hypreal (hyprel `` {%n. 1})" |
|
14301 | 598 |
by (simp add: hypreal_one_def [THEN meta_eq_to_obj_eq, symmetric]) |
14299 | 599 |
|
14301 | 600 |
lemma hypreal_omega_gt_zero [simp]: "0 < omega" |
14705 | 601 |
by (auto simp add: omega_def hypreal_less hypreal_zero_num) |
14299 | 602 |
|
14329 | 603 |
lemma hypreal_hrabs: |
604 |
"abs (Abs_hypreal (hyprel `` {X})) = |
|
605 |
Abs_hypreal(hyprel `` {%n. abs (X n)})" |
|
606 |
apply (auto simp add: hrabs_def hypreal_zero_def hypreal_le hypreal_minus) |
|
15229 | 607 |
apply ultra |
608 |
apply ultra |
|
609 |
apply arith |
|
14329 | 610 |
done |
611 |
||
14370 | 612 |
|
613 |
subsection{*Existence of Infinite Hyperreal Number*} |
|
614 |
||
615 |
lemma Rep_hypreal_omega: "Rep_hypreal(omega) \<in> hypreal" |
|
14468 | 616 |
by (simp add: omega_def) |
14370 | 617 |
|
618 |
text{*Existence of infinite number not corresponding to any real number. |
|
619 |
Use assumption that member @{term FreeUltrafilterNat} is not finite.*} |
|
620 |
||
621 |
||
622 |
text{*A few lemmas first*} |
|
623 |
||
624 |
lemma lemma_omega_empty_singleton_disj: "{n::nat. x = real n} = {} | |
|
625 |
(\<exists>y. {n::nat. x = real n} = {y})" |
|
14387
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14378
diff
changeset
|
626 |
by force |
14370 | 627 |
|
628 |
lemma lemma_finite_omega_set: "finite {n::nat. x = real n}" |
|
629 |
by (cut_tac x = x in lemma_omega_empty_singleton_disj, auto) |
|
630 |
||
631 |
lemma not_ex_hypreal_of_real_eq_omega: |
|
632 |
"~ (\<exists>x. hypreal_of_real x = omega)" |
|
14468 | 633 |
apply (simp add: omega_def hypreal_of_real_def) |
14370 | 634 |
apply (auto simp add: real_of_nat_Suc diff_eq_eq [symmetric] |
635 |
lemma_finite_omega_set [THEN FreeUltrafilterNat_finite]) |
|
636 |
done |
|
637 |
||
638 |
lemma hypreal_of_real_not_eq_omega: "hypreal_of_real x \<noteq> omega" |
|
14705 | 639 |
by (insert not_ex_hypreal_of_real_eq_omega, auto) |
14370 | 640 |
|
641 |
text{*Existence of infinitesimal number also not corresponding to any |
|
642 |
real number*} |
|
643 |
||
644 |
lemma lemma_epsilon_empty_singleton_disj: |
|
645 |
"{n::nat. x = inverse(real(Suc n))} = {} | |
|
646 |
(\<exists>y. {n::nat. x = inverse(real(Suc n))} = {y})" |
|
14387
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14378
diff
changeset
|
647 |
by auto |
14370 | 648 |
|
649 |
lemma lemma_finite_epsilon_set: "finite {n. x = inverse(real(Suc n))}" |
|
650 |
by (cut_tac x = x in lemma_epsilon_empty_singleton_disj, auto) |
|
651 |
||
14705 | 652 |
lemma not_ex_hypreal_of_real_eq_epsilon: "~ (\<exists>x. hypreal_of_real x = epsilon)" |
653 |
by (auto simp add: epsilon_def hypreal_of_real_def |
|
654 |
lemma_finite_epsilon_set [THEN FreeUltrafilterNat_finite]) |
|
14370 | 655 |
|
656 |
lemma hypreal_of_real_not_eq_epsilon: "hypreal_of_real x \<noteq> epsilon" |
|
14705 | 657 |
by (insert not_ex_hypreal_of_real_eq_epsilon, auto) |
14370 | 658 |
|
659 |
lemma hypreal_epsilon_not_zero: "epsilon \<noteq> 0" |
|
14468 | 660 |
by (simp add: epsilon_def hypreal_zero_def) |
14370 | 661 |
|
662 |
lemma hypreal_epsilon_inverse_omega: "epsilon = inverse(omega)" |
|
663 |
by (simp add: hypreal_inverse omega_def epsilon_def) |
|
664 |
||
665 |
||
14299 | 666 |
ML |
667 |
{* |
|
14329 | 668 |
val hrabs_def = thm "hrabs_def"; |
669 |
val hypreal_hrabs = thm "hypreal_hrabs"; |
|
670 |
||
14299 | 671 |
val hypreal_zero_def = thm "hypreal_zero_def"; |
672 |
val hypreal_one_def = thm "hypreal_one_def"; |
|
673 |
val hypreal_minus_def = thm "hypreal_minus_def"; |
|
674 |
val hypreal_diff_def = thm "hypreal_diff_def"; |
|
675 |
val hypreal_inverse_def = thm "hypreal_inverse_def"; |
|
676 |
val hypreal_divide_def = thm "hypreal_divide_def"; |
|
677 |
val hypreal_of_real_def = thm "hypreal_of_real_def"; |
|
678 |
val omega_def = thm "omega_def"; |
|
679 |
val epsilon_def = thm "epsilon_def"; |
|
680 |
val hypreal_add_def = thm "hypreal_add_def"; |
|
681 |
val hypreal_mult_def = thm "hypreal_mult_def"; |
|
682 |
val hypreal_less_def = thm "hypreal_less_def"; |
|
683 |
val hypreal_le_def = thm "hypreal_le_def"; |
|
684 |
||
685 |
val finite_exhausts = thm "finite_exhausts"; |
|
686 |
val finite_not_covers = thm "finite_not_covers"; |
|
687 |
val not_finite_nat = thm "not_finite_nat"; |
|
688 |
val FreeUltrafilterNat_Ex = thm "FreeUltrafilterNat_Ex"; |
|
689 |
val FreeUltrafilterNat_mem = thm "FreeUltrafilterNat_mem"; |
|
690 |
val FreeUltrafilterNat_finite = thm "FreeUltrafilterNat_finite"; |
|
691 |
val FreeUltrafilterNat_not_finite = thm "FreeUltrafilterNat_not_finite"; |
|
692 |
val FreeUltrafilterNat_empty = thm "FreeUltrafilterNat_empty"; |
|
693 |
val FreeUltrafilterNat_Int = thm "FreeUltrafilterNat_Int"; |
|
694 |
val FreeUltrafilterNat_subset = thm "FreeUltrafilterNat_subset"; |
|
695 |
val FreeUltrafilterNat_Compl = thm "FreeUltrafilterNat_Compl"; |
|
696 |
val FreeUltrafilterNat_Compl_mem = thm "FreeUltrafilterNat_Compl_mem"; |
|
697 |
val FreeUltrafilterNat_Compl_iff1 = thm "FreeUltrafilterNat_Compl_iff1"; |
|
698 |
val FreeUltrafilterNat_Compl_iff2 = thm "FreeUltrafilterNat_Compl_iff2"; |
|
699 |
val FreeUltrafilterNat_UNIV = thm "FreeUltrafilterNat_UNIV"; |
|
700 |
val FreeUltrafilterNat_Nat_set_refl = thm "FreeUltrafilterNat_Nat_set_refl"; |
|
701 |
val FreeUltrafilterNat_P = thm "FreeUltrafilterNat_P"; |
|
702 |
val FreeUltrafilterNat_Ex_P = thm "FreeUltrafilterNat_Ex_P"; |
|
703 |
val FreeUltrafilterNat_all = thm "FreeUltrafilterNat_all"; |
|
704 |
val FreeUltrafilterNat_Un = thm "FreeUltrafilterNat_Un"; |
|
705 |
val hyprel_iff = thm "hyprel_iff"; |
|
706 |
val hyprel_in_hypreal = thm "hyprel_in_hypreal"; |
|
707 |
val Abs_hypreal_inverse = thm "Abs_hypreal_inverse"; |
|
708 |
val lemma_hyprel_refl = thm "lemma_hyprel_refl"; |
|
709 |
val hypreal_empty_not_mem = thm "hypreal_empty_not_mem"; |
|
710 |
val Rep_hypreal_nonempty = thm "Rep_hypreal_nonempty"; |
|
711 |
val inj_hypreal_of_real = thm "inj_hypreal_of_real"; |
|
712 |
val eq_Abs_hypreal = thm "eq_Abs_hypreal"; |
|
713 |
val hypreal_minus_congruent = thm "hypreal_minus_congruent"; |
|
714 |
val hypreal_minus = thm "hypreal_minus"; |
|
715 |
val hypreal_add = thm "hypreal_add"; |
|
716 |
val hypreal_diff = thm "hypreal_diff"; |
|
717 |
val hypreal_add_commute = thm "hypreal_add_commute"; |
|
718 |
val hypreal_add_assoc = thm "hypreal_add_assoc"; |
|
719 |
val hypreal_add_zero_left = thm "hypreal_add_zero_left"; |
|
720 |
val hypreal_add_zero_right = thm "hypreal_add_zero_right"; |
|
721 |
val hypreal_add_minus = thm "hypreal_add_minus"; |
|
722 |
val hypreal_add_minus_left = thm "hypreal_add_minus_left"; |
|
723 |
val hypreal_mult = thm "hypreal_mult"; |
|
724 |
val hypreal_mult_commute = thm "hypreal_mult_commute"; |
|
725 |
val hypreal_mult_assoc = thm "hypreal_mult_assoc"; |
|
726 |
val hypreal_mult_1 = thm "hypreal_mult_1"; |
|
727 |
val hypreal_zero_not_eq_one = thm "hypreal_zero_not_eq_one"; |
|
728 |
val hypreal_inverse_congruent = thm "hypreal_inverse_congruent"; |
|
729 |
val hypreal_inverse = thm "hypreal_inverse"; |
|
730 |
val hypreal_mult_inverse = thm "hypreal_mult_inverse"; |
|
731 |
val hypreal_mult_inverse_left = thm "hypreal_mult_inverse_left"; |
|
732 |
val hypreal_mult_left_cancel = thm "hypreal_mult_left_cancel"; |
|
733 |
val hypreal_mult_right_cancel = thm "hypreal_mult_right_cancel"; |
|
734 |
val hypreal_not_refl2 = thm "hypreal_not_refl2"; |
|
735 |
val hypreal_less = thm "hypreal_less"; |
|
736 |
val hypreal_eq_minus_iff = thm "hypreal_eq_minus_iff"; |
|
737 |
val hypreal_le = thm "hypreal_le"; |
|
738 |
val hypreal_le_refl = thm "hypreal_le_refl"; |
|
739 |
val hypreal_le_linear = thm "hypreal_le_linear"; |
|
740 |
val hypreal_le_trans = thm "hypreal_le_trans"; |
|
741 |
val hypreal_le_anti_sym = thm "hypreal_le_anti_sym"; |
|
742 |
val hypreal_less_le = thm "hypreal_less_le"; |
|
743 |
val hypreal_of_real_add = thm "hypreal_of_real_add"; |
|
744 |
val hypreal_of_real_mult = thm "hypreal_of_real_mult"; |
|
745 |
val hypreal_of_real_less_iff = thm "hypreal_of_real_less_iff"; |
|
746 |
val hypreal_of_real_le_iff = thm "hypreal_of_real_le_iff"; |
|
747 |
val hypreal_of_real_eq_iff = thm "hypreal_of_real_eq_iff"; |
|
748 |
val hypreal_of_real_minus = thm "hypreal_of_real_minus"; |
|
749 |
val hypreal_of_real_one = thm "hypreal_of_real_one"; |
|
750 |
val hypreal_of_real_zero = thm "hypreal_of_real_zero"; |
|
751 |
val hypreal_of_real_inverse = thm "hypreal_of_real_inverse"; |
|
752 |
val hypreal_of_real_divide = thm "hypreal_of_real_divide"; |
|
753 |
val hypreal_zero_num = thm "hypreal_zero_num"; |
|
754 |
val hypreal_one_num = thm "hypreal_one_num"; |
|
755 |
val hypreal_omega_gt_zero = thm "hypreal_omega_gt_zero"; |
|
14370 | 756 |
|
757 |
val Rep_hypreal_omega = thm"Rep_hypreal_omega"; |
|
758 |
val lemma_omega_empty_singleton_disj = thm"lemma_omega_empty_singleton_disj"; |
|
759 |
val lemma_finite_omega_set = thm"lemma_finite_omega_set"; |
|
760 |
val not_ex_hypreal_of_real_eq_omega = thm"not_ex_hypreal_of_real_eq_omega"; |
|
761 |
val hypreal_of_real_not_eq_omega = thm"hypreal_of_real_not_eq_omega"; |
|
762 |
val not_ex_hypreal_of_real_eq_epsilon = thm"not_ex_hypreal_of_real_eq_epsilon"; |
|
763 |
val hypreal_of_real_not_eq_epsilon = thm"hypreal_of_real_not_eq_epsilon"; |
|
764 |
val hypreal_epsilon_not_zero = thm"hypreal_epsilon_not_zero"; |
|
765 |
val hypreal_epsilon_inverse_omega = thm"hypreal_epsilon_inverse_omega"; |
|
14299 | 766 |
*} |
767 |
||
10751 | 768 |
end |