| 
17322
 | 
     1  | 
(*  Title:      HOL/Import/HOLLightCompat.thy
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author:     Steven Obua and Sebastian Skalberg (TU Muenchen)
  | 
| 
 | 
     4  | 
*)
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
theory HOLLightCompat imports HOL4Setup HOL4Compat Divides Primes Real begin
  | 
| 
 | 
     7  | 
  | 
| 
 | 
     8  | 
lemma light_imp_def: "(t1 --> t2) = ((t1 & t2) = t1)"
  | 
| 
 | 
     9  | 
  by auto;
  | 
| 
 | 
    10  | 
  | 
| 
 | 
    11  | 
lemma comb_rule: "[| P1 = P2 ; Q1 = Q2 |] ==> P1 Q1 = P2 Q2"
  | 
| 
 | 
    12  | 
  by simp
  | 
| 
 | 
    13  | 
  | 
| 
 | 
    14  | 
lemma light_and_def: "(t1 & t2) = ((%f. f t1 t2::bool) = (%f. f True True))"
  | 
| 
 | 
    15  | 
proof auto
  | 
| 
 | 
    16  | 
  assume a: "(%f. f t1 t2::bool) = (%f. f True True)"
  | 
| 
 | 
    17  | 
  have b: "(%(x::bool) (y::bool). x) = (%x y. x)" ..
  | 
| 
 | 
    18  | 
  with a
  | 
| 
 | 
    19  | 
  have "t1 = True"
  | 
| 
 | 
    20  | 
    by (rule comb_rule)
  | 
| 
 | 
    21  | 
  thus t1
  | 
| 
 | 
    22  | 
    by simp
  | 
| 
 | 
    23  | 
next
  | 
| 
 | 
    24  | 
  assume a: "(%f. f t1 t2::bool) = (%f. f True True)"
  | 
| 
 | 
    25  | 
  have b: "(%(x::bool) (y::bool). y) = (%x y. y)" ..
  | 
| 
 | 
    26  | 
  with a
  | 
| 
 | 
    27  | 
  have "t2 = True"
  | 
| 
 | 
    28  | 
    by (rule comb_rule)
  | 
| 
 | 
    29  | 
  thus t2
  | 
| 
 | 
    30  | 
    by simp
  | 
| 
 | 
    31  | 
qed
  | 
| 
 | 
    32  | 
  | 
| 
 | 
    33  | 
constdefs
  | 
| 
 | 
    34  | 
   Pred :: "nat \<Rightarrow> nat"
  | 
| 
 | 
    35  | 
   "Pred n \<equiv> n - (Suc 0)"
  | 
| 
 | 
    36  | 
  | 
| 
 | 
    37  | 
lemma Pred_altdef: "Pred = (SOME PRE. PRE 0 = 0 & (ALL n. PRE (Suc n) = n))"
  | 
| 
 | 
    38  | 
  apply (rule some_equality[symmetric])
  | 
| 
 | 
    39  | 
  apply (simp add: Pred_def)
  | 
| 
 | 
    40  | 
  apply (rule ext)
  | 
| 
 | 
    41  | 
  apply (induct_tac x)
  | 
| 
 | 
    42  | 
  apply (auto simp add: Pred_def)
  | 
| 
 | 
    43  | 
  done
  | 
| 
 | 
    44  | 
  | 
| 
 | 
    45  | 
lemma NUMERAL_rew[hol4rew]: "NUMERAL x = x" by (simp add: NUMERAL_def)
  | 
| 
 | 
    46  | 
  | 
| 
 | 
    47  | 
lemma REP_ABS_PAIR: "\<forall> x y. Rep_Prod (Abs_Prod (Pair_Rep x y)) = Pair_Rep x y"
  | 
| 
 | 
    48  | 
  apply (subst Abs_Prod_inverse)
  | 
| 
 | 
    49  | 
  apply (auto simp add: Prod_def)
  | 
| 
 | 
    50  | 
  done
  | 
| 
 | 
    51  | 
  | 
| 
 | 
    52  | 
lemma fst_altdef: "fst = (%p. SOME x. EX y. p = (x, y))"
  | 
| 
 | 
    53  | 
  apply (rule ext, rule someI2)
  | 
| 
 | 
    54  | 
  apply (auto intro: fst_conv[symmetric])
  | 
| 
 | 
    55  | 
  done
  | 
| 
 | 
    56  | 
  | 
| 
 | 
    57  | 
lemma snd_altdef: "snd = (%p. SOME x. EX y. p = (y, x))"
  | 
| 
 | 
    58  | 
  apply (rule ext, rule someI2)
  | 
| 
 | 
    59  | 
  apply (auto intro: snd_conv[symmetric])
  | 
| 
 | 
    60  | 
  done
  | 
| 
 | 
    61  | 
  | 
| 
 | 
    62  | 
lemma add_altdef: "op + = (SOME add. (ALL n. add 0 n = n) & (ALL m n. add (Suc m) n = Suc (add m n)))"
  | 
| 
 | 
    63  | 
  apply (rule some_equality[symmetric])
  | 
| 
 | 
    64  | 
  apply auto
  | 
| 
 | 
    65  | 
  apply (rule ext)+
  | 
| 
 | 
    66  | 
  apply (induct_tac x)
  | 
| 
 | 
    67  | 
  apply auto
  | 
| 
 | 
    68  | 
  done
  | 
| 
 | 
    69  | 
  | 
| 
 | 
    70  | 
lemma mult_altdef: "op * = (SOME mult. (ALL n. mult 0 n = 0) & (ALL m n. mult (Suc m) n = mult m n + n))"
  | 
| 
 | 
    71  | 
  apply (rule some_equality[symmetric])
  | 
| 
 | 
    72  | 
  apply auto
  | 
| 
 | 
    73  | 
  apply (rule ext)+
  | 
| 
 | 
    74  | 
  apply (induct_tac x)
  | 
| 
 | 
    75  | 
  apply auto
  | 
| 
 | 
    76  | 
  done
  | 
| 
 | 
    77  | 
  | 
| 
 | 
    78  | 
lemma sub_altdef: "op - = (SOME sub. (ALL m. sub m 0 = m) & (ALL m n. sub m (Suc n) = Pred (sub m n)))"
  | 
| 
 | 
    79  | 
  apply (simp add: Pred_def)
  | 
| 
 | 
    80  | 
  apply (rule some_equality[symmetric])
  | 
| 
 | 
    81  | 
  apply auto
  | 
| 
 | 
    82  | 
  apply (rule ext)+
  | 
| 
 | 
    83  | 
  apply (induct_tac xa)
  | 
| 
 | 
    84  | 
  apply auto
  | 
| 
 | 
    85  | 
  done
  | 
| 
 | 
    86  | 
  | 
| 
 | 
    87  | 
constdefs
  | 
| 
 | 
    88  | 
  NUMERAL_BIT0 :: "nat \<Rightarrow> nat"
  | 
| 
 | 
    89  | 
  "NUMERAL_BIT0 n \<equiv> n + n"
  | 
| 
 | 
    90  | 
  | 
| 
 | 
    91  | 
lemma NUMERAL_BIT1_altdef: "NUMERAL_BIT1 n = Suc (n + n)"
  | 
| 
 | 
    92  | 
  by (simp add: NUMERAL_BIT1_def)
  | 
| 
 | 
    93  | 
  | 
| 
19064
 | 
    94  | 
consts
  | 
| 
 | 
    95  | 
  sumlift :: "('a \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> (('a + 'b) \<Rightarrow> 'c)"
 | 
| 
17322
 | 
    96  | 
  | 
| 
19064
 | 
    97  | 
primrec
  | 
| 
 | 
    98  | 
  "sumlift f g (Inl a) = f a"
  | 
| 
 | 
    99  | 
  "sumlift f g (Inr b) = g b"
  | 
| 
 | 
   100  | 
  
  | 
| 
 | 
   101  | 
lemma sum_Recursion: "\<exists> f. (\<forall> a. f (Inl a) = Inl' a) \<and> (\<forall> b. f (Inr b) = Inr' b)"
  | 
| 
 | 
   102  | 
  apply (rule exI[where x="sumlift Inl' Inr'"])
  | 
| 
 | 
   103  | 
  apply auto
  | 
| 
 | 
   104  | 
  done
  | 
| 
17322
 | 
   105  | 
  | 
| 
 | 
   106  | 
end
  |