7355
|
1 |
(* Title: FOL/IFOL_lemmas.ML
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1992 University of Cambridge
|
|
5 |
|
|
6 |
Tactics and lemmas for theory IFOL (intuitionistic first-order logic).
|
|
7 |
*)
|
|
8 |
|
|
9 |
(* ML bindings *)
|
|
10 |
|
|
11 |
val refl = thm "refl";
|
|
12 |
val subst = thm "subst";
|
|
13 |
val conjI = thm "conjI";
|
|
14 |
val conjunct1 = thm "conjunct1";
|
|
15 |
val conjunct2 = thm "conjunct2";
|
|
16 |
val disjI1 = thm "disjI1";
|
|
17 |
val disjI2 = thm "disjI2";
|
|
18 |
val disjE = thm "disjE";
|
|
19 |
val impI = thm "impI";
|
|
20 |
val mp = thm "mp";
|
|
21 |
val FalseE = thm "FalseE";
|
|
22 |
val True_def = thm "True_def";
|
|
23 |
val not_def = thm "not_def";
|
|
24 |
val iff_def = thm "iff_def";
|
|
25 |
val ex1_def = thm "ex1_def";
|
|
26 |
val allI = thm "allI";
|
|
27 |
val spec = thm "spec";
|
|
28 |
val exI = thm "exI";
|
|
29 |
val exE = thm "exE";
|
|
30 |
val eq_reflection = thm "eq_reflection";
|
|
31 |
val iff_reflection = thm "iff_reflection";
|
|
32 |
|
|
33 |
|
|
34 |
|
9264
|
35 |
Goalw [True_def] "True";
|
|
36 |
by (REPEAT (ares_tac [impI] 1)) ;
|
|
37 |
qed "TrueI";
|
7355
|
38 |
|
|
39 |
(*** Sequent-style elimination rules for & --> and ALL ***)
|
|
40 |
|
9264
|
41 |
val major::prems = Goal
|
|
42 |
"[| P&Q; [| P; Q |] ==> R |] ==> R";
|
|
43 |
by (resolve_tac prems 1);
|
|
44 |
by (rtac (major RS conjunct1) 1);
|
|
45 |
by (rtac (major RS conjunct2) 1);
|
|
46 |
qed "conjE";
|
7355
|
47 |
|
9264
|
48 |
val major::prems = Goal
|
|
49 |
"[| P-->Q; P; Q ==> R |] ==> R";
|
|
50 |
by (resolve_tac prems 1);
|
|
51 |
by (rtac (major RS mp) 1);
|
|
52 |
by (resolve_tac prems 1);
|
|
53 |
qed "impE";
|
7355
|
54 |
|
9264
|
55 |
val major::prems = Goal
|
|
56 |
"[| ALL x. P(x); P(x) ==> R |] ==> R";
|
|
57 |
by (resolve_tac prems 1);
|
|
58 |
by (rtac (major RS spec) 1);
|
|
59 |
qed "allE";
|
7355
|
60 |
|
|
61 |
(*Duplicates the quantifier; for use with eresolve_tac*)
|
9264
|
62 |
val major::prems = Goal
|
7355
|
63 |
"[| ALL x. P(x); [| P(x); ALL x. P(x) |] ==> R \
|
9264
|
64 |
\ |] ==> R";
|
|
65 |
by (resolve_tac prems 1);
|
|
66 |
by (rtac (major RS spec) 1);
|
|
67 |
by (rtac major 1);
|
|
68 |
qed "all_dupE";
|
7355
|
69 |
|
|
70 |
|
|
71 |
(*** Negation rules, which translate between ~P and P-->False ***)
|
|
72 |
|
9264
|
73 |
val prems = Goalw [not_def] "(P ==> False) ==> ~P";
|
|
74 |
by (REPEAT (ares_tac (prems@[impI]) 1)) ;
|
|
75 |
qed "notI";
|
7355
|
76 |
|
9264
|
77 |
Goalw [not_def] "[| ~P; P |] ==> R";
|
|
78 |
by (etac (mp RS FalseE) 1);
|
|
79 |
by (assume_tac 1);
|
|
80 |
qed "notE";
|
7355
|
81 |
|
9264
|
82 |
Goal "[| P; ~P |] ==> R";
|
|
83 |
by (etac notE 1);
|
|
84 |
by (assume_tac 1);
|
|
85 |
qed "rev_notE";
|
7355
|
86 |
|
|
87 |
(*This is useful with the special implication rules for each kind of P. *)
|
9264
|
88 |
val prems = Goal
|
|
89 |
"[| ~P; (P-->False) ==> Q |] ==> Q";
|
|
90 |
by (REPEAT (ares_tac (prems@[impI,notE]) 1)) ;
|
|
91 |
qed "not_to_imp";
|
7355
|
92 |
|
|
93 |
(* For substitution into an assumption P, reduce Q to P-->Q, substitute into
|
|
94 |
this implication, then apply impI to move P back into the assumptions.
|
|
95 |
To specify P use something like
|
|
96 |
eres_inst_tac [ ("P","ALL y. ?S(x,y)") ] rev_mp 1 *)
|
9264
|
97 |
Goal "[| P; P --> Q |] ==> Q";
|
|
98 |
by (etac mp 1);
|
|
99 |
by (assume_tac 1);
|
|
100 |
qed "rev_mp";
|
7355
|
101 |
|
|
102 |
(*Contrapositive of an inference rule*)
|
9264
|
103 |
val [major,minor]= Goal "[| ~Q; P==>Q |] ==> ~P";
|
|
104 |
by (rtac (major RS notE RS notI) 1);
|
|
105 |
by (etac minor 1) ;
|
|
106 |
qed "contrapos";
|
7355
|
107 |
|
|
108 |
|
|
109 |
(*** Modus Ponens Tactics ***)
|
|
110 |
|
|
111 |
(*Finds P-->Q and P in the assumptions, replaces implication by Q *)
|
|
112 |
fun mp_tac i = eresolve_tac [notE,impE] i THEN assume_tac i;
|
|
113 |
|
|
114 |
(*Like mp_tac but instantiates no variables*)
|
|
115 |
fun eq_mp_tac i = eresolve_tac [notE,impE] i THEN eq_assume_tac i;
|
|
116 |
|
|
117 |
|
|
118 |
(*** If-and-only-if ***)
|
|
119 |
|
9264
|
120 |
val prems = Goalw [iff_def]
|
|
121 |
"[| P ==> Q; Q ==> P |] ==> P<->Q";
|
|
122 |
by (REPEAT (ares_tac (prems@[conjI, impI]) 1)) ;
|
|
123 |
qed "iffI";
|
7355
|
124 |
|
|
125 |
|
|
126 |
(*Observe use of rewrite_rule to unfold "<->" in meta-assumptions (prems) *)
|
9264
|
127 |
val prems = Goalw [iff_def]
|
|
128 |
"[| P <-> Q; [| P-->Q; Q-->P |] ==> R |] ==> R";
|
|
129 |
by (rtac conjE 1);
|
|
130 |
by (REPEAT (ares_tac prems 1)) ;
|
|
131 |
qed "iffE";
|
7355
|
132 |
|
|
133 |
(* Destruct rules for <-> similar to Modus Ponens *)
|
|
134 |
|
9264
|
135 |
Goalw [iff_def] "[| P <-> Q; P |] ==> Q";
|
|
136 |
by (etac (conjunct1 RS mp) 1);
|
|
137 |
by (assume_tac 1);
|
|
138 |
qed "iffD1";
|
7355
|
139 |
|
9264
|
140 |
val prems = Goalw [iff_def] "[| P <-> Q; Q |] ==> P";
|
|
141 |
by (etac (conjunct2 RS mp) 1);
|
|
142 |
by (assume_tac 1);
|
|
143 |
qed "iffD2";
|
7355
|
144 |
|
9264
|
145 |
Goal "[| P; P <-> Q |] ==> Q";
|
|
146 |
by (etac iffD1 1);
|
|
147 |
by (assume_tac 1);
|
|
148 |
qed "rev_iffD1";
|
7355
|
149 |
|
9264
|
150 |
Goal "[| Q; P <-> Q |] ==> P";
|
|
151 |
by (etac iffD2 1);
|
|
152 |
by (assume_tac 1);
|
|
153 |
qed "rev_iffD2";
|
|
154 |
|
|
155 |
Goal "P <-> P";
|
|
156 |
by (REPEAT (ares_tac [iffI] 1)) ;
|
|
157 |
qed "iff_refl";
|
7355
|
158 |
|
9264
|
159 |
Goal "Q <-> P ==> P <-> Q";
|
|
160 |
by (etac iffE 1);
|
|
161 |
by (rtac iffI 1);
|
|
162 |
by (REPEAT (eresolve_tac [asm_rl,mp] 1)) ;
|
|
163 |
qed "iff_sym";
|
7355
|
164 |
|
9264
|
165 |
Goal "[| P <-> Q; Q<-> R |] ==> P <-> R";
|
|
166 |
by (rtac iffI 1);
|
|
167 |
by (REPEAT (eresolve_tac [asm_rl,iffE] 1 ORELSE mp_tac 1)) ;
|
|
168 |
qed "iff_trans";
|
7355
|
169 |
|
|
170 |
|
|
171 |
(*** Unique existence. NOTE THAT the following 2 quantifications
|
|
172 |
EX!x such that [EX!y such that P(x,y)] (sequential)
|
|
173 |
EX!x,y such that P(x,y) (simultaneous)
|
|
174 |
do NOT mean the same thing. The parser treats EX!x y.P(x,y) as sequential.
|
|
175 |
***)
|
|
176 |
|
9264
|
177 |
val prems = Goalw [ex1_def]
|
|
178 |
"[| P(a); !!x. P(x) ==> x=a |] ==> EX! x. P(x)";
|
|
179 |
by (REPEAT (ares_tac (prems@[exI,conjI,allI,impI]) 1)) ;
|
|
180 |
qed "ex1I";
|
7355
|
181 |
|
|
182 |
(*Sometimes easier to use: the premises have no shared variables. Safe!*)
|
9264
|
183 |
val [ex,eq] = Goal
|
|
184 |
"[| EX x. P(x); !!x y. [| P(x); P(y) |] ==> x=y |] ==> EX! x. P(x)";
|
|
185 |
by (rtac (ex RS exE) 1);
|
|
186 |
by (REPEAT (ares_tac [ex1I,eq] 1)) ;
|
|
187 |
qed "ex_ex1I";
|
7355
|
188 |
|
9264
|
189 |
val prems = Goalw [ex1_def]
|
|
190 |
"[| EX! x. P(x); !!x. [| P(x); ALL y. P(y) --> y=x |] ==> R |] ==> R";
|
|
191 |
by (cut_facts_tac prems 1);
|
|
192 |
by (REPEAT (eresolve_tac [exE,conjE] 1 ORELSE ares_tac prems 1)) ;
|
|
193 |
qed "ex1E";
|
7355
|
194 |
|
|
195 |
|
|
196 |
(*** <-> congruence rules for simplification ***)
|
|
197 |
|
|
198 |
(*Use iffE on a premise. For conj_cong, imp_cong, all_cong, ex_cong*)
|
|
199 |
fun iff_tac prems i =
|
|
200 |
resolve_tac (prems RL [iffE]) i THEN
|
|
201 |
REPEAT1 (eresolve_tac [asm_rl,mp] i);
|
|
202 |
|
9264
|
203 |
val prems = Goal
|
|
204 |
"[| P <-> P'; P' ==> Q <-> Q' |] ==> (P&Q) <-> (P'&Q')";
|
|
205 |
by (cut_facts_tac prems 1);
|
|
206 |
by (REPEAT (ares_tac [iffI,conjI] 1
|
|
207 |
ORELSE eresolve_tac [iffE,conjE,mp] 1
|
|
208 |
ORELSE iff_tac prems 1)) ;
|
|
209 |
qed "conj_cong";
|
7355
|
210 |
|
|
211 |
(*Reversed congruence rule! Used in ZF/Order*)
|
9264
|
212 |
val prems = Goal
|
|
213 |
"[| P <-> P'; P' ==> Q <-> Q' |] ==> (Q&P) <-> (Q'&P')";
|
|
214 |
by (cut_facts_tac prems 1);
|
|
215 |
by (REPEAT (ares_tac [iffI,conjI] 1
|
|
216 |
ORELSE eresolve_tac [iffE,conjE,mp] 1 ORELSE iff_tac prems 1)) ;
|
|
217 |
qed "conj_cong2";
|
7355
|
218 |
|
9264
|
219 |
val prems = Goal
|
|
220 |
"[| P <-> P'; Q <-> Q' |] ==> (P|Q) <-> (P'|Q')";
|
|
221 |
by (cut_facts_tac prems 1);
|
|
222 |
by (REPEAT (eresolve_tac [iffE,disjE,disjI1,disjI2] 1
|
|
223 |
ORELSE ares_tac [iffI] 1 ORELSE mp_tac 1)) ;
|
|
224 |
qed "disj_cong";
|
7355
|
225 |
|
9264
|
226 |
val prems = Goal
|
|
227 |
"[| P <-> P'; P' ==> Q <-> Q' |] ==> (P-->Q) <-> (P'-->Q')";
|
|
228 |
by (cut_facts_tac prems 1);
|
|
229 |
by (REPEAT (ares_tac [iffI,impI] 1
|
|
230 |
ORELSE etac iffE 1 ORELSE mp_tac 1 ORELSE iff_tac prems 1)) ;
|
|
231 |
qed "imp_cong";
|
7355
|
232 |
|
9264
|
233 |
val prems = Goal
|
|
234 |
"[| P <-> P'; Q <-> Q' |] ==> (P<->Q) <-> (P'<->Q')";
|
|
235 |
by (cut_facts_tac prems 1);
|
|
236 |
by (REPEAT (etac iffE 1 ORELSE ares_tac [iffI] 1 ORELSE mp_tac 1)) ;
|
|
237 |
qed "iff_cong";
|
7355
|
238 |
|
9264
|
239 |
val prems = Goal
|
|
240 |
"P <-> P' ==> ~P <-> ~P'";
|
|
241 |
by (cut_facts_tac prems 1);
|
|
242 |
by (REPEAT (ares_tac [iffI,notI] 1
|
|
243 |
ORELSE mp_tac 1 ORELSE eresolve_tac [iffE,notE] 1)) ;
|
|
244 |
qed "not_cong";
|
7355
|
245 |
|
9264
|
246 |
val prems = Goal
|
|
247 |
"(!!x. P(x) <-> Q(x)) ==> (ALL x. P(x)) <-> (ALL x. Q(x))";
|
|
248 |
by (REPEAT (ares_tac [iffI,allI] 1
|
|
249 |
ORELSE mp_tac 1 ORELSE etac allE 1 ORELSE iff_tac prems 1)) ;
|
|
250 |
qed "all_cong";
|
7355
|
251 |
|
9264
|
252 |
val prems = Goal
|
|
253 |
"(!!x. P(x) <-> Q(x)) ==> (EX x. P(x)) <-> (EX x. Q(x))";
|
|
254 |
by (REPEAT (etac exE 1 ORELSE ares_tac [iffI,exI] 1
|
|
255 |
ORELSE mp_tac 1 ORELSE iff_tac prems 1)) ;
|
|
256 |
qed "ex_cong";
|
7355
|
257 |
|
9264
|
258 |
val prems = Goal
|
|
259 |
"(!!x. P(x) <-> Q(x)) ==> (EX! x. P(x)) <-> (EX! x. Q(x))";
|
|
260 |
by (REPEAT (eresolve_tac [ex1E, spec RS mp] 1
|
|
261 |
ORELSE ares_tac [iffI,ex1I] 1 ORELSE mp_tac 1
|
|
262 |
ORELSE iff_tac prems 1)) ;
|
|
263 |
qed "ex1_cong";
|
7355
|
264 |
|
|
265 |
(*** Equality rules ***)
|
|
266 |
|
9264
|
267 |
Goal "a=b ==> b=a";
|
|
268 |
by (etac subst 1);
|
|
269 |
by (rtac refl 1) ;
|
|
270 |
qed "sym";
|
7355
|
271 |
|
9264
|
272 |
Goal "[| a=b; b=c |] ==> a=c";
|
|
273 |
by (etac subst 1 THEN assume_tac 1) ;
|
|
274 |
qed "trans";
|
7355
|
275 |
|
|
276 |
(** ~ b=a ==> ~ a=b **)
|
7422
|
277 |
bind_thm ("not_sym", hd (compose(sym,2,contrapos)));
|
7355
|
278 |
|
|
279 |
|
|
280 |
(* Two theorms for rewriting only one instance of a definition:
|
|
281 |
the first for definitions of formulae and the second for terms *)
|
|
282 |
|
9264
|
283 |
val prems = goal (the_context()) "(A == B) ==> A <-> B";
|
7355
|
284 |
by (rewrite_goals_tac prems);
|
|
285 |
by (rtac iff_refl 1);
|
|
286 |
qed "def_imp_iff";
|
|
287 |
|
9264
|
288 |
val prems = goal (the_context()) "(A == B) ==> A = B";
|
7355
|
289 |
by (rewrite_goals_tac prems);
|
|
290 |
by (rtac refl 1);
|
|
291 |
qed "meta_eq_to_obj_eq";
|
|
292 |
|
9527
|
293 |
(*substitution*)
|
7355
|
294 |
bind_thm ("ssubst", sym RS subst);
|
|
295 |
|
|
296 |
(*A special case of ex1E that would otherwise need quantifier expansion*)
|
9264
|
297 |
val prems = Goal
|
|
298 |
"[| EX! x. P(x); P(a); P(b) |] ==> a=b";
|
|
299 |
by (cut_facts_tac prems 1);
|
|
300 |
by (etac ex1E 1);
|
|
301 |
by (rtac trans 1);
|
|
302 |
by (rtac sym 2);
|
|
303 |
by (REPEAT (eresolve_tac [asm_rl, spec RS mp] 1)) ;
|
|
304 |
qed "ex1_equalsE";
|
7355
|
305 |
|
|
306 |
(** Polymorphic congruence rules **)
|
|
307 |
|
9264
|
308 |
Goal "[| a=b |] ==> t(a)=t(b)";
|
|
309 |
by (etac ssubst 1);
|
|
310 |
by (rtac refl 1) ;
|
|
311 |
qed "subst_context";
|
7355
|
312 |
|
9264
|
313 |
Goal "[| a=b; c=d |] ==> t(a,c)=t(b,d)";
|
|
314 |
by (REPEAT (etac ssubst 1));
|
|
315 |
by (rtac refl 1) ;
|
|
316 |
qed "subst_context2";
|
7355
|
317 |
|
9264
|
318 |
Goal "[| a=b; c=d; e=f |] ==> t(a,c,e)=t(b,d,f)";
|
|
319 |
by (REPEAT (etac ssubst 1));
|
|
320 |
by (rtac refl 1) ;
|
|
321 |
qed "subst_context3";
|
7355
|
322 |
|
|
323 |
(*Useful with eresolve_tac for proving equalties from known equalities.
|
|
324 |
a = b
|
|
325 |
| |
|
|
326 |
c = d *)
|
9264
|
327 |
Goal "[| a=b; a=c; b=d |] ==> c=d";
|
|
328 |
by (rtac trans 1);
|
|
329 |
by (rtac trans 1);
|
|
330 |
by (rtac sym 1);
|
|
331 |
by (REPEAT (assume_tac 1));
|
|
332 |
qed "box_equals";
|
7355
|
333 |
|
|
334 |
(*Dual of box_equals: for proving equalities backwards*)
|
9264
|
335 |
Goal "[| a=c; b=d; c=d |] ==> a=b";
|
|
336 |
by (rtac trans 1);
|
|
337 |
by (rtac trans 1);
|
|
338 |
by (REPEAT (assume_tac 1));
|
|
339 |
by (etac sym 1);
|
|
340 |
qed "simp_equals";
|
7355
|
341 |
|
|
342 |
(** Congruence rules for predicate letters **)
|
|
343 |
|
9264
|
344 |
Goal "a=a' ==> P(a) <-> P(a')";
|
|
345 |
by (rtac iffI 1);
|
|
346 |
by (DEPTH_SOLVE (eresolve_tac [asm_rl, subst, ssubst] 1)) ;
|
|
347 |
qed "pred1_cong";
|
7355
|
348 |
|
9264
|
349 |
Goal "[| a=a'; b=b' |] ==> P(a,b) <-> P(a',b')";
|
|
350 |
by (rtac iffI 1);
|
|
351 |
by (DEPTH_SOLVE (eresolve_tac [asm_rl, subst, ssubst] 1)) ;
|
|
352 |
qed "pred2_cong";
|
7355
|
353 |
|
9264
|
354 |
Goal "[| a=a'; b=b'; c=c' |] ==> P(a,b,c) <-> P(a',b',c')";
|
|
355 |
by (rtac iffI 1);
|
|
356 |
by (DEPTH_SOLVE (eresolve_tac [asm_rl, subst, ssubst] 1)) ;
|
|
357 |
qed "pred3_cong";
|
7355
|
358 |
|
|
359 |
(*special cases for free variables P, Q, R, S -- up to 3 arguments*)
|
|
360 |
|
|
361 |
val pred_congs =
|
|
362 |
flat (map (fn c =>
|
|
363 |
map (fn th => read_instantiate [("P",c)] th)
|
|
364 |
[pred1_cong,pred2_cong,pred3_cong])
|
|
365 |
(explode"PQRS"));
|
|
366 |
|
|
367 |
(*special case for the equality predicate!*)
|
7422
|
368 |
bind_thm ("eq_cong", read_instantiate [("P","op =")] pred2_cong);
|
7355
|
369 |
|
|
370 |
|
|
371 |
(*** Simplifications of assumed implications.
|
|
372 |
Roy Dyckhoff has proved that conj_impE, disj_impE, and imp_impE
|
|
373 |
used with mp_tac (restricted to atomic formulae) is COMPLETE for
|
|
374 |
intuitionistic propositional logic. See
|
|
375 |
R. Dyckhoff, Contraction-free sequent calculi for intuitionistic logic
|
|
376 |
(preprint, University of St Andrews, 1991) ***)
|
|
377 |
|
9264
|
378 |
val major::prems= Goal
|
|
379 |
"[| (P&Q)-->S; P-->(Q-->S) ==> R |] ==> R";
|
|
380 |
by (REPEAT (ares_tac ([conjI, impI, major RS mp]@prems) 1)) ;
|
|
381 |
qed "conj_impE";
|
7355
|
382 |
|
9264
|
383 |
val major::prems= Goal
|
|
384 |
"[| (P|Q)-->S; [| P-->S; Q-->S |] ==> R |] ==> R";
|
|
385 |
by (DEPTH_SOLVE (ares_tac ([disjI1, disjI2, impI, major RS mp]@prems) 1)) ;
|
|
386 |
qed "disj_impE";
|
7355
|
387 |
|
|
388 |
(*Simplifies the implication. Classical version is stronger.
|
|
389 |
Still UNSAFE since Q must be provable -- backtracking needed. *)
|
9264
|
390 |
val major::prems= Goal
|
|
391 |
"[| (P-->Q)-->S; [| P; Q-->S |] ==> Q; S ==> R |] ==> R";
|
|
392 |
by (REPEAT (ares_tac ([impI, major RS mp]@prems) 1)) ;
|
|
393 |
qed "imp_impE";
|
7355
|
394 |
|
|
395 |
(*Simplifies the implication. Classical version is stronger.
|
|
396 |
Still UNSAFE since ~P must be provable -- backtracking needed. *)
|
9264
|
397 |
val major::prems= Goal
|
|
398 |
"[| ~P --> S; P ==> False; S ==> R |] ==> R";
|
|
399 |
by (REPEAT (ares_tac ([notI, impI, major RS mp]@prems) 1)) ;
|
|
400 |
qed "not_impE";
|
7355
|
401 |
|
|
402 |
(*Simplifies the implication. UNSAFE. *)
|
9264
|
403 |
val major::prems= Goal
|
7355
|
404 |
"[| (P<->Q)-->S; [| P; Q-->S |] ==> Q; [| Q; P-->S |] ==> P; \
|
9264
|
405 |
\ S ==> R |] ==> R";
|
|
406 |
by (REPEAT (ares_tac ([iffI, impI, major RS mp]@prems) 1)) ;
|
|
407 |
qed "iff_impE";
|
7355
|
408 |
|
|
409 |
(*What if (ALL x.~~P(x)) --> ~~(ALL x.P(x)) is an assumption? UNSAFE*)
|
9264
|
410 |
val major::prems= Goal
|
|
411 |
"[| (ALL x. P(x))-->S; !!x. P(x); S ==> R |] ==> R";
|
|
412 |
by (REPEAT (ares_tac ([allI, impI, major RS mp]@prems) 1)) ;
|
|
413 |
qed "all_impE";
|
7355
|
414 |
|
|
415 |
(*Unsafe: (EX x.P(x))-->S is equivalent to ALL x.P(x)-->S. *)
|
9264
|
416 |
val major::prems= Goal
|
|
417 |
"[| (EX x. P(x))-->S; P(x)-->S ==> R |] ==> R";
|
|
418 |
by (REPEAT (ares_tac ([exI, impI, major RS mp]@prems) 1)) ;
|
|
419 |
qed "ex_impE";
|
7355
|
420 |
|
|
421 |
(*** Courtesy of Krzysztof Grabczewski ***)
|
|
422 |
|
9264
|
423 |
val major::prems = Goal "[| P|Q; P==>R; Q==>S |] ==> R|S";
|
7355
|
424 |
by (rtac (major RS disjE) 1);
|
|
425 |
by (REPEAT (eresolve_tac (prems RL [disjI1, disjI2]) 1));
|
|
426 |
qed "disj_imp_disj";
|