1476
|
1 |
(* Title: HOL/IMP/VC.thy
|
1447
|
2 |
ID: $Id$
|
1476
|
3 |
Author: Tobias Nipkow
|
1447
|
4 |
Copyright 1996 TUM
|
|
5 |
|
|
6 |
acom: annotated commands
|
|
7 |
vc: verification-conditions
|
2810
|
8 |
awp: weakest (liberal) precondition
|
1447
|
9 |
*)
|
|
10 |
|
12431
|
11 |
header "Verification Conditions"
|
|
12 |
|
16417
|
13 |
theory VC imports Hoare begin
|
1447
|
14 |
|
|
15 |
datatype acom = Askip
|
|
16 |
| Aass loc aexp
|
|
17 |
| Asemi acom acom
|
|
18 |
| Aif bexp acom acom
|
|
19 |
| Awhile bexp assn acom
|
|
20 |
|
|
21 |
consts
|
12431
|
22 |
vc :: "acom => assn => assn"
|
|
23 |
awp :: "acom => assn => assn"
|
|
24 |
vcawp :: "acom => assn => assn \<times> assn"
|
|
25 |
astrip :: "acom => com"
|
1447
|
26 |
|
5183
|
27 |
primrec
|
2810
|
28 |
"awp Askip Q = Q"
|
12431
|
29 |
"awp (Aass x a) Q = (\<lambda>s. Q(s[x\<mapsto>a s]))"
|
2810
|
30 |
"awp (Asemi c d) Q = awp c (awp d Q)"
|
12431
|
31 |
"awp (Aif b c d) Q = (\<lambda>s. (b s-->awp c Q s) & (~b s-->awp d Q s))"
|
2810
|
32 |
"awp (Awhile b I c) Q = I"
|
1447
|
33 |
|
5183
|
34 |
primrec
|
12431
|
35 |
"vc Askip Q = (\<lambda>s. True)"
|
|
36 |
"vc (Aass x a) Q = (\<lambda>s. True)"
|
|
37 |
"vc (Asemi c d) Q = (\<lambda>s. vc c (awp d Q) s & vc d Q s)"
|
|
38 |
"vc (Aif b c d) Q = (\<lambda>s. vc c Q s & vc d Q s)"
|
|
39 |
"vc (Awhile b I c) Q = (\<lambda>s. (I s & ~b s --> Q s) &
|
2810
|
40 |
(I s & b s --> awp c I s) & vc c I s)"
|
1447
|
41 |
|
5183
|
42 |
primrec
|
1900
|
43 |
"astrip Askip = SKIP"
|
9241
|
44 |
"astrip (Aass x a) = (x:==a)"
|
1900
|
45 |
"astrip (Asemi c d) = (astrip c;astrip d)"
|
12431
|
46 |
"astrip (Aif b c d) = (\<IF> b \<THEN> astrip c \<ELSE> astrip d)"
|
|
47 |
"astrip (Awhile b I c) = (\<WHILE> b \<DO> astrip c)"
|
1451
|
48 |
|
2810
|
49 |
(* simultaneous computation of vc and awp: *)
|
5183
|
50 |
primrec
|
12431
|
51 |
"vcawp Askip Q = (\<lambda>s. True, Q)"
|
|
52 |
"vcawp (Aass x a) Q = (\<lambda>s. True, \<lambda>s. Q(s[x\<mapsto>a s]))"
|
2810
|
53 |
"vcawp (Asemi c d) Q = (let (vcd,wpd) = vcawp d Q;
|
|
54 |
(vcc,wpc) = vcawp c wpd
|
12431
|
55 |
in (\<lambda>s. vcc s & vcd s, wpc))"
|
2810
|
56 |
"vcawp (Aif b c d) Q = (let (vcd,wpd) = vcawp d Q;
|
|
57 |
(vcc,wpc) = vcawp c Q
|
12431
|
58 |
in (\<lambda>s. vcc s & vcd s,
|
|
59 |
\<lambda>s.(b s --> wpc s) & (~b s --> wpd s)))"
|
2810
|
60 |
"vcawp (Awhile b I c) Q = (let (vcc,wpc) = vcawp c I
|
12431
|
61 |
in (\<lambda>s. (I s & ~b s --> Q s) &
|
2810
|
62 |
(I s & b s --> wpc s) & vcc s, I))"
|
1451
|
63 |
|
12431
|
64 |
(*
|
|
65 |
Soundness and completeness of vc
|
|
66 |
*)
|
|
67 |
|
|
68 |
declare hoare.intros [intro]
|
|
69 |
|
|
70 |
lemma l: "!s. P s --> P s" by fast
|
|
71 |
|
|
72 |
lemma vc_sound: "!Q. (!s. vc c Q s) --> |- {awp c Q} astrip c {Q}"
|
|
73 |
apply (induct_tac "c")
|
|
74 |
apply (simp_all (no_asm))
|
|
75 |
apply fast
|
|
76 |
apply fast
|
|
77 |
apply fast
|
|
78 |
(* if *)
|
|
79 |
apply (tactic "Deepen_tac 4 1")
|
|
80 |
(* while *)
|
|
81 |
apply (intro allI impI)
|
|
82 |
apply (rule conseq)
|
|
83 |
apply (rule l)
|
|
84 |
apply (rule While)
|
|
85 |
defer
|
|
86 |
apply fast
|
|
87 |
apply (rule_tac P="awp acom fun2" in conseq)
|
|
88 |
apply fast
|
|
89 |
apply fast
|
|
90 |
apply fast
|
|
91 |
done
|
|
92 |
|
12434
|
93 |
lemma awp_mono [rule_format (no_asm)]:
|
|
94 |
"!P Q. (!s. P s --> Q s) --> (!s. awp c P s --> awp c Q s)"
|
12431
|
95 |
apply (induct_tac "c")
|
|
96 |
apply (simp_all (no_asm_simp))
|
|
97 |
apply (rule allI, rule allI, rule impI)
|
|
98 |
apply (erule allE, erule allE, erule mp)
|
|
99 |
apply (erule allE, erule allE, erule mp, assumption)
|
|
100 |
done
|
|
101 |
|
|
102 |
|
12434
|
103 |
lemma vc_mono [rule_format (no_asm)]:
|
|
104 |
"!P Q. (!s. P s --> Q s) --> (!s. vc c P s --> vc c Q s)"
|
12431
|
105 |
apply (induct_tac "c")
|
|
106 |
apply (simp_all (no_asm_simp))
|
|
107 |
apply safe
|
|
108 |
apply (erule allE,erule allE,erule impE,erule_tac [2] allE,erule_tac [2] mp)
|
|
109 |
prefer 2 apply assumption
|
|
110 |
apply (fast elim: awp_mono)
|
|
111 |
done
|
|
112 |
|
13596
|
113 |
lemma vc_complete: assumes der: "|- {P}c{Q}"
|
|
114 |
shows "(? ac. astrip ac = c & (!s. vc ac Q s) & (!s. P s --> awp ac Q s))"
|
|
115 |
(is "? ac. ?Eq P c Q ac")
|
|
116 |
using der
|
|
117 |
proof induct
|
|
118 |
case skip
|
|
119 |
show ?case (is "? ac. ?C ac")
|
|
120 |
proof show "?C Askip" by simp qed
|
|
121 |
next
|
|
122 |
case (ass P a x)
|
|
123 |
show ?case (is "? ac. ?C ac")
|
|
124 |
proof show "?C(Aass x a)" by simp qed
|
|
125 |
next
|
|
126 |
case (semi P Q R c1 c2)
|
|
127 |
from semi.hyps obtain ac1 where ih1: "?Eq P c1 Q ac1" by fast
|
|
128 |
from semi.hyps obtain ac2 where ih2: "?Eq Q c2 R ac2" by fast
|
|
129 |
show ?case (is "? ac. ?C ac")
|
|
130 |
proof
|
|
131 |
show "?C(Asemi ac1 ac2)"
|
|
132 |
using ih1 ih2 by simp (fast elim!: awp_mono vc_mono)
|
|
133 |
qed
|
|
134 |
next
|
|
135 |
case (If P Q b c1 c2)
|
|
136 |
from If.hyps obtain ac1 where ih1: "?Eq (%s. P s & b s) c1 Q ac1" by fast
|
|
137 |
from If.hyps obtain ac2 where ih2: "?Eq (%s. P s & ~b s) c2 Q ac2" by fast
|
|
138 |
show ?case (is "? ac. ?C ac")
|
|
139 |
proof
|
|
140 |
show "?C(Aif b ac1 ac2)"
|
|
141 |
using ih1 ih2 by simp
|
|
142 |
qed
|
|
143 |
next
|
|
144 |
case (While P b c)
|
|
145 |
from While.hyps obtain ac where ih: "?Eq (%s. P s & b s) c P ac" by fast
|
|
146 |
show ?case (is "? ac. ?C ac")
|
|
147 |
proof show "?C(Awhile b P ac)" using ih by simp qed
|
|
148 |
next
|
|
149 |
case conseq thus ?case by(fast elim!: awp_mono vc_mono)
|
|
150 |
qed
|
12431
|
151 |
|
|
152 |
lemma vcawp_vc_awp: "!Q. vcawp c Q = (vc c Q, awp c Q)"
|
|
153 |
apply (induct_tac "c")
|
|
154 |
apply (simp_all (no_asm_simp) add: Let_def)
|
|
155 |
done
|
|
156 |
|
1447
|
157 |
end
|