author | huffman |
Fri, 02 Sep 2011 20:58:31 -0700 | |
changeset 44678 | 21eb31192850 |
parent 44382 | 9afa4a0e6f3c |
child 47761 | dfe747e72fa8 |
permissions | -rw-r--r-- |
13586 | 1 |
(* Title: HOL/Library/FuncSet.thy |
40631
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
2 |
Author: Florian Kammueller and Lawrence C Paulson, Lukas Bulwahn |
13586 | 3 |
*) |
4 |
||
14706 | 5 |
header {* Pi and Function Sets *} |
13586 | 6 |
|
15131 | 7 |
theory FuncSet |
30663
0b6aff7451b2
Main is (Complex_Main) base entry point in library theories
haftmann
parents:
28524
diff
changeset
|
8 |
imports Hilbert_Choice Main |
15131 | 9 |
begin |
13586 | 10 |
|
19736 | 11 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
12 |
Pi :: "['a set, 'a => 'b set] => ('a => 'b) set" where |
19736 | 13 |
"Pi A B = {f. \<forall>x. x \<in> A --> f x \<in> B x}" |
13586 | 14 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
15 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
16 |
extensional :: "'a set => ('a => 'b) set" where |
28524 | 17 |
"extensional A = {f. \<forall>x. x~:A --> f x = undefined}" |
13586 | 18 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
19 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
20 |
"restrict" :: "['a => 'b, 'a set] => ('a => 'b)" where |
28524 | 21 |
"restrict f A = (%x. if x \<in> A then f x else undefined)" |
13586 | 22 |
|
19536 | 23 |
abbreviation |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
24 |
funcset :: "['a set, 'b set] => ('a => 'b) set" |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
25 |
(infixr "->" 60) where |
19536 | 26 |
"A -> B == Pi A (%_. B)" |
27 |
||
21210 | 28 |
notation (xsymbols) |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19536
diff
changeset
|
29 |
funcset (infixr "\<rightarrow>" 60) |
19536 | 30 |
|
13586 | 31 |
syntax |
19736 | 32 |
"_Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set" ("(3PI _:_./ _)" 10) |
33 |
"_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)" ("(3%_:_./ _)" [0,0,3] 3) |
|
13586 | 34 |
|
35 |
syntax (xsymbols) |
|
19736 | 36 |
"_Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set" ("(3\<Pi> _\<in>_./ _)" 10) |
37 |
"_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)" ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3) |
|
13586 | 38 |
|
14565 | 39 |
syntax (HTML output) |
19736 | 40 |
"_Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set" ("(3\<Pi> _\<in>_./ _)" 10) |
41 |
"_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)" ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3) |
|
14565 | 42 |
|
13586 | 43 |
translations |
20770 | 44 |
"PI x:A. B" == "CONST Pi A (%x. B)" |
45 |
"%x:A. f" == "CONST restrict (%x. f) A" |
|
13586 | 46 |
|
19736 | 47 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
48 |
"compose" :: "['a set, 'b => 'c, 'a => 'b] => ('a => 'c)" where |
19736 | 49 |
"compose A g f = (\<lambda>x\<in>A. g (f x))" |
13586 | 50 |
|
51 |
||
52 |
subsection{*Basic Properties of @{term Pi}*} |
|
53 |
||
31754 | 54 |
lemma Pi_I[intro!]: "(!!x. x \<in> A ==> f x \<in> B x) ==> f \<in> Pi A B" |
14706 | 55 |
by (simp add: Pi_def) |
13586 | 56 |
|
31731 | 57 |
lemma Pi_I'[simp]: "(!!x. x : A --> f x : B x) ==> f : Pi A B" |
58 |
by(simp add:Pi_def) |
|
59 |
||
13586 | 60 |
lemma funcsetI: "(!!x. x \<in> A ==> f x \<in> B) ==> f \<in> A -> B" |
14706 | 61 |
by (simp add: Pi_def) |
13586 | 62 |
|
63 |
lemma Pi_mem: "[|f: Pi A B; x \<in> A|] ==> f x \<in> B x" |
|
14706 | 64 |
by (simp add: Pi_def) |
13586 | 65 |
|
31759 | 66 |
lemma PiE [elim]: |
31754 | 67 |
"f : Pi A B ==> (f x : B x ==> Q) ==> (x ~: A ==> Q) ==> Q" |
68 |
by(auto simp: Pi_def) |
|
69 |
||
38656 | 70 |
lemma Pi_cong: |
71 |
"(\<And> w. w \<in> A \<Longrightarrow> f w = g w) \<Longrightarrow> f \<in> Pi A B \<longleftrightarrow> g \<in> Pi A B" |
|
72 |
by (auto simp: Pi_def) |
|
73 |
||
31769 | 74 |
lemma funcset_id [simp]: "(\<lambda>x. x) \<in> A \<rightarrow> A" |
44382 | 75 |
by auto |
31769 | 76 |
|
13586 | 77 |
lemma funcset_mem: "[|f \<in> A -> B; x \<in> A|] ==> f x \<in> B" |
14706 | 78 |
by (simp add: Pi_def) |
13586 | 79 |
|
14762 | 80 |
lemma funcset_image: "f \<in> A\<rightarrow>B ==> f ` A \<subseteq> B" |
31754 | 81 |
by auto |
14762 | 82 |
|
31754 | 83 |
lemma Pi_eq_empty[simp]: "((PI x: A. B x) = {}) = (\<exists>x\<in>A. B(x) = {})" |
13593 | 84 |
apply (simp add: Pi_def, auto) |
13586 | 85 |
txt{*Converse direction requires Axiom of Choice to exhibit a function |
86 |
picking an element from each non-empty @{term "B x"}*} |
|
13593 | 87 |
apply (drule_tac x = "%u. SOME y. y \<in> B u" in spec, auto) |
14706 | 88 |
apply (cut_tac P= "%y. y \<in> B x" in some_eq_ex, auto) |
13586 | 89 |
done |
90 |
||
13593 | 91 |
lemma Pi_empty [simp]: "Pi {} B = UNIV" |
31754 | 92 |
by (simp add: Pi_def) |
13593 | 93 |
|
94 |
lemma Pi_UNIV [simp]: "A -> UNIV = UNIV" |
|
31754 | 95 |
by (simp add: Pi_def) |
31727 | 96 |
(* |
97 |
lemma funcset_id [simp]: "(%x. x): A -> A" |
|
98 |
by (simp add: Pi_def) |
|
99 |
*) |
|
13586 | 100 |
text{*Covariance of Pi-sets in their second argument*} |
101 |
lemma Pi_mono: "(!!x. x \<in> A ==> B x <= C x) ==> Pi A B <= Pi A C" |
|
31754 | 102 |
by auto |
13586 | 103 |
|
104 |
text{*Contravariance of Pi-sets in their first argument*} |
|
105 |
lemma Pi_anti_mono: "A' <= A ==> Pi A B <= Pi A' B" |
|
31754 | 106 |
by auto |
13586 | 107 |
|
33271
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
33057
diff
changeset
|
108 |
lemma prod_final: |
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
33057
diff
changeset
|
109 |
assumes 1: "fst \<circ> f \<in> Pi A B" and 2: "snd \<circ> f \<in> Pi A C" |
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
33057
diff
changeset
|
110 |
shows "f \<in> (\<Pi> z \<in> A. B z \<times> C z)" |
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
33057
diff
changeset
|
111 |
proof (rule Pi_I) |
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
33057
diff
changeset
|
112 |
fix z |
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
33057
diff
changeset
|
113 |
assume z: "z \<in> A" |
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
33057
diff
changeset
|
114 |
have "f z = (fst (f z), snd (f z))" |
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
33057
diff
changeset
|
115 |
by simp |
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
33057
diff
changeset
|
116 |
also have "... \<in> B z \<times> C z" |
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
33057
diff
changeset
|
117 |
by (metis SigmaI PiE o_apply 1 2 z) |
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
33057
diff
changeset
|
118 |
finally show "f z \<in> B z \<times> C z" . |
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
33057
diff
changeset
|
119 |
qed |
7be66dee1a5a
New theory Probability, which contains a development of measure theory
paulson
parents:
33057
diff
changeset
|
120 |
|
13586 | 121 |
|
122 |
subsection{*Composition With a Restricted Domain: @{term compose}*} |
|
123 |
||
14706 | 124 |
lemma funcset_compose: |
31754 | 125 |
"[| f \<in> A -> B; g \<in> B -> C |]==> compose A g f \<in> A -> C" |
126 |
by (simp add: Pi_def compose_def restrict_def) |
|
13586 | 127 |
|
128 |
lemma compose_assoc: |
|
14706 | 129 |
"[| f \<in> A -> B; g \<in> B -> C; h \<in> C -> D |] |
13586 | 130 |
==> compose A h (compose A g f) = compose A (compose B h g) f" |
39302
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents:
39198
diff
changeset
|
131 |
by (simp add: fun_eq_iff Pi_def compose_def restrict_def) |
13586 | 132 |
|
133 |
lemma compose_eq: "x \<in> A ==> compose A g f x = g(f(x))" |
|
31754 | 134 |
by (simp add: compose_def restrict_def) |
13586 | 135 |
|
136 |
lemma surj_compose: "[| f ` A = B; g ` B = C |] ==> compose A g f ` A = C" |
|
14706 | 137 |
by (auto simp add: image_def compose_eq) |
13586 | 138 |
|
139 |
||
140 |
subsection{*Bounded Abstraction: @{term restrict}*} |
|
141 |
||
142 |
lemma restrict_in_funcset: "(!!x. x \<in> A ==> f x \<in> B) ==> (\<lambda>x\<in>A. f x) \<in> A -> B" |
|
14706 | 143 |
by (simp add: Pi_def restrict_def) |
13586 | 144 |
|
31754 | 145 |
lemma restrictI[intro!]: "(!!x. x \<in> A ==> f x \<in> B x) ==> (\<lambda>x\<in>A. f x) \<in> Pi A B" |
14706 | 146 |
by (simp add: Pi_def restrict_def) |
13586 | 147 |
|
148 |
lemma restrict_apply [simp]: |
|
28524 | 149 |
"(\<lambda>y\<in>A. f y) x = (if x \<in> A then f x else undefined)" |
14706 | 150 |
by (simp add: restrict_def) |
13586 | 151 |
|
14706 | 152 |
lemma restrict_ext: |
13586 | 153 |
"(!!x. x \<in> A ==> f x = g x) ==> (\<lambda>x\<in>A. f x) = (\<lambda>x\<in>A. g x)" |
39302
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents:
39198
diff
changeset
|
154 |
by (simp add: fun_eq_iff Pi_def restrict_def) |
13586 | 155 |
|
14853 | 156 |
lemma inj_on_restrict_eq [simp]: "inj_on (restrict f A) A = inj_on f A" |
14706 | 157 |
by (simp add: inj_on_def restrict_def) |
13586 | 158 |
|
159 |
lemma Id_compose: |
|
14706 | 160 |
"[|f \<in> A -> B; f \<in> extensional A|] ==> compose A (\<lambda>y\<in>B. y) f = f" |
39302
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents:
39198
diff
changeset
|
161 |
by (auto simp add: fun_eq_iff compose_def extensional_def Pi_def) |
13586 | 162 |
|
163 |
lemma compose_Id: |
|
14706 | 164 |
"[|g \<in> A -> B; g \<in> extensional A|] ==> compose A g (\<lambda>x\<in>A. x) = g" |
39302
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents:
39198
diff
changeset
|
165 |
by (auto simp add: fun_eq_iff compose_def extensional_def Pi_def) |
13586 | 166 |
|
14853 | 167 |
lemma image_restrict_eq [simp]: "(restrict f A) ` A = f ` A" |
19736 | 168 |
by (auto simp add: restrict_def) |
13586 | 169 |
|
14745 | 170 |
|
14762 | 171 |
subsection{*Bijections Between Sets*} |
172 |
||
26106
be52145f482d
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas
nipkow
parents:
21404
diff
changeset
|
173 |
text{*The definition of @{const bij_betw} is in @{text "Fun.thy"}, but most of |
14762 | 174 |
the theorems belong here, or need at least @{term Hilbert_Choice}.*} |
175 |
||
39595 | 176 |
lemma bij_betwI: |
177 |
assumes "f \<in> A \<rightarrow> B" and "g \<in> B \<rightarrow> A" |
|
178 |
and g_f: "\<And>x. x\<in>A \<Longrightarrow> g (f x) = x" and f_g: "\<And>y. y\<in>B \<Longrightarrow> f (g y) = y" |
|
179 |
shows "bij_betw f A B" |
|
180 |
unfolding bij_betw_def |
|
181 |
proof |
|
182 |
show "inj_on f A" by (metis g_f inj_on_def) |
|
183 |
next |
|
184 |
have "f ` A \<subseteq> B" using `f \<in> A \<rightarrow> B` by auto |
|
185 |
moreover |
|
186 |
have "B \<subseteq> f ` A" by auto (metis Pi_mem `g \<in> B \<rightarrow> A` f_g image_iff) |
|
187 |
ultimately show "f ` A = B" by blast |
|
188 |
qed |
|
189 |
||
14762 | 190 |
lemma bij_betw_imp_funcset: "bij_betw f A B \<Longrightarrow> f \<in> A \<rightarrow> B" |
32988 | 191 |
by (auto simp add: bij_betw_def) |
14762 | 192 |
|
14853 | 193 |
lemma inj_on_compose: |
31754 | 194 |
"[| bij_betw f A B; inj_on g B |] ==> inj_on (compose A g f) A" |
195 |
by (auto simp add: bij_betw_def inj_on_def compose_eq) |
|
14853 | 196 |
|
14762 | 197 |
lemma bij_betw_compose: |
31754 | 198 |
"[| bij_betw f A B; bij_betw g B C |] ==> bij_betw (compose A g f) A C" |
199 |
apply (simp add: bij_betw_def compose_eq inj_on_compose) |
|
200 |
apply (auto simp add: compose_def image_def) |
|
201 |
done |
|
14762 | 202 |
|
14853 | 203 |
lemma bij_betw_restrict_eq [simp]: |
31754 | 204 |
"bij_betw (restrict f A) A B = bij_betw f A B" |
205 |
by (simp add: bij_betw_def) |
|
14853 | 206 |
|
207 |
||
208 |
subsection{*Extensionality*} |
|
209 |
||
28524 | 210 |
lemma extensional_arb: "[|f \<in> extensional A; x\<notin> A|] ==> f x = undefined" |
31754 | 211 |
by (simp add: extensional_def) |
14853 | 212 |
|
213 |
lemma restrict_extensional [simp]: "restrict f A \<in> extensional A" |
|
31754 | 214 |
by (simp add: restrict_def extensional_def) |
14853 | 215 |
|
216 |
lemma compose_extensional [simp]: "compose A f g \<in> extensional A" |
|
31754 | 217 |
by (simp add: compose_def) |
14853 | 218 |
|
219 |
lemma extensionalityI: |
|
31754 | 220 |
"[| f \<in> extensional A; g \<in> extensional A; |
14853 | 221 |
!!x. x\<in>A ==> f x = g x |] ==> f = g" |
39302
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents:
39198
diff
changeset
|
222 |
by (force simp add: fun_eq_iff extensional_def) |
14853 | 223 |
|
39595 | 224 |
lemma extensional_restrict: "f \<in> extensional A \<Longrightarrow> restrict f A = f" |
225 |
by(rule extensionalityI[OF restrict_extensional]) auto |
|
226 |
||
33057 | 227 |
lemma inv_into_funcset: "f ` A = B ==> (\<lambda>x\<in>B. inv_into A f x) : B -> A" |
228 |
by (unfold inv_into_def) (fast intro: someI2) |
|
14853 | 229 |
|
33057 | 230 |
lemma compose_inv_into_id: |
231 |
"bij_betw f A B ==> compose A (\<lambda>y\<in>B. inv_into A f y) f = (\<lambda>x\<in>A. x)" |
|
31754 | 232 |
apply (simp add: bij_betw_def compose_def) |
233 |
apply (rule restrict_ext, auto) |
|
234 |
done |
|
14853 | 235 |
|
33057 | 236 |
lemma compose_id_inv_into: |
237 |
"f ` A = B ==> compose B f (\<lambda>y\<in>B. inv_into A f y) = (\<lambda>x\<in>B. x)" |
|
31754 | 238 |
apply (simp add: compose_def) |
239 |
apply (rule restrict_ext) |
|
33057 | 240 |
apply (simp add: f_inv_into_f) |
31754 | 241 |
done |
14853 | 242 |
|
14762 | 243 |
|
14745 | 244 |
subsection{*Cardinality*} |
245 |
||
246 |
lemma card_inj: "[|f \<in> A\<rightarrow>B; inj_on f A; finite B|] ==> card(A) \<le> card(B)" |
|
31754 | 247 |
by (rule card_inj_on_le) auto |
14745 | 248 |
|
249 |
lemma card_bij: |
|
31754 | 250 |
"[|f \<in> A\<rightarrow>B; inj_on f A; |
251 |
g \<in> B\<rightarrow>A; inj_on g B; finite A; finite B|] ==> card(A) = card(B)" |
|
252 |
by (blast intro: card_inj order_antisym) |
|
14745 | 253 |
|
40631
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
254 |
subsection {* Extensional Function Spaces *} |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
255 |
|
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
256 |
definition extensional_funcset |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
257 |
where "extensional_funcset S T = (S -> T) \<inter> (extensional S)" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
258 |
|
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
259 |
lemma extensional_empty[simp]: "extensional {} = {%x. undefined}" |
44382 | 260 |
unfolding extensional_def by auto |
40631
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
261 |
|
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
262 |
lemma extensional_funcset_empty_domain: "extensional_funcset {} T = {%x. undefined}" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
263 |
unfolding extensional_funcset_def by simp |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
264 |
|
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
265 |
lemma extensional_funcset_empty_range: |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
266 |
assumes "S \<noteq> {}" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
267 |
shows "extensional_funcset S {} = {}" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
268 |
using assms unfolding extensional_funcset_def by auto |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
269 |
|
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
270 |
lemma extensional_funcset_arb: |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
271 |
assumes "f \<in> extensional_funcset S T" "x \<notin> S" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
272 |
shows "f x = undefined" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
273 |
using assms |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
274 |
unfolding extensional_funcset_def by auto (auto dest!: extensional_arb) |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
275 |
|
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
276 |
lemma extensional_funcset_mem: "f \<in> extensional_funcset S T \<Longrightarrow> x \<in> S \<Longrightarrow> f x \<in> T" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
277 |
unfolding extensional_funcset_def by auto |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
278 |
|
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
279 |
lemma extensional_subset: "f : extensional A ==> A <= B ==> f : extensional B" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
280 |
unfolding extensional_def by auto |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
281 |
|
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
282 |
lemma extensional_funcset_extend_domainI: "\<lbrakk> y \<in> T; f \<in> extensional_funcset S T\<rbrakk> \<Longrightarrow> f(x := y) \<in> extensional_funcset (insert x S) T" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
283 |
unfolding extensional_funcset_def extensional_def by auto |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
284 |
|
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
285 |
lemma extensional_funcset_restrict_domain: |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
286 |
"x \<notin> S \<Longrightarrow> f \<in> extensional_funcset (insert x S) T \<Longrightarrow> f(x := undefined) \<in> extensional_funcset S T" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
287 |
unfolding extensional_funcset_def extensional_def by auto |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
288 |
|
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
289 |
lemma extensional_funcset_extend_domain_eq: |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
290 |
assumes "x \<notin> S" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
291 |
shows |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
292 |
"extensional_funcset (insert x S) T = (\<lambda>(y, g). g(x := y)) ` {(y, g). y \<in> T \<and> g \<in> extensional_funcset S T}" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
293 |
using assms |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
294 |
proof - |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
295 |
{ |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
296 |
fix f |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
297 |
assume "f : extensional_funcset (insert x S) T" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
298 |
from this assms have "f : (%(y, g). g(x := y)) ` (T <*> extensional_funcset S T)" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
299 |
unfolding image_iff |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
300 |
apply (rule_tac x="(f x, f(x := undefined))" in bexI) |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
301 |
apply (auto intro: extensional_funcset_extend_domainI extensional_funcset_restrict_domain extensional_funcset_mem) done |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
302 |
} |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
303 |
moreover |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
304 |
{ |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
305 |
fix f |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
306 |
assume "f : (%(y, g). g(x := y)) ` (T <*> extensional_funcset S T)" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
307 |
from this assms have "f : extensional_funcset (insert x S) T" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
308 |
by (auto intro: extensional_funcset_extend_domainI) |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
309 |
} |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
310 |
ultimately show ?thesis by auto |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
311 |
qed |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
312 |
|
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
313 |
lemma extensional_funcset_fun_upd_restricts_rangeI: "\<forall> y \<in> S. f x \<noteq> f y ==> f : extensional_funcset (insert x S) T ==> f(x := undefined) : extensional_funcset S (T - {f x})" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
314 |
unfolding extensional_funcset_def extensional_def |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
315 |
apply auto |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
316 |
apply (case_tac "x = xa") |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
317 |
apply auto done |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
318 |
|
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
319 |
lemma extensional_funcset_fun_upd_extends_rangeI: |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
320 |
assumes "a \<in> T" "f : extensional_funcset S (T - {a})" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
321 |
shows "f(x := a) : extensional_funcset (insert x S) T" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
322 |
using assms unfolding extensional_funcset_def extensional_def by auto |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
323 |
|
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
324 |
subsubsection {* Injective Extensional Function Spaces *} |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
325 |
|
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
326 |
lemma extensional_funcset_fun_upd_inj_onI: |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
327 |
assumes "f \<in> extensional_funcset S (T - {a})" "inj_on f S" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
328 |
shows "inj_on (f(x := a)) S" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
329 |
using assms unfolding extensional_funcset_def by (auto intro!: inj_on_fun_updI) |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
330 |
|
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
331 |
lemma extensional_funcset_extend_domain_inj_on_eq: |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
332 |
assumes "x \<notin> S" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
333 |
shows"{f. f \<in> extensional_funcset (insert x S) T \<and> inj_on f (insert x S)} = |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
334 |
(%(y, g). g(x:=y)) ` {(y, g). y \<in> T \<and> g \<in> extensional_funcset S (T - {y}) \<and> inj_on g S}" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
335 |
proof - |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
336 |
from assms show ?thesis |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
337 |
apply auto |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
338 |
apply (auto intro: extensional_funcset_fun_upd_inj_onI extensional_funcset_fun_upd_extends_rangeI) |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
339 |
apply (auto simp add: image_iff inj_on_def) |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
340 |
apply (rule_tac x="xa x" in exI) |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
341 |
apply (auto intro: extensional_funcset_mem) |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
342 |
apply (rule_tac x="xa(x := undefined)" in exI) |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
343 |
apply (auto intro!: extensional_funcset_fun_upd_restricts_rangeI) |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
344 |
apply (auto dest!: extensional_funcset_mem split: split_if_asm) |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
345 |
done |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
346 |
qed |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
347 |
|
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
348 |
lemma extensional_funcset_extend_domain_inj_onI: |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
349 |
assumes "x \<notin> S" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
350 |
shows "inj_on (\<lambda>(y, g). g(x := y)) {(y, g). y \<in> T \<and> g \<in> extensional_funcset S (T - {y}) \<and> inj_on g S}" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
351 |
proof - |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
352 |
from assms show ?thesis |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
353 |
apply (auto intro!: inj_onI) |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
354 |
apply (metis fun_upd_same) |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
355 |
by (metis assms extensional_funcset_arb fun_upd_triv fun_upd_upd) |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
356 |
qed |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
357 |
|
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
358 |
|
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
359 |
subsubsection {* Cardinality *} |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
360 |
|
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
361 |
lemma card_extensional_funcset: |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
362 |
assumes "finite S" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
363 |
shows "card (extensional_funcset S T) = (card T) ^ (card S)" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
364 |
using assms |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
365 |
proof (induct rule: finite_induct) |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
366 |
case empty |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
367 |
show ?case |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
368 |
by (auto simp add: extensional_funcset_empty_domain) |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
369 |
next |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
370 |
case (insert x S) |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
371 |
{ |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
372 |
fix g g' y y' |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
373 |
assume assms: "g \<in> extensional_funcset S T" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
374 |
"g' \<in> extensional_funcset S T" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
375 |
"y \<in> T" "y' \<in> T" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
376 |
"g(x := y) = g'(x := y')" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
377 |
from this have "y = y'" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
378 |
by (metis fun_upd_same) |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
379 |
have "g = g'" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
380 |
by (metis assms(1) assms(2) assms(5) extensional_funcset_arb fun_upd_triv fun_upd_upd insert(2)) |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
381 |
from `y = y'` `g = g'` have "y = y' & g = g'" by simp |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
382 |
} |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
383 |
from this have "inj_on (\<lambda>(y, g). g (x := y)) (T \<times> extensional_funcset S T)" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
384 |
by (auto intro: inj_onI) |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
385 |
from this insert.hyps show ?case |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
386 |
by (simp add: extensional_funcset_extend_domain_eq card_image card_cartesian_product) |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
387 |
qed |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
388 |
|
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
389 |
lemma finite_extensional_funcset: |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
390 |
assumes "finite S" "finite T" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
391 |
shows "finite (extensional_funcset S T)" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
392 |
proof - |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
393 |
from card_extensional_funcset[OF assms(1), of T] assms(2) |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
394 |
have "(card (extensional_funcset S T) \<noteq> 0) \<or> (S \<noteq> {} \<and> T = {})" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
395 |
by auto |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
396 |
from this show ?thesis |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
397 |
proof |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
398 |
assume "card (extensional_funcset S T) \<noteq> 0" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
399 |
from this show ?thesis |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
400 |
by (auto intro: card_ge_0_finite) |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
401 |
next |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
402 |
assume "S \<noteq> {} \<and> T = {}" |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
403 |
from this show ?thesis |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
404 |
by (auto simp add: extensional_funcset_empty_range) |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
405 |
qed |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
406 |
qed |
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
bulwahn
parents:
39595
diff
changeset
|
407 |
|
13586 | 408 |
end |