| author | haftmann | 
| Mon, 20 Apr 2009 16:28:13 +0200 | |
| changeset 30957 | 20d01210b9b1 | 
| parent 30729 | 461ee3e49ad3 | 
| child 31076 | 99fe356cbbc2 | 
| permissions | -rw-r--r-- | 
| 25904 | 1  | 
(* Title: HOLCF/ConvexPD.thy  | 
2  | 
Author: Brian Huffman  | 
|
3  | 
*)  | 
|
4  | 
||
5  | 
header {* Convex powerdomain *}
 | 
|
6  | 
||
7  | 
theory ConvexPD  | 
|
8  | 
imports UpperPD LowerPD  | 
|
9  | 
begin  | 
|
10  | 
||
11  | 
subsection {* Basis preorder *}
 | 
|
12  | 
||
13  | 
definition  | 
|
14  | 
convex_le :: "'a pd_basis \<Rightarrow> 'a pd_basis \<Rightarrow> bool" (infix "\<le>\<natural>" 50) where  | 
|
15  | 
"convex_le = (\<lambda>u v. u \<le>\<sharp> v \<and> u \<le>\<flat> v)"  | 
|
16  | 
||
17  | 
lemma convex_le_refl [simp]: "t \<le>\<natural> t"  | 
|
18  | 
unfolding convex_le_def by (fast intro: upper_le_refl lower_le_refl)  | 
|
19  | 
||
20  | 
lemma convex_le_trans: "\<lbrakk>t \<le>\<natural> u; u \<le>\<natural> v\<rbrakk> \<Longrightarrow> t \<le>\<natural> v"  | 
|
21  | 
unfolding convex_le_def by (fast intro: upper_le_trans lower_le_trans)  | 
|
22  | 
||
| 
30729
 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 
wenzelm 
parents: 
29990 
diff
changeset
 | 
23  | 
interpretation convex_le: preorder convex_le  | 
| 25904 | 24  | 
by (rule preorder.intro, rule convex_le_refl, rule convex_le_trans)  | 
25  | 
||
26  | 
lemma upper_le_minimal [simp]: "PDUnit compact_bot \<le>\<natural> t"  | 
|
27  | 
unfolding convex_le_def Rep_PDUnit by simp  | 
|
28  | 
||
| 
26420
 
57a626f64875
make preorder locale into a superclass of class po
 
huffman 
parents: 
26407 
diff
changeset
 | 
29  | 
lemma PDUnit_convex_mono: "x \<sqsubseteq> y \<Longrightarrow> PDUnit x \<le>\<natural> PDUnit y"  | 
| 25904 | 30  | 
unfolding convex_le_def by (fast intro: PDUnit_upper_mono PDUnit_lower_mono)  | 
31  | 
||
32  | 
lemma PDPlus_convex_mono: "\<lbrakk>s \<le>\<natural> t; u \<le>\<natural> v\<rbrakk> \<Longrightarrow> PDPlus s u \<le>\<natural> PDPlus t v"  | 
|
33  | 
unfolding convex_le_def by (fast intro: PDPlus_upper_mono PDPlus_lower_mono)  | 
|
34  | 
||
35  | 
lemma convex_le_PDUnit_PDUnit_iff [simp]:  | 
|
| 
26420
 
57a626f64875
make preorder locale into a superclass of class po
 
huffman 
parents: 
26407 
diff
changeset
 | 
36  | 
"(PDUnit a \<le>\<natural> PDUnit b) = a \<sqsubseteq> b"  | 
| 25904 | 37  | 
unfolding convex_le_def upper_le_def lower_le_def Rep_PDUnit by fast  | 
38  | 
||
39  | 
lemma convex_le_PDUnit_lemma1:  | 
|
| 
26420
 
57a626f64875
make preorder locale into a superclass of class po
 
huffman 
parents: 
26407 
diff
changeset
 | 
40  | 
"(PDUnit a \<le>\<natural> t) = (\<forall>b\<in>Rep_pd_basis t. a \<sqsubseteq> b)"  | 
| 25904 | 41  | 
unfolding convex_le_def upper_le_def lower_le_def Rep_PDUnit  | 
42  | 
using Rep_pd_basis_nonempty [of t, folded ex_in_conv] by fast  | 
|
43  | 
||
44  | 
lemma convex_le_PDUnit_PDPlus_iff [simp]:  | 
|
45  | 
"(PDUnit a \<le>\<natural> PDPlus t u) = (PDUnit a \<le>\<natural> t \<and> PDUnit a \<le>\<natural> u)"  | 
|
46  | 
unfolding convex_le_PDUnit_lemma1 Rep_PDPlus by fast  | 
|
47  | 
||
48  | 
lemma convex_le_PDUnit_lemma2:  | 
|
| 
26420
 
57a626f64875
make preorder locale into a superclass of class po
 
huffman 
parents: 
26407 
diff
changeset
 | 
49  | 
"(t \<le>\<natural> PDUnit b) = (\<forall>a\<in>Rep_pd_basis t. a \<sqsubseteq> b)"  | 
| 25904 | 50  | 
unfolding convex_le_def upper_le_def lower_le_def Rep_PDUnit  | 
51  | 
using Rep_pd_basis_nonempty [of t, folded ex_in_conv] by fast  | 
|
52  | 
||
53  | 
lemma convex_le_PDPlus_PDUnit_iff [simp]:  | 
|
54  | 
"(PDPlus t u \<le>\<natural> PDUnit a) = (t \<le>\<natural> PDUnit a \<and> u \<le>\<natural> PDUnit a)"  | 
|
55  | 
unfolding convex_le_PDUnit_lemma2 Rep_PDPlus by fast  | 
|
56  | 
||
57  | 
lemma convex_le_PDPlus_lemma:  | 
|
58  | 
assumes z: "PDPlus t u \<le>\<natural> z"  | 
|
59  | 
shows "\<exists>v w. z = PDPlus v w \<and> t \<le>\<natural> v \<and> u \<le>\<natural> w"  | 
|
60  | 
proof (intro exI conjI)  | 
|
| 
26420
 
57a626f64875
make preorder locale into a superclass of class po
 
huffman 
parents: 
26407 
diff
changeset
 | 
61  | 
  let ?A = "{b\<in>Rep_pd_basis z. \<exists>a\<in>Rep_pd_basis t. a \<sqsubseteq> b}"
 | 
| 
 
57a626f64875
make preorder locale into a superclass of class po
 
huffman 
parents: 
26407 
diff
changeset
 | 
62  | 
  let ?B = "{b\<in>Rep_pd_basis z. \<exists>a\<in>Rep_pd_basis u. a \<sqsubseteq> b}"
 | 
| 25904 | 63  | 
let ?v = "Abs_pd_basis ?A"  | 
64  | 
let ?w = "Abs_pd_basis ?B"  | 
|
65  | 
have Rep_v: "Rep_pd_basis ?v = ?A"  | 
|
66  | 
apply (rule Abs_pd_basis_inverse)  | 
|
67  | 
apply (rule Rep_pd_basis_nonempty [of t, folded ex_in_conv, THEN exE])  | 
|
68  | 
apply (cut_tac z, simp only: convex_le_def lower_le_def, clarify)  | 
|
69  | 
apply (drule_tac x=x in bspec, simp add: Rep_PDPlus, erule bexE)  | 
|
70  | 
apply (simp add: pd_basis_def)  | 
|
71  | 
apply fast  | 
|
72  | 
done  | 
|
73  | 
have Rep_w: "Rep_pd_basis ?w = ?B"  | 
|
74  | 
apply (rule Abs_pd_basis_inverse)  | 
|
75  | 
apply (rule Rep_pd_basis_nonempty [of u, folded ex_in_conv, THEN exE])  | 
|
76  | 
apply (cut_tac z, simp only: convex_le_def lower_le_def, clarify)  | 
|
77  | 
apply (drule_tac x=x in bspec, simp add: Rep_PDPlus, erule bexE)  | 
|
78  | 
apply (simp add: pd_basis_def)  | 
|
79  | 
apply fast  | 
|
80  | 
done  | 
|
81  | 
show "z = PDPlus ?v ?w"  | 
|
82  | 
apply (insert z)  | 
|
83  | 
apply (simp add: convex_le_def, erule conjE)  | 
|
84  | 
apply (simp add: Rep_pd_basis_inject [symmetric] Rep_PDPlus)  | 
|
85  | 
apply (simp add: Rep_v Rep_w)  | 
|
86  | 
apply (rule equalityI)  | 
|
87  | 
apply (rule subsetI)  | 
|
88  | 
apply (simp only: upper_le_def)  | 
|
89  | 
apply (drule (1) bspec, erule bexE)  | 
|
90  | 
apply (simp add: Rep_PDPlus)  | 
|
91  | 
apply fast  | 
|
92  | 
apply fast  | 
|
93  | 
done  | 
|
94  | 
show "t \<le>\<natural> ?v" "u \<le>\<natural> ?w"  | 
|
95  | 
apply (insert z)  | 
|
96  | 
apply (simp_all add: convex_le_def upper_le_def lower_le_def Rep_PDPlus Rep_v Rep_w)  | 
|
97  | 
apply fast+  | 
|
98  | 
done  | 
|
99  | 
qed  | 
|
100  | 
||
101  | 
lemma convex_le_induct [induct set: convex_le]:  | 
|
102  | 
assumes le: "t \<le>\<natural> u"  | 
|
103  | 
assumes 2: "\<And>t u v. \<lbrakk>P t u; P u v\<rbrakk> \<Longrightarrow> P t v"  | 
|
| 
26420
 
57a626f64875
make preorder locale into a superclass of class po
 
huffman 
parents: 
26407 
diff
changeset
 | 
104  | 
assumes 3: "\<And>a b. a \<sqsubseteq> b \<Longrightarrow> P (PDUnit a) (PDUnit b)"  | 
| 25904 | 105  | 
assumes 4: "\<And>t u v w. \<lbrakk>P t v; P u w\<rbrakk> \<Longrightarrow> P (PDPlus t u) (PDPlus v w)"  | 
106  | 
shows "P t u"  | 
|
107  | 
using le apply (induct t arbitrary: u rule: pd_basis_induct)  | 
|
108  | 
apply (erule rev_mp)  | 
|
109  | 
apply (induct_tac u rule: pd_basis_induct1)  | 
|
110  | 
apply (simp add: 3)  | 
|
111  | 
apply (simp, clarify, rename_tac a b t)  | 
|
112  | 
apply (subgoal_tac "P (PDPlus (PDUnit a) (PDUnit a)) (PDPlus (PDUnit b) t)")  | 
|
113  | 
apply (simp add: PDPlus_absorb)  | 
|
114  | 
apply (erule (1) 4 [OF 3])  | 
|
115  | 
apply (drule convex_le_PDPlus_lemma, clarify)  | 
|
116  | 
apply (simp add: 4)  | 
|
117  | 
done  | 
|
118  | 
||
| 27405 | 119  | 
lemma pd_take_convex_chain:  | 
120  | 
"pd_take n t \<le>\<natural> pd_take (Suc n) t"  | 
|
| 25904 | 121  | 
apply (induct t rule: pd_basis_induct)  | 
| 27289 | 122  | 
apply (simp add: compact_basis.take_chain)  | 
| 25904 | 123  | 
apply (simp add: PDPlus_convex_mono)  | 
124  | 
done  | 
|
125  | 
||
| 27405 | 126  | 
lemma pd_take_convex_le: "pd_take i t \<le>\<natural> t"  | 
| 25904 | 127  | 
apply (induct t rule: pd_basis_induct)  | 
| 27289 | 128  | 
apply (simp add: compact_basis.take_less)  | 
| 25904 | 129  | 
apply (simp add: PDPlus_convex_mono)  | 
130  | 
done  | 
|
131  | 
||
| 27405 | 132  | 
lemma pd_take_convex_mono:  | 
133  | 
"t \<le>\<natural> u \<Longrightarrow> pd_take n t \<le>\<natural> pd_take n u"  | 
|
| 25904 | 134  | 
apply (erule convex_le_induct)  | 
135  | 
apply (erule (1) convex_le_trans)  | 
|
| 27289 | 136  | 
apply (simp add: compact_basis.take_mono)  | 
| 25904 | 137  | 
apply (simp add: PDPlus_convex_mono)  | 
138  | 
done  | 
|
139  | 
||
140  | 
||
141  | 
subsection {* Type definition *}
 | 
|
142  | 
||
| 
27373
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
143  | 
typedef (open) 'a convex_pd =  | 
| 
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
144  | 
  "{S::'a pd_basis set. convex_le.ideal S}"
 | 
| 
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
145  | 
by (fast intro: convex_le.ideal_principal)  | 
| 
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
146  | 
|
| 
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
147  | 
instantiation convex_pd :: (profinite) sq_ord  | 
| 
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
148  | 
begin  | 
| 
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
149  | 
|
| 
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
150  | 
definition  | 
| 
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
151  | 
"x \<sqsubseteq> y \<longleftrightarrow> Rep_convex_pd x \<subseteq> Rep_convex_pd y"  | 
| 
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
152  | 
|
| 
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
153  | 
instance ..  | 
| 
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
154  | 
end  | 
| 25904 | 155  | 
|
| 
27373
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
156  | 
instance convex_pd :: (profinite) po  | 
| 
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
157  | 
by (rule convex_le.typedef_ideal_po  | 
| 
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
158  | 
[OF type_definition_convex_pd sq_le_convex_pd_def])  | 
| 
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
159  | 
|
| 
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
160  | 
instance convex_pd :: (profinite) cpo  | 
| 
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
161  | 
by (rule convex_le.typedef_ideal_cpo  | 
| 
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
162  | 
[OF type_definition_convex_pd sq_le_convex_pd_def])  | 
| 
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
163  | 
|
| 
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
164  | 
lemma Rep_convex_pd_lub:  | 
| 
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
165  | 
"chain Y \<Longrightarrow> Rep_convex_pd (\<Squnion>i. Y i) = (\<Union>i. Rep_convex_pd (Y i))"  | 
| 
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
166  | 
by (rule convex_le.typedef_ideal_rep_contlub  | 
| 
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
167  | 
[OF type_definition_convex_pd sq_le_convex_pd_def])  | 
| 
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
168  | 
|
| 
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
169  | 
lemma ideal_Rep_convex_pd: "convex_le.ideal (Rep_convex_pd xs)"  | 
| 26927 | 170  | 
by (rule Rep_convex_pd [unfolded mem_Collect_eq])  | 
| 25904 | 171  | 
|
172  | 
definition  | 
|
173  | 
convex_principal :: "'a pd_basis \<Rightarrow> 'a convex_pd" where  | 
|
| 
27373
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
174  | 
  "convex_principal t = Abs_convex_pd {u. u \<le>\<natural> t}"
 | 
| 25904 | 175  | 
|
176  | 
lemma Rep_convex_principal:  | 
|
| 
27373
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
177  | 
  "Rep_convex_pd (convex_principal t) = {u. u \<le>\<natural> t}"
 | 
| 25904 | 178  | 
unfolding convex_principal_def  | 
| 
27297
 
2c42b1505f25
removed SetPcpo.thy and cpo instance for type bool;
 
huffman 
parents: 
27289 
diff
changeset
 | 
179  | 
by (simp add: Abs_convex_pd_inverse convex_le.ideal_principal)  | 
| 25904 | 180  | 
|
| 
30729
 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 
wenzelm 
parents: 
29990 
diff
changeset
 | 
181  | 
interpretation convex_pd:  | 
| 29237 | 182  | 
ideal_completion convex_le pd_take convex_principal Rep_convex_pd  | 
| 25904 | 183  | 
apply unfold_locales  | 
| 27405 | 184  | 
apply (rule pd_take_convex_le)  | 
185  | 
apply (rule pd_take_idem)  | 
|
186  | 
apply (erule pd_take_convex_mono)  | 
|
187  | 
apply (rule pd_take_convex_chain)  | 
|
188  | 
apply (rule finite_range_pd_take)  | 
|
189  | 
apply (rule pd_take_covers)  | 
|
| 
26420
 
57a626f64875
make preorder locale into a superclass of class po
 
huffman 
parents: 
26407 
diff
changeset
 | 
190  | 
apply (rule ideal_Rep_convex_pd)  | 
| 
27373
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
191  | 
apply (erule Rep_convex_pd_lub)  | 
| 
26420
 
57a626f64875
make preorder locale into a superclass of class po
 
huffman 
parents: 
26407 
diff
changeset
 | 
192  | 
apply (rule Rep_convex_principal)  | 
| 
27373
 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 
huffman 
parents: 
27310 
diff
changeset
 | 
193  | 
apply (simp only: sq_le_convex_pd_def)  | 
| 25904 | 194  | 
done  | 
195  | 
||
| 27289 | 196  | 
text {* Convex powerdomain is pointed *}
 | 
| 25904 | 197  | 
|
198  | 
lemma convex_pd_minimal: "convex_principal (PDUnit compact_bot) \<sqsubseteq> ys"  | 
|
199  | 
by (induct ys rule: convex_pd.principal_induct, simp, simp)  | 
|
200  | 
||
201  | 
instance convex_pd :: (bifinite) pcpo  | 
|
| 26927 | 202  | 
by intro_classes (fast intro: convex_pd_minimal)  | 
| 25904 | 203  | 
|
204  | 
lemma inst_convex_pd_pcpo: "\<bottom> = convex_principal (PDUnit compact_bot)"  | 
|
205  | 
by (rule convex_pd_minimal [THEN UU_I, symmetric])  | 
|
206  | 
||
| 27289 | 207  | 
text {* Convex powerdomain is profinite *}
 | 
| 25904 | 208  | 
|
| 
26962
 
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
 
huffman 
parents: 
26927 
diff
changeset
 | 
209  | 
instantiation convex_pd :: (profinite) profinite  | 
| 
 
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
 
huffman 
parents: 
26927 
diff
changeset
 | 
210  | 
begin  | 
| 25904 | 211  | 
|
| 
26962
 
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
 
huffman 
parents: 
26927 
diff
changeset
 | 
212  | 
definition  | 
| 
 
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
 
huffman 
parents: 
26927 
diff
changeset
 | 
213  | 
approx_convex_pd_def: "approx = convex_pd.completion_approx"  | 
| 26927 | 214  | 
|
| 
26962
 
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
 
huffman 
parents: 
26927 
diff
changeset
 | 
215  | 
instance  | 
| 26927 | 216  | 
apply (intro_classes, unfold approx_convex_pd_def)  | 
| 27310 | 217  | 
apply (rule convex_pd.chain_completion_approx)  | 
| 26927 | 218  | 
apply (rule convex_pd.lub_completion_approx)  | 
219  | 
apply (rule convex_pd.completion_approx_idem)  | 
|
220  | 
apply (rule convex_pd.finite_fixes_completion_approx)  | 
|
221  | 
done  | 
|
222  | 
||
| 
26962
 
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
 
huffman 
parents: 
26927 
diff
changeset
 | 
223  | 
end  | 
| 
 
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
 
huffman 
parents: 
26927 
diff
changeset
 | 
224  | 
|
| 26927 | 225  | 
instance convex_pd :: (bifinite) bifinite ..  | 
| 25904 | 226  | 
|
227  | 
lemma approx_convex_principal [simp]:  | 
|
| 27405 | 228  | 
"approx n\<cdot>(convex_principal t) = convex_principal (pd_take n t)"  | 
| 25904 | 229  | 
unfolding approx_convex_pd_def  | 
| 26927 | 230  | 
by (rule convex_pd.completion_approx_principal)  | 
| 25904 | 231  | 
|
232  | 
lemma approx_eq_convex_principal:  | 
|
| 27405 | 233  | 
"\<exists>t\<in>Rep_convex_pd xs. approx n\<cdot>xs = convex_principal (pd_take n t)"  | 
| 25904 | 234  | 
unfolding approx_convex_pd_def  | 
| 26927 | 235  | 
by (rule convex_pd.completion_approx_eq_principal)  | 
| 
26407
 
562a1d615336
rename class bifinite_cpo to profinite; generalize powerdomains from bifinite to profinite
 
huffman 
parents: 
26041 
diff
changeset
 | 
236  | 
|
| 25904 | 237  | 
|
| 26927 | 238  | 
subsection {* Monadic unit and plus *}
 | 
| 25904 | 239  | 
|
240  | 
definition  | 
|
241  | 
convex_unit :: "'a \<rightarrow> 'a convex_pd" where  | 
|
242  | 
"convex_unit = compact_basis.basis_fun (\<lambda>a. convex_principal (PDUnit a))"  | 
|
243  | 
||
244  | 
definition  | 
|
245  | 
convex_plus :: "'a convex_pd \<rightarrow> 'a convex_pd \<rightarrow> 'a convex_pd" where  | 
|
246  | 
"convex_plus = convex_pd.basis_fun (\<lambda>t. convex_pd.basis_fun (\<lambda>u.  | 
|
247  | 
convex_principal (PDPlus t u)))"  | 
|
248  | 
||
249  | 
abbreviation  | 
|
250  | 
convex_add :: "'a convex_pd \<Rightarrow> 'a convex_pd \<Rightarrow> 'a convex_pd"  | 
|
251  | 
(infixl "+\<natural>" 65) where  | 
|
252  | 
"xs +\<natural> ys == convex_plus\<cdot>xs\<cdot>ys"  | 
|
253  | 
||
| 26927 | 254  | 
syntax  | 
255  | 
  "_convex_pd" :: "args \<Rightarrow> 'a convex_pd" ("{_}\<natural>")
 | 
|
256  | 
||
257  | 
translations  | 
|
258  | 
  "{x,xs}\<natural>" == "{x}\<natural> +\<natural> {xs}\<natural>"
 | 
|
259  | 
  "{x}\<natural>" == "CONST convex_unit\<cdot>x"
 | 
|
260  | 
||
261  | 
lemma convex_unit_Rep_compact_basis [simp]:  | 
|
262  | 
  "{Rep_compact_basis a}\<natural> = convex_principal (PDUnit a)"
 | 
|
263  | 
unfolding convex_unit_def  | 
|
| 27289 | 264  | 
by (simp add: compact_basis.basis_fun_principal PDUnit_convex_mono)  | 
| 26927 | 265  | 
|
| 25904 | 266  | 
lemma convex_plus_principal [simp]:  | 
| 26927 | 267  | 
"convex_principal t +\<natural> convex_principal u = convex_principal (PDPlus t u)"  | 
| 25904 | 268  | 
unfolding convex_plus_def  | 
269  | 
by (simp add: convex_pd.basis_fun_principal  | 
|
270  | 
convex_pd.basis_fun_mono PDPlus_convex_mono)  | 
|
271  | 
||
| 26927 | 272  | 
lemma approx_convex_unit [simp]:  | 
273  | 
  "approx n\<cdot>{x}\<natural> = {approx n\<cdot>x}\<natural>"
 | 
|
| 27289 | 274  | 
apply (induct x rule: compact_basis.principal_induct, simp)  | 
| 26927 | 275  | 
apply (simp add: approx_Rep_compact_basis)  | 
276  | 
done  | 
|
277  | 
||
| 25904 | 278  | 
lemma approx_convex_plus [simp]:  | 
| 26927 | 279  | 
"approx n\<cdot>(xs +\<natural> ys) = approx n\<cdot>xs +\<natural> approx n\<cdot>ys"  | 
| 27289 | 280  | 
by (induct xs ys rule: convex_pd.principal_induct2, simp, simp, simp)  | 
| 25904 | 281  | 
|
282  | 
lemma convex_plus_assoc:  | 
|
| 26927 | 283  | 
"(xs +\<natural> ys) +\<natural> zs = xs +\<natural> (ys +\<natural> zs)"  | 
| 27289 | 284  | 
apply (induct xs ys arbitrary: zs rule: convex_pd.principal_induct2, simp, simp)  | 
285  | 
apply (rule_tac x=zs in convex_pd.principal_induct, simp)  | 
|
| 25904 | 286  | 
apply (simp add: PDPlus_assoc)  | 
287  | 
done  | 
|
288  | 
||
| 26927 | 289  | 
lemma convex_plus_commute: "xs +\<natural> ys = ys +\<natural> xs"  | 
| 27289 | 290  | 
apply (induct xs ys rule: convex_pd.principal_induct2, simp, simp)  | 
| 26927 | 291  | 
apply (simp add: PDPlus_commute)  | 
292  | 
done  | 
|
293  | 
||
| 
29990
 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 
huffman 
parents: 
29672 
diff
changeset
 | 
294  | 
lemma convex_plus_absorb [simp]: "xs +\<natural> xs = xs"  | 
| 27289 | 295  | 
apply (induct xs rule: convex_pd.principal_induct, simp)  | 
| 25904 | 296  | 
apply (simp add: PDPlus_absorb)  | 
297  | 
done  | 
|
298  | 
||
| 
29990
 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 
huffman 
parents: 
29672 
diff
changeset
 | 
299  | 
lemma convex_plus_left_commute: "xs +\<natural> (ys +\<natural> zs) = ys +\<natural> (xs +\<natural> zs)"  | 
| 
 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 
huffman 
parents: 
29672 
diff
changeset
 | 
300  | 
by (rule mk_left_commute  | 
| 
 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 
huffman 
parents: 
29672 
diff
changeset
 | 
301  | 
[of "op +\<natural>", OF convex_plus_assoc convex_plus_commute])  | 
| 26927 | 302  | 
|
| 
29990
 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 
huffman 
parents: 
29672 
diff
changeset
 | 
303  | 
lemma convex_plus_left_absorb [simp]: "xs +\<natural> (xs +\<natural> ys) = xs +\<natural> ys"  | 
| 
 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 
huffman 
parents: 
29672 
diff
changeset
 | 
304  | 
by (simp only: convex_plus_assoc [symmetric] convex_plus_absorb)  | 
| 26927 | 305  | 
|
| 
29990
 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 
huffman 
parents: 
29672 
diff
changeset
 | 
306  | 
text {* Useful for @{text "simp add: convex_plus_ac"} *}
 | 
| 
 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 
huffman 
parents: 
29672 
diff
changeset
 | 
307  | 
lemmas convex_plus_ac =  | 
| 
 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 
huffman 
parents: 
29672 
diff
changeset
 | 
308  | 
convex_plus_assoc convex_plus_commute convex_plus_left_commute  | 
| 
 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 
huffman 
parents: 
29672 
diff
changeset
 | 
309  | 
|
| 
 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 
huffman 
parents: 
29672 
diff
changeset
 | 
310  | 
text {* Useful for @{text "simp only: convex_plus_aci"} *}
 | 
| 
 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 
huffman 
parents: 
29672 
diff
changeset
 | 
311  | 
lemmas convex_plus_aci =  | 
| 
 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 
huffman 
parents: 
29672 
diff
changeset
 | 
312  | 
convex_plus_ac convex_plus_absorb convex_plus_left_absorb  | 
| 
 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 
huffman 
parents: 
29672 
diff
changeset
 | 
313  | 
|
| 25904 | 314  | 
lemma convex_unit_less_plus_iff [simp]:  | 
| 26927 | 315  | 
  "{x}\<natural> \<sqsubseteq> ys +\<natural> zs \<longleftrightarrow> {x}\<natural> \<sqsubseteq> ys \<and> {x}\<natural> \<sqsubseteq> zs"
 | 
| 25904 | 316  | 
apply (rule iffI)  | 
317  | 
apply (subgoal_tac  | 
|
| 26927 | 318  | 
    "adm (\<lambda>f. f\<cdot>{x}\<natural> \<sqsubseteq> f\<cdot>ys \<and> f\<cdot>{x}\<natural> \<sqsubseteq> f\<cdot>zs)")
 | 
| 25925 | 319  | 
apply (drule admD, rule chain_approx)  | 
| 25904 | 320  | 
apply (drule_tac f="approx i" in monofun_cfun_arg)  | 
| 27289 | 321  | 
apply (cut_tac x="approx i\<cdot>x" in compact_basis.compact_imp_principal, simp)  | 
322  | 
apply (cut_tac x="approx i\<cdot>ys" in convex_pd.compact_imp_principal, simp)  | 
|
323  | 
apply (cut_tac x="approx i\<cdot>zs" in convex_pd.compact_imp_principal, simp)  | 
|
| 25904 | 324  | 
apply (clarify, simp)  | 
325  | 
apply simp  | 
|
326  | 
apply simp  | 
|
327  | 
apply (erule conjE)  | 
|
| 26927 | 328  | 
 apply (subst convex_plus_absorb [of "{x}\<natural>", symmetric])
 | 
| 25904 | 329  | 
apply (erule (1) monofun_cfun [OF monofun_cfun_arg])  | 
330  | 
done  | 
|
331  | 
||
332  | 
lemma convex_plus_less_unit_iff [simp]:  | 
|
| 26927 | 333  | 
  "xs +\<natural> ys \<sqsubseteq> {z}\<natural> \<longleftrightarrow> xs \<sqsubseteq> {z}\<natural> \<and> ys \<sqsubseteq> {z}\<natural>"
 | 
| 25904 | 334  | 
apply (rule iffI)  | 
335  | 
apply (subgoal_tac  | 
|
| 26927 | 336  | 
    "adm (\<lambda>f. f\<cdot>xs \<sqsubseteq> f\<cdot>{z}\<natural> \<and> f\<cdot>ys \<sqsubseteq> f\<cdot>{z}\<natural>)")
 | 
| 25925 | 337  | 
apply (drule admD, rule chain_approx)  | 
| 25904 | 338  | 
apply (drule_tac f="approx i" in monofun_cfun_arg)  | 
| 27289 | 339  | 
apply (cut_tac x="approx i\<cdot>xs" in convex_pd.compact_imp_principal, simp)  | 
340  | 
apply (cut_tac x="approx i\<cdot>ys" in convex_pd.compact_imp_principal, simp)  | 
|
341  | 
apply (cut_tac x="approx i\<cdot>z" in compact_basis.compact_imp_principal, simp)  | 
|
| 25904 | 342  | 
apply (clarify, simp)  | 
343  | 
apply simp  | 
|
344  | 
apply simp  | 
|
345  | 
apply (erule conjE)  | 
|
| 26927 | 346  | 
 apply (subst convex_plus_absorb [of "{z}\<natural>", symmetric])
 | 
| 25904 | 347  | 
apply (erule (1) monofun_cfun [OF monofun_cfun_arg])  | 
348  | 
done  | 
|
349  | 
||
| 26927 | 350  | 
lemma convex_unit_less_iff [simp]: "{x}\<natural> \<sqsubseteq> {y}\<natural> \<longleftrightarrow> x \<sqsubseteq> y"
 | 
351  | 
apply (rule iffI)  | 
|
| 27309 | 352  | 
apply (rule profinite_less_ext)  | 
| 26927 | 353  | 
apply (drule_tac f="approx i" in monofun_cfun_arg, simp)  | 
| 27289 | 354  | 
apply (cut_tac x="approx i\<cdot>x" in compact_basis.compact_imp_principal, simp)  | 
355  | 
apply (cut_tac x="approx i\<cdot>y" in compact_basis.compact_imp_principal, simp)  | 
|
356  | 
apply clarsimp  | 
|
| 26927 | 357  | 
apply (erule monofun_cfun_arg)  | 
358  | 
done  | 
|
359  | 
||
360  | 
lemma convex_unit_eq_iff [simp]: "{x}\<natural> = {y}\<natural> \<longleftrightarrow> x = y"
 | 
|
361  | 
unfolding po_eq_conv by simp  | 
|
362  | 
||
363  | 
lemma convex_unit_strict [simp]: "{\<bottom>}\<natural> = \<bottom>"
 | 
|
364  | 
unfolding inst_convex_pd_pcpo Rep_compact_bot [symmetric] by simp  | 
|
365  | 
||
366  | 
lemma convex_unit_strict_iff [simp]: "{x}\<natural> = \<bottom> \<longleftrightarrow> x = \<bottom>"
 | 
|
367  | 
unfolding convex_unit_strict [symmetric] by (rule convex_unit_eq_iff)  | 
|
368  | 
||
369  | 
lemma compact_convex_unit_iff [simp]:  | 
|
370  | 
  "compact {x}\<natural> \<longleftrightarrow> compact x"
 | 
|
| 27309 | 371  | 
unfolding profinite_compact_iff by simp  | 
| 26927 | 372  | 
|
373  | 
lemma compact_convex_plus [simp]:  | 
|
374  | 
"\<lbrakk>compact xs; compact ys\<rbrakk> \<Longrightarrow> compact (xs +\<natural> ys)"  | 
|
| 27289 | 375  | 
by (auto dest!: convex_pd.compact_imp_principal)  | 
| 26927 | 376  | 
|
| 25904 | 377  | 
|
378  | 
subsection {* Induction rules *}
 | 
|
379  | 
||
380  | 
lemma convex_pd_induct1:  | 
|
381  | 
assumes P: "adm P"  | 
|
| 26927 | 382  | 
  assumes unit: "\<And>x. P {x}\<natural>"
 | 
383  | 
  assumes insert: "\<And>x ys. \<lbrakk>P {x}\<natural>; P ys\<rbrakk> \<Longrightarrow> P ({x}\<natural> +\<natural> ys)"
 | 
|
| 25904 | 384  | 
shows "P (xs::'a convex_pd)"  | 
| 27289 | 385  | 
apply (induct xs rule: convex_pd.principal_induct, rule P)  | 
386  | 
apply (induct_tac a rule: pd_basis_induct1)  | 
|
| 25904 | 387  | 
apply (simp only: convex_unit_Rep_compact_basis [symmetric])  | 
388  | 
apply (rule unit)  | 
|
389  | 
apply (simp only: convex_unit_Rep_compact_basis [symmetric]  | 
|
390  | 
convex_plus_principal [symmetric])  | 
|
391  | 
apply (erule insert [OF unit])  | 
|
392  | 
done  | 
|
393  | 
||
394  | 
lemma convex_pd_induct:  | 
|
395  | 
assumes P: "adm P"  | 
|
| 26927 | 396  | 
  assumes unit: "\<And>x. P {x}\<natural>"
 | 
397  | 
assumes plus: "\<And>xs ys. \<lbrakk>P xs; P ys\<rbrakk> \<Longrightarrow> P (xs +\<natural> ys)"  | 
|
| 25904 | 398  | 
shows "P (xs::'a convex_pd)"  | 
| 27289 | 399  | 
apply (induct xs rule: convex_pd.principal_induct, rule P)  | 
400  | 
apply (induct_tac a rule: pd_basis_induct)  | 
|
| 25904 | 401  | 
apply (simp only: convex_unit_Rep_compact_basis [symmetric] unit)  | 
402  | 
apply (simp only: convex_plus_principal [symmetric] plus)  | 
|
403  | 
done  | 
|
404  | 
||
405  | 
||
406  | 
subsection {* Monadic bind *}
 | 
|
407  | 
||
408  | 
definition  | 
|
409  | 
convex_bind_basis ::  | 
|
410  | 
  "'a pd_basis \<Rightarrow> ('a \<rightarrow> 'b convex_pd) \<rightarrow> 'b convex_pd" where
 | 
|
411  | 
"convex_bind_basis = fold_pd  | 
|
412  | 
(\<lambda>a. \<Lambda> f. f\<cdot>(Rep_compact_basis a))  | 
|
| 26927 | 413  | 
(\<lambda>x y. \<Lambda> f. x\<cdot>f +\<natural> y\<cdot>f)"  | 
| 25904 | 414  | 
|
| 26927 | 415  | 
lemma ACI_convex_bind:  | 
416  | 
"ab_semigroup_idem_mult (\<lambda>x y. \<Lambda> f. x\<cdot>f +\<natural> y\<cdot>f)"  | 
|
| 25904 | 417  | 
apply unfold_locales  | 
| 
26041
 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 
haftmann 
parents: 
25925 
diff
changeset
 | 
418  | 
apply (simp add: convex_plus_assoc)  | 
| 25904 | 419  | 
apply (simp add: convex_plus_commute)  | 
| 
29990
 
b11793ea15a3
avoid using ab_semigroup_idem_mult locale for powerdomains
 
huffman 
parents: 
29672 
diff
changeset
 | 
420  | 
apply (simp add: eta_cfun)  | 
| 25904 | 421  | 
done  | 
422  | 
||
423  | 
lemma convex_bind_basis_simps [simp]:  | 
|
424  | 
"convex_bind_basis (PDUnit a) =  | 
|
425  | 
(\<Lambda> f. f\<cdot>(Rep_compact_basis a))"  | 
|
426  | 
"convex_bind_basis (PDPlus t u) =  | 
|
| 26927 | 427  | 
(\<Lambda> f. convex_bind_basis t\<cdot>f +\<natural> convex_bind_basis u\<cdot>f)"  | 
| 25904 | 428  | 
unfolding convex_bind_basis_def  | 
429  | 
apply -  | 
|
| 26927 | 430  | 
apply (rule fold_pd_PDUnit [OF ACI_convex_bind])  | 
431  | 
apply (rule fold_pd_PDPlus [OF ACI_convex_bind])  | 
|
| 25904 | 432  | 
done  | 
433  | 
||
434  | 
lemma monofun_LAM:  | 
|
435  | 
"\<lbrakk>cont f; cont g; \<And>x. f x \<sqsubseteq> g x\<rbrakk> \<Longrightarrow> (\<Lambda> x. f x) \<sqsubseteq> (\<Lambda> x. g x)"  | 
|
436  | 
by (simp add: expand_cfun_less)  | 
|
437  | 
||
438  | 
lemma convex_bind_basis_mono:  | 
|
439  | 
"t \<le>\<natural> u \<Longrightarrow> convex_bind_basis t \<sqsubseteq> convex_bind_basis u"  | 
|
440  | 
apply (erule convex_le_induct)  | 
|
441  | 
apply (erule (1) trans_less)  | 
|
| 27289 | 442  | 
apply (simp add: monofun_LAM monofun_cfun)  | 
443  | 
apply (simp add: monofun_LAM monofun_cfun)  | 
|
| 25904 | 444  | 
done  | 
445  | 
||
446  | 
definition  | 
|
447  | 
  convex_bind :: "'a convex_pd \<rightarrow> ('a \<rightarrow> 'b convex_pd) \<rightarrow> 'b convex_pd" where
 | 
|
448  | 
"convex_bind = convex_pd.basis_fun convex_bind_basis"  | 
|
449  | 
||
450  | 
lemma convex_bind_principal [simp]:  | 
|
451  | 
"convex_bind\<cdot>(convex_principal t) = convex_bind_basis t"  | 
|
452  | 
unfolding convex_bind_def  | 
|
453  | 
apply (rule convex_pd.basis_fun_principal)  | 
|
454  | 
apply (erule convex_bind_basis_mono)  | 
|
455  | 
done  | 
|
456  | 
||
457  | 
lemma convex_bind_unit [simp]:  | 
|
| 26927 | 458  | 
  "convex_bind\<cdot>{x}\<natural>\<cdot>f = f\<cdot>x"
 | 
| 27289 | 459  | 
by (induct x rule: compact_basis.principal_induct, simp, simp)  | 
| 25904 | 460  | 
|
461  | 
lemma convex_bind_plus [simp]:  | 
|
| 26927 | 462  | 
"convex_bind\<cdot>(xs +\<natural> ys)\<cdot>f = convex_bind\<cdot>xs\<cdot>f +\<natural> convex_bind\<cdot>ys\<cdot>f"  | 
| 27289 | 463  | 
by (induct xs ys rule: convex_pd.principal_induct2, simp, simp, simp)  | 
| 25904 | 464  | 
|
465  | 
lemma convex_bind_strict [simp]: "convex_bind\<cdot>\<bottom>\<cdot>f = f\<cdot>\<bottom>"  | 
|
466  | 
unfolding convex_unit_strict [symmetric] by (rule convex_bind_unit)  | 
|
467  | 
||
468  | 
||
469  | 
subsection {* Map and join *}
 | 
|
470  | 
||
471  | 
definition  | 
|
472  | 
  convex_map :: "('a \<rightarrow> 'b) \<rightarrow> 'a convex_pd \<rightarrow> 'b convex_pd" where
 | 
|
| 26927 | 473  | 
  "convex_map = (\<Lambda> f xs. convex_bind\<cdot>xs\<cdot>(\<Lambda> x. {f\<cdot>x}\<natural>))"
 | 
| 25904 | 474  | 
|
475  | 
definition  | 
|
476  | 
convex_join :: "'a convex_pd convex_pd \<rightarrow> 'a convex_pd" where  | 
|
477  | 
"convex_join = (\<Lambda> xss. convex_bind\<cdot>xss\<cdot>(\<Lambda> xs. xs))"  | 
|
478  | 
||
479  | 
lemma convex_map_unit [simp]:  | 
|
480  | 
"convex_map\<cdot>f\<cdot>(convex_unit\<cdot>x) = convex_unit\<cdot>(f\<cdot>x)"  | 
|
481  | 
unfolding convex_map_def by simp  | 
|
482  | 
||
483  | 
lemma convex_map_plus [simp]:  | 
|
| 26927 | 484  | 
"convex_map\<cdot>f\<cdot>(xs +\<natural> ys) = convex_map\<cdot>f\<cdot>xs +\<natural> convex_map\<cdot>f\<cdot>ys"  | 
| 25904 | 485  | 
unfolding convex_map_def by simp  | 
486  | 
||
487  | 
lemma convex_join_unit [simp]:  | 
|
| 26927 | 488  | 
  "convex_join\<cdot>{xs}\<natural> = xs"
 | 
| 25904 | 489  | 
unfolding convex_join_def by simp  | 
490  | 
||
491  | 
lemma convex_join_plus [simp]:  | 
|
| 26927 | 492  | 
"convex_join\<cdot>(xss +\<natural> yss) = convex_join\<cdot>xss +\<natural> convex_join\<cdot>yss"  | 
| 25904 | 493  | 
unfolding convex_join_def by simp  | 
494  | 
||
495  | 
lemma convex_map_ident: "convex_map\<cdot>(\<Lambda> x. x)\<cdot>xs = xs"  | 
|
496  | 
by (induct xs rule: convex_pd_induct, simp_all)  | 
|
497  | 
||
498  | 
lemma convex_map_map:  | 
|
499  | 
"convex_map\<cdot>f\<cdot>(convex_map\<cdot>g\<cdot>xs) = convex_map\<cdot>(\<Lambda> x. f\<cdot>(g\<cdot>x))\<cdot>xs"  | 
|
500  | 
by (induct xs rule: convex_pd_induct, simp_all)  | 
|
501  | 
||
502  | 
lemma convex_join_map_unit:  | 
|
503  | 
"convex_join\<cdot>(convex_map\<cdot>convex_unit\<cdot>xs) = xs"  | 
|
504  | 
by (induct xs rule: convex_pd_induct, simp_all)  | 
|
505  | 
||
506  | 
lemma convex_join_map_join:  | 
|
507  | 
"convex_join\<cdot>(convex_map\<cdot>convex_join\<cdot>xsss) = convex_join\<cdot>(convex_join\<cdot>xsss)"  | 
|
508  | 
by (induct xsss rule: convex_pd_induct, simp_all)  | 
|
509  | 
||
510  | 
lemma convex_join_map_map:  | 
|
511  | 
"convex_join\<cdot>(convex_map\<cdot>(convex_map\<cdot>f)\<cdot>xss) =  | 
|
512  | 
convex_map\<cdot>f\<cdot>(convex_join\<cdot>xss)"  | 
|
513  | 
by (induct xss rule: convex_pd_induct, simp_all)  | 
|
514  | 
||
515  | 
lemma convex_map_approx: "convex_map\<cdot>(approx n)\<cdot>xs = approx n\<cdot>xs"  | 
|
516  | 
by (induct xs rule: convex_pd_induct, simp_all)  | 
|
517  | 
||
518  | 
||
519  | 
subsection {* Conversions to other powerdomains *}
 | 
|
520  | 
||
521  | 
text {* Convex to upper *}
 | 
|
522  | 
||
523  | 
lemma convex_le_imp_upper_le: "t \<le>\<natural> u \<Longrightarrow> t \<le>\<sharp> u"  | 
|
524  | 
unfolding convex_le_def by simp  | 
|
525  | 
||
526  | 
definition  | 
|
527  | 
convex_to_upper :: "'a convex_pd \<rightarrow> 'a upper_pd" where  | 
|
528  | 
"convex_to_upper = convex_pd.basis_fun upper_principal"  | 
|
529  | 
||
530  | 
lemma convex_to_upper_principal [simp]:  | 
|
531  | 
"convex_to_upper\<cdot>(convex_principal t) = upper_principal t"  | 
|
532  | 
unfolding convex_to_upper_def  | 
|
533  | 
apply (rule convex_pd.basis_fun_principal)  | 
|
| 27289 | 534  | 
apply (rule upper_pd.principal_mono)  | 
| 25904 | 535  | 
apply (erule convex_le_imp_upper_le)  | 
536  | 
done  | 
|
537  | 
||
538  | 
lemma convex_to_upper_unit [simp]:  | 
|
| 26927 | 539  | 
  "convex_to_upper\<cdot>{x}\<natural> = {x}\<sharp>"
 | 
| 27289 | 540  | 
by (induct x rule: compact_basis.principal_induct, simp, simp)  | 
| 25904 | 541  | 
|
542  | 
lemma convex_to_upper_plus [simp]:  | 
|
| 26927 | 543  | 
"convex_to_upper\<cdot>(xs +\<natural> ys) = convex_to_upper\<cdot>xs +\<sharp> convex_to_upper\<cdot>ys"  | 
| 27289 | 544  | 
by (induct xs ys rule: convex_pd.principal_induct2, simp, simp, simp)  | 
| 25904 | 545  | 
|
546  | 
lemma approx_convex_to_upper:  | 
|
547  | 
"approx i\<cdot>(convex_to_upper\<cdot>xs) = convex_to_upper\<cdot>(approx i\<cdot>xs)"  | 
|
548  | 
by (induct xs rule: convex_pd_induct, simp, simp, simp)  | 
|
549  | 
||
| 27289 | 550  | 
lemma convex_to_upper_bind [simp]:  | 
551  | 
"convex_to_upper\<cdot>(convex_bind\<cdot>xs\<cdot>f) =  | 
|
552  | 
upper_bind\<cdot>(convex_to_upper\<cdot>xs)\<cdot>(convex_to_upper oo f)"  | 
|
553  | 
by (induct xs rule: convex_pd_induct, simp, simp, simp)  | 
|
554  | 
||
555  | 
lemma convex_to_upper_map [simp]:  | 
|
556  | 
"convex_to_upper\<cdot>(convex_map\<cdot>f\<cdot>xs) = upper_map\<cdot>f\<cdot>(convex_to_upper\<cdot>xs)"  | 
|
557  | 
by (simp add: convex_map_def upper_map_def cfcomp_LAM)  | 
|
558  | 
||
559  | 
lemma convex_to_upper_join [simp]:  | 
|
560  | 
"convex_to_upper\<cdot>(convex_join\<cdot>xss) =  | 
|
561  | 
upper_bind\<cdot>(convex_to_upper\<cdot>xss)\<cdot>convex_to_upper"  | 
|
562  | 
by (simp add: convex_join_def upper_join_def cfcomp_LAM eta_cfun)  | 
|
563  | 
||
| 25904 | 564  | 
text {* Convex to lower *}
 | 
565  | 
||
566  | 
lemma convex_le_imp_lower_le: "t \<le>\<natural> u \<Longrightarrow> t \<le>\<flat> u"  | 
|
567  | 
unfolding convex_le_def by simp  | 
|
568  | 
||
569  | 
definition  | 
|
570  | 
convex_to_lower :: "'a convex_pd \<rightarrow> 'a lower_pd" where  | 
|
571  | 
"convex_to_lower = convex_pd.basis_fun lower_principal"  | 
|
572  | 
||
573  | 
lemma convex_to_lower_principal [simp]:  | 
|
574  | 
"convex_to_lower\<cdot>(convex_principal t) = lower_principal t"  | 
|
575  | 
unfolding convex_to_lower_def  | 
|
576  | 
apply (rule convex_pd.basis_fun_principal)  | 
|
| 27289 | 577  | 
apply (rule lower_pd.principal_mono)  | 
| 25904 | 578  | 
apply (erule convex_le_imp_lower_le)  | 
579  | 
done  | 
|
580  | 
||
581  | 
lemma convex_to_lower_unit [simp]:  | 
|
| 26927 | 582  | 
  "convex_to_lower\<cdot>{x}\<natural> = {x}\<flat>"
 | 
| 27289 | 583  | 
by (induct x rule: compact_basis.principal_induct, simp, simp)  | 
| 25904 | 584  | 
|
585  | 
lemma convex_to_lower_plus [simp]:  | 
|
| 26927 | 586  | 
"convex_to_lower\<cdot>(xs +\<natural> ys) = convex_to_lower\<cdot>xs +\<flat> convex_to_lower\<cdot>ys"  | 
| 27289 | 587  | 
by (induct xs ys rule: convex_pd.principal_induct2, simp, simp, simp)  | 
| 25904 | 588  | 
|
589  | 
lemma approx_convex_to_lower:  | 
|
590  | 
"approx i\<cdot>(convex_to_lower\<cdot>xs) = convex_to_lower\<cdot>(approx i\<cdot>xs)"  | 
|
591  | 
by (induct xs rule: convex_pd_induct, simp, simp, simp)  | 
|
592  | 
||
| 27289 | 593  | 
lemma convex_to_lower_bind [simp]:  | 
594  | 
"convex_to_lower\<cdot>(convex_bind\<cdot>xs\<cdot>f) =  | 
|
595  | 
lower_bind\<cdot>(convex_to_lower\<cdot>xs)\<cdot>(convex_to_lower oo f)"  | 
|
596  | 
by (induct xs rule: convex_pd_induct, simp, simp, simp)  | 
|
597  | 
||
598  | 
lemma convex_to_lower_map [simp]:  | 
|
599  | 
"convex_to_lower\<cdot>(convex_map\<cdot>f\<cdot>xs) = lower_map\<cdot>f\<cdot>(convex_to_lower\<cdot>xs)"  | 
|
600  | 
by (simp add: convex_map_def lower_map_def cfcomp_LAM)  | 
|
601  | 
||
602  | 
lemma convex_to_lower_join [simp]:  | 
|
603  | 
"convex_to_lower\<cdot>(convex_join\<cdot>xss) =  | 
|
604  | 
lower_bind\<cdot>(convex_to_lower\<cdot>xss)\<cdot>convex_to_lower"  | 
|
605  | 
by (simp add: convex_join_def lower_join_def cfcomp_LAM eta_cfun)  | 
|
606  | 
||
| 25904 | 607  | 
text {* Ordering property *}
 | 
608  | 
||
609  | 
lemma convex_pd_less_iff:  | 
|
610  | 
"(xs \<sqsubseteq> ys) =  | 
|
611  | 
(convex_to_upper\<cdot>xs \<sqsubseteq> convex_to_upper\<cdot>ys \<and>  | 
|
612  | 
convex_to_lower\<cdot>xs \<sqsubseteq> convex_to_lower\<cdot>ys)"  | 
|
613  | 
apply (safe elim!: monofun_cfun_arg)  | 
|
| 27309 | 614  | 
apply (rule profinite_less_ext)  | 
| 25904 | 615  | 
apply (drule_tac f="approx i" in monofun_cfun_arg)  | 
616  | 
apply (drule_tac f="approx i" in monofun_cfun_arg)  | 
|
| 27289 | 617  | 
apply (cut_tac x="approx i\<cdot>xs" in convex_pd.compact_imp_principal, simp)  | 
618  | 
apply (cut_tac x="approx i\<cdot>ys" in convex_pd.compact_imp_principal, simp)  | 
|
| 25904 | 619  | 
apply clarify  | 
620  | 
apply (simp add: approx_convex_to_upper approx_convex_to_lower convex_le_def)  | 
|
621  | 
done  | 
|
622  | 
||
| 26927 | 623  | 
lemmas convex_plus_less_plus_iff =  | 
624  | 
convex_pd_less_iff [where xs="xs +\<natural> ys" and ys="zs +\<natural> ws", standard]  | 
|
625  | 
||
626  | 
lemmas convex_pd_less_simps =  | 
|
627  | 
convex_unit_less_plus_iff  | 
|
628  | 
convex_plus_less_unit_iff  | 
|
629  | 
convex_plus_less_plus_iff  | 
|
630  | 
convex_unit_less_iff  | 
|
631  | 
convex_to_upper_unit  | 
|
632  | 
convex_to_upper_plus  | 
|
633  | 
convex_to_lower_unit  | 
|
634  | 
convex_to_lower_plus  | 
|
635  | 
upper_pd_less_simps  | 
|
636  | 
lower_pd_less_simps  | 
|
637  | 
||
| 25904 | 638  | 
end  |