src/HOL/Induct/Ordinals.thy
author wenzelm
Thu, 28 Feb 2002 21:32:46 +0100
changeset 12988 2112f9e337bb
parent 11649 dfb59b9954a6
child 14717 7d8d4c9b36fd
permissions -rw-r--r--
renamed mask_interrupt to ignore_interrupt; renamed exhibit_interrupt to raise_interrupt;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
11649
wenzelm
parents: 11641
diff changeset
     1
(*  Title:      HOL/Induct/Ordinals.thy
11641
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
     2
    ID:         $Id$
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
     3
    Author:     Stefan Berghofer and Markus Wenzel, TU Muenchen
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
     4
    License:    GPL (GNU GENERAL PUBLIC LICENSE)
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
     5
*)
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
     6
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
     7
header {* Ordinals *}
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
     8
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
     9
theory Ordinals = Main:
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    10
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    11
text {*
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    12
  Some basic definitions of ordinal numbers.  Draws an Agda
11649
wenzelm
parents: 11641
diff changeset
    13
  development (in Martin-L\"of type theory) by Peter Hancock (see
11641
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    14
  \url{http://www.dcs.ed.ac.uk/home/pgh/chat.html}).
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    15
*}
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    16
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    17
datatype ordinal =
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    18
    Zero
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    19
  | Succ ordinal
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    20
  | Limit "nat => ordinal"
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    21
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    22
consts
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    23
  pred :: "ordinal => nat => ordinal option"
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    24
primrec
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    25
  "pred Zero n = None"
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    26
  "pred (Succ a) n = Some a"
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    27
  "pred (Limit f) n = Some (f n)"
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    28
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    29
consts
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    30
  iter :: "('a => 'a) => nat => ('a => 'a)"
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    31
primrec
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    32
  "iter f 0 = id"
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    33
  "iter f (Suc n) = f \<circ> (iter f n)"
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    34
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    35
constdefs
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    36
  OpLim :: "(nat => (ordinal => ordinal)) => (ordinal => ordinal)"
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    37
  "OpLim F a == Limit (\<lambda>n. F n a)"
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    38
  OpItw :: "(ordinal => ordinal) => (ordinal => ordinal)"    ("\<Squnion>")
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    39
  "\<Squnion>f == OpLim (iter f)"
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    40
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    41
consts
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    42
  cantor :: "ordinal => ordinal => ordinal"
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    43
primrec
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    44
  "cantor a Zero = Succ a"
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    45
  "cantor a (Succ b) = \<Squnion>(\<lambda>x. cantor x b) a"
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    46
  "cantor a (Limit f) = Limit (\<lambda>n. cantor a (f n))"
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    47
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    48
consts
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    49
  Nabla :: "(ordinal => ordinal) => (ordinal => ordinal)"    ("\<nabla>")
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    50
primrec
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    51
  "\<nabla>f Zero = f Zero"
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    52
  "\<nabla>f (Succ a) = f (Succ (\<nabla>f a))"
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    53
  "\<nabla>f (Limit h) = Limit (\<lambda>n. \<nabla>f (h n))"
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    54
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    55
constdefs
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    56
  deriv :: "(ordinal => ordinal) => (ordinal => ordinal)"
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    57
  "deriv f == \<nabla>(\<Squnion>f)"
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    58
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    59
consts
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    60
  veblen :: "ordinal => ordinal => ordinal"
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    61
primrec
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    62
  "veblen Zero = \<nabla>(OpLim (iter (cantor Zero)))"
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    63
  "veblen (Succ a) = \<nabla>(OpLim (iter (veblen a)))"
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    64
  "veblen (Limit f) = \<nabla>(OpLim (\<lambda>n. veblen (f n)))"
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    65
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    66
constdefs
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    67
  veb :: "ordinal => ordinal"
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    68
  "veb a == veblen a Zero"
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    69
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    70
constdefs
11649
wenzelm
parents: 11641
diff changeset
    71
  epsilon0 :: ordinal    ("\<epsilon>\<^sub>0")
wenzelm
parents: 11641
diff changeset
    72
  "\<epsilon>\<^sub>0 == veb Zero"
11641
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    73
  Gamma0 :: ordinal    ("\<Gamma>\<^sub>0")
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    74
  "\<Gamma>\<^sub>0 == Limit (\<lambda>n. iter veb n Zero)"
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    75
0c248bed5225 added Ordinals example;
wenzelm
parents:
diff changeset
    76
end