| author | wenzelm | 
| Fri, 21 Oct 2016 20:49:40 +0200 | |
| changeset 64338 | 20c543b9fa80 | 
| parent 61943 | 7fba644ed827 | 
| child 67613 | ce654b0e6d69 | 
| permissions | -rw-r--r-- | 
| 35247 | 1  | 
(* Title: HOL/Induct/SList.thy  | 
2  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
|
3  | 
||
4  | 
This theory is strictly of historical interest. It illustrates how  | 
|
5  | 
recursive datatypes can be constructed in higher-order logic from  | 
|
6  | 
first principles. Isabelle's datatype package automates a  | 
|
7  | 
construction of this sort.  | 
|
8  | 
||
9  | 
Enriched theory of lists; mutual indirect recursive data-types.  | 
|
10  | 
||
11  | 
Definition of type 'a list (strict lists) by a least fixed point  | 
|
12  | 
||
| 61943 | 13  | 
We use          list(A) == lfp(%Z. {NUMB(0)} <+> A \<times> Z)
 | 
14  | 
and not         list    == lfp(%Z. {NUMB(0)} <+> range(Leaf) \<times> Z)
 | 
|
| 35247 | 15  | 
|
16  | 
so that list can serve as a "functor" for defining other recursive types.  | 
|
17  | 
||
| 
58305
 
57752a91eec4
renamed 'datatype' to 'old_datatype'; 'datatype' is now alias for 'datatype_new'
 
blanchet 
parents: 
58112 
diff
changeset
 | 
18  | 
This enables the conservative construction of mutual recursive datatypes  | 
| 35247 | 19  | 
such as  | 
20  | 
||
| 
58305
 
57752a91eec4
renamed 'datatype' to 'old_datatype'; 'datatype' is now alias for 'datatype_new'
 
blanchet 
parents: 
58112 
diff
changeset
 | 
21  | 
datatype 'a m = Node 'a * 'a m list  | 
| 35247 | 22  | 
*)  | 
23  | 
||
| 60530 | 24  | 
section \<open>Extended List Theory (old)\<close>  | 
| 35247 | 25  | 
|
26  | 
theory SList  | 
|
27  | 
imports Sexp  | 
|
28  | 
begin  | 
|
29  | 
||
30  | 
(*Hilbert_Choice is needed for the function "inv"*)  | 
|
31  | 
||
32  | 
(* *********************************************************************** *)  | 
|
33  | 
(* *)  | 
|
34  | 
(* Building up data type *)  | 
|
35  | 
(* *)  | 
|
36  | 
(* *********************************************************************** *)  | 
|
37  | 
||
38  | 
||
39  | 
(* Defining the Concrete Constructors *)  | 
|
40  | 
definition  | 
|
41  | 
NIL :: "'a item" where  | 
|
42  | 
"NIL = In0(Numb(0))"  | 
|
43  | 
||
44  | 
definition  | 
|
45  | 
CONS :: "['a item, 'a item] => 'a item" where  | 
|
46  | 
"CONS M N = In1(Scons M N)"  | 
|
47  | 
||
48  | 
inductive_set  | 
|
49  | 
list :: "'a item set => 'a item set"  | 
|
50  | 
for A :: "'a item set"  | 
|
51  | 
where  | 
|
52  | 
NIL_I: "NIL: list A"  | 
|
53  | 
| CONS_I: "[| a: A; M: list A |] ==> CONS a M : list A"  | 
|
54  | 
||
55  | 
||
| 
45694
 
4a8743618257
prefer typedef without extra definition and alternative name;
 
wenzelm 
parents: 
45605 
diff
changeset
 | 
56  | 
definition "List = list (range Leaf)"  | 
| 
 
4a8743618257
prefer typedef without extra definition and alternative name;
 
wenzelm 
parents: 
45605 
diff
changeset
 | 
57  | 
|
| 49834 | 58  | 
typedef 'a list = "List :: 'a item set"  | 
| 
45694
 
4a8743618257
prefer typedef without extra definition and alternative name;
 
wenzelm 
parents: 
45605 
diff
changeset
 | 
59  | 
morphisms Rep_List Abs_List  | 
| 
 
4a8743618257
prefer typedef without extra definition and alternative name;
 
wenzelm 
parents: 
45605 
diff
changeset
 | 
60  | 
unfolding List_def by (blast intro: list.NIL_I)  | 
| 35247 | 61  | 
|
| 
58112
 
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
 
blanchet 
parents: 
49834 
diff
changeset
 | 
62  | 
abbreviation "Case == Old_Datatype.Case"  | 
| 
 
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
 
blanchet 
parents: 
49834 
diff
changeset
 | 
63  | 
abbreviation "Split == Old_Datatype.Split"  | 
| 35247 | 64  | 
|
65  | 
definition  | 
|
66  | 
List_case :: "['b, ['a item, 'a item]=>'b, 'a item] => 'b" where  | 
|
67  | 
"List_case c d = Case(%x. c)(Split(d))"  | 
|
68  | 
||
69  | 
definition  | 
|
70  | 
List_rec :: "['a item, 'b, ['a item, 'a item, 'b]=>'b] => 'b" where  | 
|
71  | 
"List_rec M c d = wfrec (pred_sexp^+)  | 
|
72  | 
(%g. List_case c (%x y. d x y (g y))) M"  | 
|
73  | 
||
74  | 
||
75  | 
(* *********************************************************************** *)  | 
|
76  | 
(* *)  | 
|
77  | 
(* Abstracting data type *)  | 
|
78  | 
(* *)  | 
|
79  | 
(* *********************************************************************** *)  | 
|
80  | 
||
81  | 
(*Declaring the abstract list constructors*)  | 
|
82  | 
||
83  | 
no_translations  | 
|
84  | 
"[x, xs]" == "x#[xs]"  | 
|
85  | 
"[x]" == "x#[]"  | 
|
86  | 
no_notation  | 
|
87  | 
  Nil  ("[]") and
 | 
|
88  | 
Cons (infixr "#" 65)  | 
|
89  | 
||
90  | 
definition  | 
|
91  | 
  Nil       :: "'a list"                               ("[]") where
 | 
|
92  | 
"Nil = Abs_List(NIL)"  | 
|
93  | 
||
94  | 
definition  | 
|
95  | 
"Cons" :: "['a, 'a list] => 'a list" (infixr "#" 65) where  | 
|
96  | 
"x#xs = Abs_List(CONS (Leaf x)(Rep_List xs))"  | 
|
97  | 
||
98  | 
definition  | 
|
99  | 
(* list Recursion -- the trancl is Essential; see list.ML *)  | 
|
100  | 
list_rec :: "['a list, 'b, ['a, 'a list, 'b]=>'b] => 'b" where  | 
|
101  | 
"list_rec l c d =  | 
|
102  | 
List_rec(Rep_List l) c (%x y r. d(inv Leaf x)(Abs_List y) r)"  | 
|
103  | 
||
104  | 
definition  | 
|
105  | 
list_case :: "['b, ['a, 'a list]=>'b, 'a list] => 'b" where  | 
|
106  | 
"list_case a f xs = list_rec xs a (%x xs r. f x xs)"  | 
|
107  | 
||
108  | 
(* list Enumeration *)  | 
|
109  | 
translations  | 
|
110  | 
"[x, xs]" == "x#[xs]"  | 
|
111  | 
"[x]" == "x#[]"  | 
|
112  | 
||
113  | 
"case xs of [] => a | y#ys => b" == "CONST list_case(a, %y ys. b, xs)"  | 
|
114  | 
||
115  | 
||
116  | 
(* *********************************************************************** *)  | 
|
117  | 
(* *)  | 
|
118  | 
(* Generalized Map Functionals *)  | 
|
119  | 
(* *)  | 
|
120  | 
(* *********************************************************************** *)  | 
|
121  | 
||
122  | 
||
123  | 
(* Generalized Map Functionals *)  | 
|
124  | 
||
125  | 
definition  | 
|
126  | 
  Rep_map   :: "('b => 'a item) => ('b list => 'a item)" where
 | 
|
127  | 
"Rep_map f xs = list_rec xs NIL(%x l r. CONS(f x) r)"  | 
|
128  | 
||
129  | 
definition  | 
|
130  | 
  Abs_map   :: "('a item => 'b) => 'a item => 'b list" where
 | 
|
131  | 
"Abs_map g M = List_rec M Nil (%N L r. g(N)#r)"  | 
|
132  | 
||
133  | 
||
134  | 
definition  | 
|
135  | 
  map       :: "('a=>'b) => ('a list => 'b list)" where
 | 
|
136  | 
"map f xs = list_rec xs [] (%x l r. f(x)#r)"  | 
|
137  | 
||
| 39246 | 138  | 
primrec take :: "['a list,nat] => 'a list" where  | 
| 35247 | 139  | 
take_0: "take xs 0 = []"  | 
| 39246 | 140  | 
| take_Suc: "take xs (Suc n) = list_case [] (%x l. x # take l n) xs"  | 
| 35247 | 141  | 
|
142  | 
lemma ListI: "x : list (range Leaf) ==> x : List"  | 
|
143  | 
by (simp add: List_def)  | 
|
144  | 
||
145  | 
lemma ListD: "x : List ==> x : list (range Leaf)"  | 
|
146  | 
by (simp add: List_def)  | 
|
147  | 
||
148  | 
lemma list_unfold: "list(A) = usum {Numb(0)} (uprod A (list(A)))"
 | 
|
149  | 
by (fast intro!: list.intros [unfolded NIL_def CONS_def]  | 
|
150  | 
elim: list.cases [unfolded NIL_def CONS_def])  | 
|
151  | 
||
152  | 
(*This justifies using list in other recursive type definitions*)  | 
|
153  | 
lemma list_mono: "A<=B ==> list(A) <= list(B)"  | 
|
154  | 
apply (rule subsetI)  | 
|
155  | 
apply (erule list.induct)  | 
|
156  | 
apply (auto intro!: list.intros)  | 
|
157  | 
done  | 
|
158  | 
||
159  | 
(*Type checking -- list creates well-founded sets*)  | 
|
160  | 
lemma list_sexp: "list(sexp) <= sexp"  | 
|
161  | 
apply (rule subsetI)  | 
|
162  | 
apply (erule list.induct)  | 
|
163  | 
apply (unfold NIL_def CONS_def)  | 
|
164  | 
apply (auto intro: sexp.intros sexp_In0I sexp_In1I)  | 
|
165  | 
done  | 
|
166  | 
||
167  | 
(* A <= sexp ==> list(A) <= sexp *)  | 
|
168  | 
lemmas list_subset_sexp = subset_trans [OF list_mono list_sexp]  | 
|
169  | 
||
170  | 
||
171  | 
(*Induction for the type 'a list *)  | 
|
172  | 
lemma list_induct:  | 
|
173  | 
"[| P(Nil);  | 
|
174  | 
!!x xs. P(xs) ==> P(x # xs) |] ==> P(l)"  | 
|
175  | 
apply (unfold Nil_def Cons_def)  | 
|
176  | 
apply (rule Rep_List_inverse [THEN subst])  | 
|
177  | 
(*types force good instantiation*)  | 
|
178  | 
apply (rule Rep_List [unfolded List_def, THEN list.induct], simp)  | 
|
179  | 
apply (erule Abs_List_inverse [unfolded List_def, THEN subst], blast)  | 
|
180  | 
done  | 
|
181  | 
||
182  | 
||
183  | 
(*** Isomorphisms ***)  | 
|
184  | 
||
185  | 
lemma inj_on_Abs_list: "inj_on Abs_List (list(range Leaf))"  | 
|
186  | 
apply (rule inj_on_inverseI)  | 
|
187  | 
apply (erule Abs_List_inverse [unfolded List_def])  | 
|
188  | 
done  | 
|
189  | 
||
190  | 
(** Distinctness of constructors **)  | 
|
191  | 
||
192  | 
lemma CONS_not_NIL [iff]: "CONS M N ~= NIL"  | 
|
193  | 
by (simp add: NIL_def CONS_def)  | 
|
194  | 
||
195  | 
lemmas NIL_not_CONS [iff] = CONS_not_NIL [THEN not_sym]  | 
|
| 45605 | 196  | 
lemmas CONS_neq_NIL = CONS_not_NIL [THEN notE]  | 
| 35247 | 197  | 
lemmas NIL_neq_CONS = sym [THEN CONS_neq_NIL]  | 
198  | 
||
199  | 
lemma Cons_not_Nil [iff]: "x # xs ~= Nil"  | 
|
200  | 
apply (unfold Nil_def Cons_def)  | 
|
201  | 
apply (rule CONS_not_NIL [THEN inj_on_Abs_list [THEN inj_on_contraD]])  | 
|
202  | 
apply (simp_all add: list.intros rangeI Rep_List [unfolded List_def])  | 
|
203  | 
done  | 
|
204  | 
||
| 45605 | 205  | 
lemmas Nil_not_Cons = Cons_not_Nil [THEN not_sym]  | 
206  | 
declare Nil_not_Cons [iff]  | 
|
207  | 
lemmas Cons_neq_Nil = Cons_not_Nil [THEN notE]  | 
|
| 35247 | 208  | 
lemmas Nil_neq_Cons = sym [THEN Cons_neq_Nil]  | 
209  | 
||
210  | 
(** Injectiveness of CONS and Cons **)  | 
|
211  | 
||
212  | 
lemma CONS_CONS_eq [iff]: "(CONS K M)=(CONS L N) = (K=L & M=N)"  | 
|
213  | 
by (simp add: CONS_def)  | 
|
214  | 
||
215  | 
(*For reasoning about abstract list constructors*)  | 
|
216  | 
declare Rep_List [THEN ListD, intro] ListI [intro]  | 
|
217  | 
declare list.intros [intro,simp]  | 
|
218  | 
declare Leaf_inject [dest!]  | 
|
219  | 
||
220  | 
lemma Cons_Cons_eq [iff]: "(x#xs=y#ys) = (x=y & xs=ys)"  | 
|
221  | 
apply (simp add: Cons_def)  | 
|
222  | 
apply (subst Abs_List_inject)  | 
|
223  | 
apply (auto simp add: Rep_List_inject)  | 
|
224  | 
done  | 
|
225  | 
||
| 45605 | 226  | 
lemmas Cons_inject2 = Cons_Cons_eq [THEN iffD1, THEN conjE]  | 
| 35247 | 227  | 
|
228  | 
lemma CONS_D: "CONS M N: list(A) ==> M: A & N: list(A)"  | 
|
| 
45694
 
4a8743618257
prefer typedef without extra definition and alternative name;
 
wenzelm 
parents: 
45605 
diff
changeset
 | 
229  | 
by (induct L == "CONS M N" rule: list.induct) auto  | 
| 35247 | 230  | 
|
231  | 
lemma sexp_CONS_D: "CONS M N: sexp ==> M: sexp & N: sexp"  | 
|
232  | 
apply (simp add: CONS_def In1_def)  | 
|
233  | 
apply (fast dest!: Scons_D)  | 
|
234  | 
done  | 
|
235  | 
||
236  | 
||
237  | 
(*Reasoning about constructors and their freeness*)  | 
|
238  | 
||
239  | 
||
240  | 
lemma not_CONS_self: "N: list(A) ==> !M. N ~= CONS M N"  | 
|
241  | 
apply (erule list.induct) apply simp_all done  | 
|
242  | 
||
243  | 
lemma not_Cons_self2: "\<forall>x. l ~= x#l"  | 
|
244  | 
by (induct l rule: list_induct) simp_all  | 
|
245  | 
||
246  | 
||
247  | 
lemma neq_Nil_conv2: "(xs ~= []) = (\<exists>y ys. xs = y#ys)"  | 
|
248  | 
by (induct xs rule: list_induct) auto  | 
|
249  | 
||
250  | 
(** Conversion rules for List_case: case analysis operator **)  | 
|
251  | 
||
252  | 
lemma List_case_NIL [simp]: "List_case c h NIL = c"  | 
|
253  | 
by (simp add: List_case_def NIL_def)  | 
|
254  | 
||
255  | 
lemma List_case_CONS [simp]: "List_case c h (CONS M N) = h M N"  | 
|
256  | 
by (simp add: List_case_def CONS_def)  | 
|
257  | 
||
258  | 
||
259  | 
(*** List_rec -- by wf recursion on pred_sexp ***)  | 
|
260  | 
||
261  | 
(* The trancl(pred_sexp) is essential because pred_sexp_CONS_I1,2 would not  | 
|
262  | 
hold if pred_sexp^+ were changed to pred_sexp. *)  | 
|
263  | 
||
264  | 
lemma List_rec_unfold_lemma:  | 
|
265  | 
"(%M. List_rec M c d) ==  | 
|
266  | 
wfrec (pred_sexp^+) (%g. List_case c (%x y. d x y (g y)))"  | 
|
267  | 
by (simp add: List_rec_def)  | 
|
268  | 
||
269  | 
lemmas List_rec_unfold =  | 
|
| 45605 | 270  | 
def_wfrec [OF List_rec_unfold_lemma wf_pred_sexp [THEN wf_trancl]]  | 
| 35247 | 271  | 
|
272  | 
||
273  | 
(** pred_sexp lemmas **)  | 
|
274  | 
||
275  | 
lemma pred_sexp_CONS_I1:  | 
|
276  | 
"[| M: sexp; N: sexp |] ==> (M, CONS M N) : pred_sexp^+"  | 
|
277  | 
by (simp add: CONS_def In1_def)  | 
|
278  | 
||
279  | 
lemma pred_sexp_CONS_I2:  | 
|
280  | 
"[| M: sexp; N: sexp |] ==> (N, CONS M N) : pred_sexp^+"  | 
|
281  | 
by (simp add: CONS_def In1_def)  | 
|
282  | 
||
283  | 
lemma pred_sexp_CONS_D:  | 
|
284  | 
"(CONS M1 M2, N) : pred_sexp^+ ==>  | 
|
285  | 
(M1,N) : pred_sexp^+ & (M2,N) : pred_sexp^+"  | 
|
286  | 
apply (frule pred_sexp_subset_Sigma [THEN trancl_subset_Sigma, THEN subsetD])  | 
|
287  | 
apply (blast dest!: sexp_CONS_D intro: pred_sexp_CONS_I1 pred_sexp_CONS_I2  | 
|
288  | 
trans_trancl [THEN transD])  | 
|
289  | 
done  | 
|
290  | 
||
291  | 
||
292  | 
(** Conversion rules for List_rec **)  | 
|
293  | 
||
294  | 
lemma List_rec_NIL [simp]: "List_rec NIL c h = c"  | 
|
295  | 
apply (rule List_rec_unfold [THEN trans])  | 
|
296  | 
apply (simp add: List_case_NIL)  | 
|
297  | 
done  | 
|
298  | 
||
299  | 
lemma List_rec_CONS [simp]:  | 
|
300  | 
"[| M: sexp; N: sexp |]  | 
|
301  | 
==> List_rec (CONS M N) c h = h M N (List_rec N c h)"  | 
|
302  | 
apply (rule List_rec_unfold [THEN trans])  | 
|
303  | 
apply (simp add: pred_sexp_CONS_I2)  | 
|
304  | 
done  | 
|
305  | 
||
306  | 
||
307  | 
(*** list_rec -- by List_rec ***)  | 
|
308  | 
||
309  | 
lemmas Rep_List_in_sexp =  | 
|
310  | 
subsetD [OF range_Leaf_subset_sexp [THEN list_subset_sexp]  | 
|
311  | 
Rep_List [THEN ListD]]  | 
|
312  | 
||
313  | 
||
314  | 
lemma list_rec_Nil [simp]: "list_rec Nil c h = c"  | 
|
315  | 
by (simp add: list_rec_def ListI [THEN Abs_List_inverse] Nil_def)  | 
|
316  | 
||
317  | 
||
318  | 
lemma list_rec_Cons [simp]: "list_rec (a#l) c h = h a l (list_rec l c h)"  | 
|
319  | 
by (simp add: list_rec_def ListI [THEN Abs_List_inverse] Cons_def  | 
|
320  | 
Rep_List_inverse Rep_List [THEN ListD] inj_Leaf Rep_List_in_sexp)  | 
|
321  | 
||
322  | 
||
323  | 
(*Type checking. Useful?*)  | 
|
324  | 
lemma List_rec_type:  | 
|
325  | 
"[| M: list(A);  | 
|
326  | 
A<=sexp;  | 
|
327  | 
c: C(NIL);  | 
|
328  | 
!!x y r. [| x: A; y: list(A); r: C(y) |] ==> h x y r: C(CONS x y)  | 
|
329  | 
|] ==> List_rec M c h : C(M :: 'a item)"  | 
|
330  | 
apply (erule list.induct, simp)  | 
|
331  | 
apply (insert list_subset_sexp)  | 
|
332  | 
apply (subst List_rec_CONS, blast+)  | 
|
333  | 
done  | 
|
334  | 
||
335  | 
||
336  | 
||
337  | 
(** Generalized map functionals **)  | 
|
338  | 
||
339  | 
lemma Rep_map_Nil [simp]: "Rep_map f Nil = NIL"  | 
|
340  | 
by (simp add: Rep_map_def)  | 
|
341  | 
||
342  | 
lemma Rep_map_Cons [simp]:  | 
|
343  | 
"Rep_map f(x#xs) = CONS(f x)(Rep_map f xs)"  | 
|
344  | 
by (simp add: Rep_map_def)  | 
|
345  | 
||
346  | 
lemma Rep_map_type: "(!!x. f(x): A) ==> Rep_map f xs: list(A)"  | 
|
347  | 
apply (simp add: Rep_map_def)  | 
|
348  | 
apply (rule list_induct, auto)  | 
|
349  | 
done  | 
|
350  | 
||
351  | 
lemma Abs_map_NIL [simp]: "Abs_map g NIL = Nil"  | 
|
352  | 
by (simp add: Abs_map_def)  | 
|
353  | 
||
354  | 
lemma Abs_map_CONS [simp]:  | 
|
355  | 
"[| M: sexp; N: sexp |] ==> Abs_map g (CONS M N) = g(M) # Abs_map g N"  | 
|
356  | 
by (simp add: Abs_map_def)  | 
|
357  | 
||
358  | 
(*Eases the use of primitive recursion.*)  | 
|
359  | 
lemma def_list_rec_NilCons:  | 
|
360  | 
"[| !!xs. f(xs) = list_rec xs c h |]  | 
|
361  | 
==> f [] = c & f(x#xs) = h x xs (f xs)"  | 
|
362  | 
by simp  | 
|
363  | 
||
364  | 
lemma Abs_map_inverse:  | 
|
365  | 
"[| M: list(A); A<=sexp; !!z. z: A ==> f(g(z)) = z |]  | 
|
366  | 
==> Rep_map f (Abs_map g M) = M"  | 
|
367  | 
apply (erule list.induct, simp_all)  | 
|
368  | 
apply (insert list_subset_sexp)  | 
|
369  | 
apply (subst Abs_map_CONS, blast)  | 
|
370  | 
apply blast  | 
|
371  | 
apply simp  | 
|
372  | 
done  | 
|
373  | 
||
374  | 
(*Rep_map_inverse is obtained via Abs_Rep_map and map_ident*)  | 
|
375  | 
||
376  | 
(** list_case **)  | 
|
377  | 
||
378  | 
(* setting up rewrite sets *)  | 
|
379  | 
||
| 60530 | 380  | 
text\<open>Better to have a single theorem with a conjunctive conclusion.\<close>  | 
| 35247 | 381  | 
declare def_list_rec_NilCons [OF list_case_def, simp]  | 
382  | 
||
383  | 
(** list_case **)  | 
|
384  | 
||
385  | 
lemma expand_list_case:  | 
|
386  | 
"P(list_case a f xs) = ((xs=[] --> P a ) & (!y ys. xs=y#ys --> P(f y ys)))"  | 
|
387  | 
by (induct xs rule: list_induct) simp_all  | 
|
388  | 
||
389  | 
||
390  | 
(**** Function definitions ****)  | 
|
391  | 
||
392  | 
declare def_list_rec_NilCons [OF map_def, simp]  | 
|
393  | 
||
394  | 
(** The functional "map" and the generalized functionals **)  | 
|
395  | 
||
396  | 
lemma Abs_Rep_map:  | 
|
397  | 
"(!!x. f(x): sexp) ==>  | 
|
398  | 
Abs_map g (Rep_map f xs) = map (%t. g(f(t))) xs"  | 
|
399  | 
apply (induct xs rule: list_induct)  | 
|
400  | 
apply (simp_all add: Rep_map_type list_sexp [THEN subsetD])  | 
|
401  | 
done  | 
|
402  | 
||
403  | 
||
404  | 
(** Additional mapping lemmas **)  | 
|
405  | 
||
406  | 
lemma map_ident [simp]: "map(%x. x)(xs) = xs"  | 
|
407  | 
by (induct xs rule: list_induct) simp_all  | 
|
408  | 
||
409  | 
lemma map_compose: "map(f o g)(xs) = map f (map g xs)"  | 
|
410  | 
apply (simp add: o_def)  | 
|
411  | 
apply (induct xs rule: list_induct)  | 
|
412  | 
apply simp_all  | 
|
413  | 
done  | 
|
414  | 
||
415  | 
||
416  | 
(** take **)  | 
|
417  | 
||
418  | 
lemma take_Suc1 [simp]: "take [] (Suc x) = []"  | 
|
419  | 
by simp  | 
|
420  | 
||
421  | 
lemma take_Suc2 [simp]: "take(a#xs)(Suc x) = a#take xs x"  | 
|
422  | 
by simp  | 
|
423  | 
||
424  | 
lemma take_Nil [simp]: "take [] n = []"  | 
|
425  | 
by (induct n) simp_all  | 
|
426  | 
||
427  | 
lemma take_take_eq [simp]: "\<forall>n. take (take xs n) n = take xs n"  | 
|
428  | 
apply (induct xs rule: list_induct)  | 
|
429  | 
apply simp_all  | 
|
430  | 
apply (rule allI)  | 
|
431  | 
apply (induct_tac n)  | 
|
432  | 
apply auto  | 
|
433  | 
done  | 
|
434  | 
||
435  | 
end  |