0
|
1 |
(* Title: FOL/fol.ML
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1991 University of Cambridge
|
|
5 |
|
|
6 |
Tactics and lemmas for fol.thy (classical First-Order Logic)
|
|
7 |
*)
|
|
8 |
|
|
9 |
open FOLP;
|
|
10 |
|
|
11 |
signature FOLP_LEMMAS =
|
|
12 |
sig
|
|
13 |
val disjCI : thm
|
|
14 |
val excluded_middle : thm
|
|
15 |
val exCI : thm
|
|
16 |
val ex_classical : thm
|
|
17 |
val iffCE : thm
|
|
18 |
val impCE : thm
|
|
19 |
val notnotD : thm
|
|
20 |
val swap : thm
|
|
21 |
end;
|
|
22 |
|
|
23 |
|
|
24 |
structure FOLP_Lemmas : FOLP_LEMMAS =
|
|
25 |
struct
|
|
26 |
|
|
27 |
(*** Classical introduction rules for | and EX ***)
|
|
28 |
|
|
29 |
val disjCI = prove_goal FOLP.thy
|
|
30 |
"(!!x.x:~Q ==> f(x):P) ==> ?p : P|Q"
|
|
31 |
(fn prems=>
|
|
32 |
[ (resolve_tac [classical] 1),
|
|
33 |
(REPEAT (ares_tac (prems@[disjI1,notI]) 1)),
|
|
34 |
(REPEAT (ares_tac (prems@[disjI2,notE]) 1)) ]);
|
|
35 |
|
|
36 |
(*introduction rule involving only EX*)
|
|
37 |
val ex_classical = prove_goal FOLP.thy
|
|
38 |
"( !!u.u:~(EX x. P(x)) ==> f(u):P(a)) ==> ?p : EX x.P(x)"
|
|
39 |
(fn prems=>
|
|
40 |
[ (resolve_tac [classical] 1),
|
|
41 |
(eresolve_tac (prems RL [exI]) 1) ]);
|
|
42 |
|
|
43 |
(*version of above, simplifying ~EX to ALL~ *)
|
|
44 |
val exCI = prove_goal FOLP.thy
|
|
45 |
"(!!u.u:ALL x. ~P(x) ==> f(u):P(a)) ==> ?p : EX x.P(x)"
|
|
46 |
(fn [prem]=>
|
|
47 |
[ (resolve_tac [ex_classical] 1),
|
|
48 |
(resolve_tac [notI RS allI RS prem] 1),
|
|
49 |
(eresolve_tac [notE] 1),
|
|
50 |
(eresolve_tac [exI] 1) ]);
|
|
51 |
|
|
52 |
val excluded_middle = prove_goal FOLP.thy "?p : ~P | P"
|
|
53 |
(fn _=> [ rtac disjCI 1, assume_tac 1 ]);
|
|
54 |
|
|
55 |
|
|
56 |
(*** Special elimination rules *)
|
|
57 |
|
|
58 |
|
|
59 |
(*Classical implies (-->) elimination. *)
|
|
60 |
val impCE = prove_goal FOLP.thy
|
|
61 |
"[| p:P-->Q; !!x.x:~P ==> f(x):R; !!y.y:Q ==> g(y):R |] ==> ?p : R"
|
|
62 |
(fn major::prems=>
|
|
63 |
[ (resolve_tac [excluded_middle RS disjE] 1),
|
|
64 |
(DEPTH_SOLVE (ares_tac (prems@[major RS mp]) 1)) ]);
|
|
65 |
|
|
66 |
(*Double negation law*)
|
|
67 |
val notnotD = prove_goal FOLP.thy "p:~~P ==> ?p : P"
|
|
68 |
(fn [major]=>
|
|
69 |
[ (resolve_tac [classical] 1), (eresolve_tac [major RS notE] 1) ]);
|
|
70 |
|
|
71 |
|
|
72 |
(*** Tactics for implication and contradiction ***)
|
|
73 |
|
|
74 |
(*Classical <-> elimination. Proof substitutes P=Q in
|
|
75 |
~P ==> ~Q and P ==> Q *)
|
|
76 |
val iffCE = prove_goalw FOLP.thy [iff_def]
|
|
77 |
"[| p:P<->Q; !!x y.[| x:P; y:Q |] ==> f(x,y):R; \
|
|
78 |
\ !!x y.[| x:~P; y:~Q |] ==> g(x,y):R |] ==> ?p : R"
|
|
79 |
(fn prems =>
|
|
80 |
[ (resolve_tac [conjE] 1),
|
|
81 |
(REPEAT (DEPTH_SOLVE_1
|
|
82 |
(etac impCE 1 ORELSE mp_tac 1 ORELSE ares_tac prems 1))) ]);
|
|
83 |
|
|
84 |
|
|
85 |
(*Should be used as swap since ~P becomes redundant*)
|
|
86 |
val swap = prove_goal FOLP.thy
|
|
87 |
"p:~P ==> (!!x.x:~Q ==> f(x):P) ==> ?p : Q"
|
|
88 |
(fn major::prems=>
|
|
89 |
[ (resolve_tac [classical] 1),
|
|
90 |
(rtac (major RS notE) 1),
|
|
91 |
(REPEAT (ares_tac prems 1)) ]);
|
|
92 |
|
|
93 |
end;
|
|
94 |
|
|
95 |
open FOLP_Lemmas;
|