0
|
1 |
(* Title: ZF/trancl.ML
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1992 University of Cambridge
|
|
5 |
|
|
6 |
For trancl.thy. Transitive closure of a relation
|
|
7 |
*)
|
|
8 |
|
|
9 |
open Trancl;
|
|
10 |
|
|
11 |
val major::prems = goalw Trancl.thy [trans_def]
|
|
12 |
"[| trans(r); <a,b>:r; <b,c>:r |] ==> <a,c>:r";
|
|
13 |
by (rtac (major RS spec RS spec RS spec RS mp RS mp) 1);
|
|
14 |
by (REPEAT (resolve_tac prems 1));
|
|
15 |
val transD = result();
|
|
16 |
|
|
17 |
goal Trancl.thy "bnd_mono(field(r)*field(r), %s. id(field(r)) Un (r O s))";
|
|
18 |
by (rtac bnd_monoI 1);
|
|
19 |
by (REPEAT (ares_tac [subset_refl, Un_mono, comp_mono] 2));
|
|
20 |
by (fast_tac comp_cs 1);
|
|
21 |
val rtrancl_bnd_mono = result();
|
|
22 |
|
|
23 |
val [prem] = goalw Trancl.thy [rtrancl_def] "r<=s ==> r^* <= s^*";
|
|
24 |
by (rtac lfp_mono 1);
|
|
25 |
by (REPEAT (resolve_tac [rtrancl_bnd_mono, prem, subset_refl, id_mono,
|
|
26 |
comp_mono, Un_mono, field_mono, Sigma_mono] 1));
|
|
27 |
val rtrancl_mono = result();
|
|
28 |
|
|
29 |
(* r^* = id(field(r)) Un ( r O r^* ) *)
|
|
30 |
val rtrancl_unfold = rtrancl_bnd_mono RS (rtrancl_def RS def_lfp_Tarski);
|
|
31 |
|
|
32 |
(** The relation rtrancl **)
|
|
33 |
|
|
34 |
val rtrancl_type = standard (rtrancl_def RS def_lfp_subset);
|
|
35 |
|
|
36 |
(*Reflexivity of rtrancl*)
|
|
37 |
val [prem] = goal Trancl.thy "[| a: field(r) |] ==> <a,a> : r^*";
|
|
38 |
by (resolve_tac [rtrancl_unfold RS ssubst] 1);
|
|
39 |
by (rtac (prem RS idI RS UnI1) 1);
|
|
40 |
val rtrancl_refl = result();
|
|
41 |
|
|
42 |
(*Closure under composition with r *)
|
|
43 |
val prems = goal Trancl.thy
|
|
44 |
"[| <a,b> : r^*; <b,c> : r |] ==> <a,c> : r^*";
|
|
45 |
by (resolve_tac [rtrancl_unfold RS ssubst] 1);
|
|
46 |
by (rtac (compI RS UnI2) 1);
|
|
47 |
by (resolve_tac prems 1);
|
|
48 |
by (resolve_tac prems 1);
|
|
49 |
val rtrancl_into_rtrancl = result();
|
|
50 |
|
|
51 |
(*rtrancl of r contains all pairs in r *)
|
|
52 |
val prems = goal Trancl.thy "<a,b> : r ==> <a,b> : r^*";
|
|
53 |
by (resolve_tac [rtrancl_refl RS rtrancl_into_rtrancl] 1);
|
|
54 |
by (REPEAT (resolve_tac (prems@[fieldI1]) 1));
|
|
55 |
val r_into_rtrancl = result();
|
|
56 |
|
|
57 |
(*The premise ensures that r consists entirely of pairs*)
|
|
58 |
val prems = goal Trancl.thy "r <= Sigma(A,B) ==> r <= r^*";
|
|
59 |
by (cut_facts_tac prems 1);
|
|
60 |
by (fast_tac (ZF_cs addIs [r_into_rtrancl]) 1);
|
|
61 |
val r_subset_rtrancl = result();
|
|
62 |
|
|
63 |
goal Trancl.thy "field(r^*) = field(r)";
|
|
64 |
by (fast_tac (eq_cs addIs [r_into_rtrancl]
|
|
65 |
addSDs [rtrancl_type RS subsetD]) 1);
|
|
66 |
val rtrancl_field = result();
|
|
67 |
|
|
68 |
|
|
69 |
(** standard induction rule **)
|
|
70 |
|
|
71 |
val major::prems = goal Trancl.thy
|
|
72 |
"[| <a,b> : r^*; \
|
|
73 |
\ !!x. x: field(r) ==> P(<x,x>); \
|
|
74 |
\ !!x y z.[| P(<x,y>); <x,y>: r^*; <y,z>: r |] ==> P(<x,z>) |] \
|
|
75 |
\ ==> P(<a,b>)";
|
|
76 |
by (rtac ([rtrancl_def, rtrancl_bnd_mono, major] MRS def_induct) 1);
|
|
77 |
by (fast_tac (ZF_cs addIs prems addSEs [idE,compE]) 1);
|
|
78 |
val rtrancl_full_induct = result();
|
|
79 |
|
|
80 |
(*nice induction rule.
|
|
81 |
Tried adding the typing hypotheses y,z:field(r), but these
|
|
82 |
caused expensive case splits!*)
|
|
83 |
val major::prems = goal Trancl.thy
|
|
84 |
"[| <a,b> : r^*; \
|
|
85 |
\ P(a); \
|
|
86 |
\ !!y z.[| <a,y> : r^*; <y,z> : r; P(y) |] ==> P(z) \
|
|
87 |
\ |] ==> P(b)";
|
|
88 |
(*by induction on this formula*)
|
|
89 |
by (subgoal_tac "ALL y. <a,b> = <a,y> --> P(y)" 1);
|
|
90 |
(*now solve first subgoal: this formula is sufficient*)
|
|
91 |
by (EVERY1 [etac (spec RS mp), rtac refl]);
|
|
92 |
(*now do the induction*)
|
|
93 |
by (resolve_tac [major RS rtrancl_full_induct] 1);
|
|
94 |
by (ALLGOALS (fast_tac (ZF_cs addIs prems)));
|
|
95 |
val rtrancl_induct = result();
|
|
96 |
|
|
97 |
(*transitivity of transitive closure!! -- by induction.*)
|
|
98 |
goalw Trancl.thy [trans_def] "trans(r^*)";
|
|
99 |
by (REPEAT (resolve_tac [allI,impI] 1));
|
|
100 |
by (eres_inst_tac [("b","z")] rtrancl_induct 1);
|
|
101 |
by (DEPTH_SOLVE (eresolve_tac [asm_rl, rtrancl_into_rtrancl] 1));
|
|
102 |
val trans_rtrancl = result();
|
|
103 |
|
|
104 |
(*elimination of rtrancl -- by induction on a special formula*)
|
|
105 |
val major::prems = goal Trancl.thy
|
|
106 |
"[| <a,b> : r^*; (a=b) ==> P; \
|
|
107 |
\ !!y.[| <a,y> : r^*; <y,b> : r |] ==> P |] \
|
|
108 |
\ ==> P";
|
|
109 |
by (subgoal_tac "a = b | (EX y. <a,y> : r^* & <y,b> : r)" 1);
|
|
110 |
(*see HOL/trancl*)
|
|
111 |
by (rtac (major RS rtrancl_induct) 2);
|
|
112 |
by (ALLGOALS (fast_tac (ZF_cs addSEs prems)));
|
|
113 |
val rtranclE = result();
|
|
114 |
|
|
115 |
|
|
116 |
(**** The relation trancl ****)
|
|
117 |
|
|
118 |
(*Transitivity of r^+ is proved by transitivity of r^* *)
|
|
119 |
goalw Trancl.thy [trans_def,trancl_def] "trans(r^+)";
|
|
120 |
by (safe_tac comp_cs);
|
|
121 |
by (rtac (rtrancl_into_rtrancl RS (trans_rtrancl RS transD RS compI)) 1);
|
|
122 |
by (REPEAT (assume_tac 1));
|
|
123 |
val trans_trancl = result();
|
|
124 |
|
|
125 |
(** Conversions between trancl and rtrancl **)
|
|
126 |
|
|
127 |
val [major] = goalw Trancl.thy [trancl_def] "<a,b> : r^+ ==> <a,b> : r^*";
|
|
128 |
by (resolve_tac [major RS compEpair] 1);
|
|
129 |
by (REPEAT (ares_tac [rtrancl_into_rtrancl] 1));
|
|
130 |
val trancl_into_rtrancl = result();
|
|
131 |
|
|
132 |
(*r^+ contains all pairs in r *)
|
|
133 |
val [prem] = goalw Trancl.thy [trancl_def] "<a,b> : r ==> <a,b> : r^+";
|
|
134 |
by (REPEAT (ares_tac [prem,compI,rtrancl_refl,fieldI1] 1));
|
|
135 |
val r_into_trancl = result();
|
|
136 |
|
|
137 |
(*The premise ensures that r consists entirely of pairs*)
|
|
138 |
val prems = goal Trancl.thy "r <= Sigma(A,B) ==> r <= r^+";
|
|
139 |
by (cut_facts_tac prems 1);
|
|
140 |
by (fast_tac (ZF_cs addIs [r_into_trancl]) 1);
|
|
141 |
val r_subset_trancl = result();
|
|
142 |
|
|
143 |
(*intro rule by definition: from r^* and r *)
|
|
144 |
val prems = goalw Trancl.thy [trancl_def]
|
|
145 |
"[| <a,b> : r^*; <b,c> : r |] ==> <a,c> : r^+";
|
|
146 |
by (REPEAT (resolve_tac ([compI]@prems) 1));
|
|
147 |
val rtrancl_into_trancl1 = result();
|
|
148 |
|
|
149 |
(*intro rule from r and r^* *)
|
|
150 |
val prems = goal Trancl.thy
|
|
151 |
"[| <a,b> : r; <b,c> : r^* |] ==> <a,c> : r^+";
|
|
152 |
by (resolve_tac (prems RL [rtrancl_induct]) 1);
|
|
153 |
by (resolve_tac (prems RL [r_into_trancl]) 1);
|
|
154 |
by (etac (trans_trancl RS transD) 1);
|
|
155 |
by (etac r_into_trancl 1);
|
|
156 |
val rtrancl_into_trancl2 = result();
|
|
157 |
|
|
158 |
(*Nice induction rule for trancl*)
|
|
159 |
val major::prems = goal Trancl.thy
|
|
160 |
"[| <a,b> : r^+; \
|
|
161 |
\ !!y. [| <a,y> : r |] ==> P(y); \
|
|
162 |
\ !!y z.[| <a,y> : r^+; <y,z> : r; P(y) |] ==> P(z) \
|
|
163 |
\ |] ==> P(b)";
|
|
164 |
by (rtac (rewrite_rule [trancl_def] major RS compEpair) 1);
|
|
165 |
(*by induction on this formula*)
|
|
166 |
by (subgoal_tac "ALL z. <y,z> : r --> P(z)" 1);
|
|
167 |
(*now solve first subgoal: this formula is sufficient*)
|
|
168 |
by (fast_tac ZF_cs 1);
|
|
169 |
by (etac rtrancl_induct 1);
|
|
170 |
by (ALLGOALS (fast_tac (ZF_cs addIs (rtrancl_into_trancl1::prems))));
|
|
171 |
val trancl_induct = result();
|
|
172 |
|
|
173 |
(*elimination of r^+ -- NOT an induction rule*)
|
|
174 |
val major::prems = goal Trancl.thy
|
|
175 |
"[| <a,b> : r^+; \
|
|
176 |
\ <a,b> : r ==> P; \
|
|
177 |
\ !!y.[| <a,y> : r^+; <y,b> : r |] ==> P \
|
|
178 |
\ |] ==> P";
|
|
179 |
by (subgoal_tac "<a,b> : r | (EX y. <a,y> : r^+ & <y,b> : r)" 1);
|
|
180 |
by (fast_tac (ZF_cs addIs prems) 1);
|
|
181 |
by (rtac (rewrite_rule [trancl_def] major RS compEpair) 1);
|
|
182 |
by (etac rtranclE 1);
|
|
183 |
by (ALLGOALS (fast_tac (ZF_cs addIs [rtrancl_into_trancl1])));
|
|
184 |
val tranclE = result();
|
|
185 |
|
|
186 |
goalw Trancl.thy [trancl_def] "r^+ <= field(r)*field(r)";
|
|
187 |
by (fast_tac (ZF_cs addEs [compE, rtrancl_type RS subsetD RS SigmaE2]) 1);
|
|
188 |
val trancl_type = result();
|
|
189 |
|
|
190 |
val [prem] = goalw Trancl.thy [trancl_def] "r<=s ==> r^+ <= s^+";
|
|
191 |
by (REPEAT (resolve_tac [prem, comp_mono, rtrancl_mono] 1));
|
|
192 |
val trancl_mono = result();
|
|
193 |
|